制造包含弹性材料的多孔隔膜的方法、通过该方法制造的多孔隔膜以及包括该隔膜的二...的制作方法

文档序号:7037991阅读:223来源:国知局
制造包含弹性材料的多孔隔膜的方法、通过该方法制造的多孔隔膜以及包括该隔膜的二 ...的制作方法
【专利摘要】本发明涉及一种制造多孔隔膜的方法,具体而言,制造包含弹性材料的多孔隔膜的方法、通过该方法制造的隔膜、以及包括所述隔膜的二次电池。根据本发明的一个方面,提供一种多孔隔膜,其中弹性材料以40:60至5:95的重量比均匀地分散于聚合物中,并且室温下在低拉伸强度方向上的断裂伸长率数值为250%以上。根据本发明的另一方面,提供制造多孔隔膜的方法,其包括:通过经由挤出机挤出聚合物和弹性材料重量比为95:5至60:40的混合物而形成挤出板的步骤;通过对所述经挤出板进行退火和拉伸而形成膜的步骤;通过对所述经拉伸的膜进行热固化而形成多孔隔膜的步骤。根据本发明,通过降低所述膜的热收缩率并大大增加断裂伸长率,从而提供具有改善的稳定性的多孔隔膜。
【专利说明】制造包含弹性材料的多孔隔膜的方法、通过该方法制造的 多孔隔膜以及包括该隔膜的二次电池

【技术领域】
[0001] 本发明涉及一种制造多孔隔膜的方法,更具体而言,涉及制造包含弹性材料的多 孔隔膜的方法、通过该方法制造的多孔隔膜、以及包括该隔膜的二次电池。
[0002] 本申请要求于2012年9月25日在韩国提交的第10-2012-0106545号韩国专利申 请以及于2013年9月25日在韩国提交的第10-2013-0114158号韩国专利申请的优先权, 所述申请的说明书和附图公开的所有内容通过引证方式纳入本文。

【背景技术】
[0003] 二次电池是一种化学电池,它可通过利用电化学反应不断重复充电与放电过程而 被半永久性地使用,它可分为铅蓄电池、镍-镉电池、镍-氢电池和锂二次电池。其中,锂二 次电池比其它电池具有更高的电压和更好的能量密度特性,因此它在二次电池市场上处于 主导地位。同样,根据电解质的类型,锂二次电池可分为使用液体电解质的锂离子二次电池 和使用固体电解质的锂离子聚合物二次电池。
[0004] 锂二次电池包括阴极、阳极、电解质和隔膜,其中隔膜起到将阴极和阳极分离的作 用,从而使阴极和阳极电绝缘并改善锂离子的转移或改善基于高孔隙率(porosity)的通 透度(permeability,透气度)以增加离子电导率。作为普遍使用的隔膜的聚合物基体,主 要使用基于聚烯烃的聚合物诸如聚乙烯(PE)、聚丙烯(PP)等,它们有利于孔的形成、并具 有优异的耐化学性、机械的和热的性质。
[0005] 用于锂二次电池的隔膜要求这样的特性,诸如极好的通透度、低的热收缩、高的击 穿强度等;然而,随着高容量和高输出电池的进步,不断地进行着改善通透度的尝试。为了 从聚烯烃制造多孔隔膜,已经使用了湿法,该方法将聚烯烃和造孔剂在高温下混合,挤出并 拉伸,随后提取出造孔剂。然而,为了改善经由湿法制造的隔膜的通透度,已经使用了增加 造孔剂的量的方法,所述造孔剂例如稀释剂、增塑剂等;然而,随着造孔剂含量的增加,挤压 成型的稳定性大大降低,并且不得不改变包括挤出条件在内的多种工艺条件,因此带来了 困难,并且大量的造孔剂和溶剂引起了环境问题。
[0006] 同时,不同于使用溶剂的湿法,不使用该溶剂的干法使得能够大量生产宽膜,并且 由于不需要溶剂,因此,与湿法相比,干法更加环境友好。然而,拉伸过程具有这样的缺点, 即由于膜向与其拉伸方向相反的方向收缩的趋势,因此,发生短路的可能性较高。相应地, 经过拉伸过程的膜在机械性质方面具有显著的改善,所述机械性质诸如在拉伸方向或较多 拉伸方向上的拉伸强度(tensile strength),但是在垂直于拉伸方向或较少拉伸方向的方 向上具有相对低的强度,如此以来,膜可能被撕下来,从而导致发生短路的现象。同样,由于 过充电等或其它原因引起的温度增加,导致分离膜过度收缩时,可能发生内部短路。
[0007] 相应地,对于多孔隔膜仍有这样的需求,即其中经拉伸的膜在拉伸方向上以及与 拉伸方向相反的方向上均具有改善的强度。


【发明内容】

[0008] 抟术问是页
[0009] 本发明旨在提供一种在电池的组装过程期间或已组装的电池中,大大降低膜容易 被撕掉的特性的多孔隔膜,以及制造该多孔隔膜的方法。
[0010] 抟术方案
[0011] 为了实现该目的,本发明一方面提供包含含量比为基于重量比的约40:60至约 5:95的弹性材料和聚合物树脂的混合物的多孔隔膜,在所述混合物中,所述弹性材料均匀 地分散于所述聚合物中,并且室温下在低拉伸强度方向上的断裂伸长率的数值为大于或等 于约250%。
[0012] 本发明另一方面提供制造多孔隔膜的方法,该包括:通过经由挤出机挤出重量比 为95:5至60:40的聚合物树脂和弹性材料的混合物而形成挤出板(sheet)的步骤;通过对 所述挤出板进行退火并拉伸而形成膜的步骤;以及通过对所述经拉伸的膜进行热固化而形 成多孔隔膜的步骤。
[0013] 有益效果
[0014] 根据本发明,可以提供降低了膜的热收缩率并大大增加了断裂伸长率而具有改善 的稳定性的多孔隔膜。

【专利附图】

【附图说明】
[0015] 图1是说明按照示例性实施方案多孔隔膜的制造工艺的流程图。

【具体实施方式】
[0016] 下文将参照附图详细说明本发明的优选实施方案。在说明之前,应理解,说明书和 权利要求中所用的术语不应解释为局限于常规和字典中的含义,而应在允许发明人为进行 最佳说明而对术语作适当定义的原则基础上,基于与发明技术构思相应的含义和概念来解 释。因此,在此提出的本说明书只是仅用作例证目的的优选实施例,不意图限定本发明的范 围,因此,应理解,在不背离本发明精神和范围的情况下,可以得到其它等效方案和修改方 案。
[0017] 本文所用术语"通透度(permeability) "是指,100cc的空气穿过多孔基体的时间 段,作为其单位在本说明书中采用秒/l〇〇cc。术语"通透度"可与术语"透过率"可交换地 使用,通常根据Gurley值等来标示。
[0018] 本文所用术语"击穿强度(puncture strength) "是指,隔膜对抗来自外部的危险、 例如对外部物体的击穿的抵抗力,并且作为其单位采用"克(g)"。术语"击穿强度"可与术 语"贯穿强度"或"爆破强度"等可交换地使用,并且通常而言,更高的数值降低由隔膜引起 的内部短路的风险。
[0019] 本文所用术语"断裂伸长率(elongation at break)"是指,隔膜在室温下被拉伸 断裂为止,拉伸后的长度和初始长度之间的比率,作为其单位采用" % 该断裂伸长率可通 过拉伸试验测量。
[0020] 本发明一方面的多孔隔膜中,弹性材料均匀地分散在聚合物树脂中。
[0021] 所述弹性材料和所述聚合物树脂之间的含量比为基于重量比的约40:60至约 5:95,或约30:70至约10:90。当所述弹性材料在所述含量范围内分散于所述聚合物树脂中 时,室温下在抗拉强度低的方向上断裂伸长率的数值可为约250%或更高或者约300%或 更高。
[0022] 例如,所述聚合物树脂是,存在于二次电池的阴极和阳极之间而维持绝缘状态,由 此防止短路的隔膜的原材料颗粒,并且作为非限制性实例,所述聚合物树脂可以是基于聚 烯烃的聚合物树脂。例如,所述基于聚烯烃的聚合物树脂例如可以是选自高密度聚乙烯、线 性低密度聚乙烯、低密度聚乙烯、或超高分子量聚乙烯、聚丙烯、聚丁烯和聚戊烯等中的一 种以上或其两种以上的组合物,但不局限于此。
[0023] 在本发明中,通常而言,所述弹性材料是指具有弹性性质的材料,其在应力下能够 被拉伸至其原始长度的两倍,当移除所施加的应力时能够迅速恢复其原始长度。
[0024] 所述弹性材料可包括弹性体、天然橡胶或合成橡胶,但不限于此。作为非限制性 实例,所述弹性体可包括聚烯经-弹性体(polyolefin elastomer, Ρ0Ε)、苯乙烯嵌段共聚 物(styrenic block copolymer,SBC)、氯乙烯弹性体(vinyl chloride elastomer)、氯化 聚乙烯弹性体(chlorinated polyethylene elastomer,CPE)、聚氨酯弹性体(urethane elastomer,TPU)、聚酯弹性体(polyester elastomer,TPEE)、聚醜胺弹性体(polyamide elastomer,TPAE)、氟化弹性体(fluorinated elastomer)和娃酮弹性体(silicone elastomer)〇
[0025] 其中,所述聚烯烃弹性体(POE)可为下列任何一种聚合物:烯烃,例如,乙烯、丙 烯、丁烯、戊烯、己烯、庚烯和辛烷、或两种或更多种的聚合物,例如,共聚物、三聚物或其混 合物,或与此共聚的弹性体;或接枝共聚物,其中一种单体选自乙烯、丙烯、丁烯、戊烯、己 烯、庚烯和辛烷,该接枝共聚物具有主链结构并且不同种类的单体以分枝形式嫁接于其上。 根据本发明的一个实施方案,所述聚烯烃弹性体可以是共聚物、三聚物、嵌段共聚物或包括 位于主链上的聚丙烯的接枝共聚物聚丙烯。
[0026] 根据本发明的一个实施方案,所述聚烯烃弹性体的熔化温度(Tm)为90°C至 165°C。当熔化温度为90°C或更低时,耐热性降低,使得它不适合用作电化学器件的隔膜。
[0027] 根据本发明的一个实施方案,所述多孔隔膜是单轴拉伸的,例如,在加工方向 (machine direction, MD)上,或者是双轴拉伸的。
[0028] 在此,单轴拉伸是指在一个方向上拉伸膜,双轴拉伸是指在大致相互垂直的两个 方向上拉伸膜。进行该拉伸过程是为了在隔膜上形成孔并赋予强度而进行的。
[0029] 然而,所述已拉伸的隔膜具有向与其拉伸方向相反的方向收缩的趋势。具体而言, 由电池内部或外部因素而引起的温度增加时,隔膜可能进一步收缩,这可引起电池等的短 路。由于这种原因,在单轴拉伸的情况下,隔膜可具有比置于隔膜两边的两个电极更长的长 度,如此以来,当考虑到拉伸方向或随之发生的收缩方向时,剩余的隔膜延伸超过两个电极 的边缘。与此相似地,在双轴拉伸的情况下,隔膜可具有比两个电极在更多拉伸方向或随之 发生的收缩方向上更长的长度。
[0030] 本发明的另一方面提供包括阴极、阳极以及插入在所述阴极和所述阳极之间的上 述隔膜的二次电池。具体而言,所述二次电池可包括锂二次电池,所述锂二次电池例如包括 金属锂二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。
[0031] 适合本发明的阴极和阳极可通过本领域已知的工艺和/或方法而容易地生产。
[0032] 阴极是通过本领域已知的传统方法来将阴极活性材料粘合于阴极集电器的方 式生产的。在此情况下,所述阴极活性材料可以是通常用于电化学器件阴极中的典型的 阴极活性材料,作为非限制性实例,包括LiCo02、LiNi02、LiMn02、LiMn 204、Li (NiaCobMr〇 02(0〈a〈l,0〈b〈l,a+b+c = l)、LiNi1_γCoγ02、LiCo 1_γMnγ02、LiNi卜γMn γ02(在此,0彡Y〈l)、 Li (NiaCobMnc) 04 (0〈a〈2, 0〈b〈2, a+b+c = 2)、LiMn2_zNiz04、LiMn 2_zCoz04 (在此,0〈Z〈2)、 LiC〇P04、LiFeP04和它们的混合物等。同样,作为阴极集电器,可使用由铝、镍或其组合制成 的箔。
[0033] 阳极是通过本领域已知的传统方法以将阳极活性材料粘合于阳极集电器的 方式生产的。在此情况下,所述阳极活性材料可以是,例如,包含非石墨化碳的碳、 基于石墨的碳等;复合金属氧化物包括LixFe203(0彡X彡1)、Li xW02 (0彡X彡1)、 SnxMei_xMe' y0z(Me:Mn,Fe,Pb,Ge ;Me' :A1,B,P,Si,周期表中 1、2 和 3 族的元素,卤素; 0〈x < 1 ; 1 < y < 3 ; 1 < z < 8);金属锂;合金锂;硅基合金;锡基合金;氧化物,包括SnO、 Sn02、PbO、Pb02、Pb203、Pb 304、Sb203、Sb20 4、Sb205、GeO、Ge02、Bi20 3、Bi204、Bi205 等;导电聚合 物,包括聚乙炔等;Li-Co-Ni-基材料;等等。同时,作为阳极集电器,可以使用不锈钢、镍、 铜、钛或它们的合金等。
[0034] 同样,可被插入于电极和隔膜之间的电解质可以是如由A+B-组成的结构的盐溶解 或离解在有机溶剂中的电解质,其中,A+包括如Li+、Na+、K+的碱金属阳离子或它们的组合, B-包括如 PF6' BF4' C1' Γ、C104' AsF6' CH3C02' CF3S03' N (CF3S02) 2' C (CF2S02) 勺阴离 子或它们的组合,所述有机溶剂由碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、碳酸二乙酯(DEC)、 碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、二甲基亚砜、乙腈、二甲氧基乙烷、二乙氧基乙烷、四 氢呋喃、N-甲基-2-吡咯烷酮(NMP)、碳酸甲乙酯(EMC)、伽马丁内酯(γ-丁内酯)或它们 的混合物组合而成。
[0035] 基于制造工艺和所要求的终产品的物理性质,电解质的注入可在电池制造工艺的 适当步骤中进行。作为将本发明的隔膜应用于电池的过程,除了卷曲(winding)过程以外, 可以适用隔膜和电极的分层/堆叠(lamination, stack)过程和折叠(folding)过程。
[0036] 图1是说明按照示例性实施方案制造多孔隔膜的过程的流程图。参考图1,根据本 发明的另一方面,制造多孔隔膜的方法包括(S1)形成挤出板的步骤,(S2)形成膜的步骤, 和(S3)形成多孔隔膜的步骤。
[0037] 在步骤S1中,根据预期的隔膜选择聚合物和弹性材料的类型,将它们混合,将该 混合物挤出以形成挤出板。
[0038] 对聚合物和弹性材料的说明与前面对所描述的多孔隔膜的说明相同。
[0039] 在所述示例性弹性材料中,如聚烯烃弹性体的弹性体通常具有低熔化温度Tm。 当过量的弹性材料与所述的聚合物混合时,所形成的隔膜的热收缩率可能会增加。相 反,当使用非常小量的弹性材料时,不可能实现期望的延伸率,并且改善应力-应变 (stress-strain, S-S)曲线上的高屈服应变是困难的。
[0040] 由于这些原因,聚合物和弹性材料之间的混合比优选以约95:5至约60:40,或约 90:10至约70:30的重量比混合。
[0041] 将聚合物和弹性材料的混合物通过挤出机挤出。所述挤出机不限于具体类型的挤 出机,可以是本领域普遍使用的挤出机,作为非限制性实例,配有T-模头或管状模头的挤 出机。挤出过程可在常规挤出温度下进行,但优选在"所述聚合物的熔点+约l〇°C的温度" 至"所述聚合物的熔点+约100°c的温度"范围内。如果混合物的挤压工艺是在超过或低于 该范围的温度下进行的,可能会发生聚合物的热降解反应,由此难以成形,并且所制造膜的 物理性质变差,从而是不优选的。据此,形成通过挤出工艺挤出的板。
[0042] 在步骤S2中,在步骤S1中所形成的挤出板进行退火和拉伸工艺。
[0043] 退火工艺可使用将挤出板与加热了的金属板接触的方法,一边在位于烘箱内部或 在外部从滚筒卷出挤出板一边在炉中进行加热的方法,或通过紫外线辐射加热挤出板的方 法,或者在将挤出板与另外的膜双重缠绕在滚筒上,并在烘箱中加热滚筒的方法。然而,在 这点上,本发明不局限于此。
[0044] 在此,退火温度可设定为低于所用聚合物的熔点的温度范围内,例如,从低于所述 熔点至聚合物的熔点,并且可一边阶梯式改变温度一边进行退火。另外,在进行退火时,可 在基于挤出板的长度的约0%至约20%的范围内进行拉伸,优选在约0%至约10%的范围 内,以增加膜的弹性回复率。如果退火温度设定为聚合物的熔点以上,本发明中所用的聚合 物的结构熔化并破裂,冷却时,形成非定向的结构。相应地,在拉伸工艺中,膜中不会产生相 互连接的孔。优选地,退火时间为约30秒或更长。如果退火时间少于30秒,将不能满足挤 出板的退火,导致弹性回复率增加较少。
[0045] 所述拉伸工艺通过本领域所用的一般拉伸方法进行。该拉伸方法可包括使用本领 域所用一般拉伸机的低温拉伸和/或高温拉伸等。作为非限制性实例,所述拉伸机可包括 连续的双轴拉伸机。已拉伸的膜例如具有改善了的机械强度。
[0046] 所述拉伸工艺以加工方向(MD)(或纵向)和/或横向(TD)(或垂直方向)进行。 通过在所有或任一方向上进行拉伸过程,可增加相应方向上的抗拉强度。必要时,在拉伸过 程中,本发明的隔膜可独立地(例如,单轴拉伸)或同时或按顺序(例如,双轴拉伸)进行 纵向(MD)拉伸和/或横向(TD)拉伸。
[0047] 在步骤S3中,通过对步骤S2中的经拉伸的膜进行热处理来热固定。经过热固定, 形成多孔隔膜。
[0048] 为了获得具有最终期望的通透度的隔膜,对经拉伸的膜进行热固定。具体而言,为 了降低最终膜的收缩率,将通过之前的步骤拉伸-松弛了的膜进行热定形以消除剩余的应 力。
[0049] 热固定通过在低于于所用聚合物的熔点的温度下,将膜置于张力状态下固定预设 的时间,并对其施加热量,由此强制消除膜收缩的趋势而去除剩余的应力。在热固定过程 中,高温对降低收缩率是有利的,但是当温度过高时,部分膜会熔化,由此导致所形成的孔 堵塞而降低通透度。热固定温度可以是,例如,但不限于,"聚合物的熔点减去约80°C的温 度"至"聚合物的熔点减去约5°C的温度"范围。
[0050] 上述步骤只是举例来描述制造具有最佳物理性质的多孔隔膜的方法,所述步骤中 的部分可以省略,或取决于期望的最终的理化性质而添加另外的工艺,在各个步骤中的部 分顺序可以改变。
[0051] 可在期望的孔隙率和/或通透性范围内在隔膜上产生孔,例如,大于或等于35% 的孔隙率和/或穿过15 μ m厚度时小于或等于300秒/100cc的通透度(permeability)。
[0052] 下文将详细描述本发明的实施方案。然而,本发明的实施方案可采取多种其它形 式,本发明的范围不应解释为局限于下面的实施例。提供本发明的实施方案以更充分地向 本发明所属领域技术人员解释本发明。
[0053] 实施例
[0054] [实施例1]
[0055] 将30g的蓖麻油作为表面活性剂加入到1. 8kg的聚丙烯(JPP,FY6H)和0. 2kg 的聚丙烯弹性体(LG Chem.,Lucene LC100,Tm:96°C)的树脂混合物中,在双螺杆挤出机 中混合并造粒。通过在配有T-模头的单螺杆挤出机中熔化所述小球(pellet)并浇铸 (casting)在冷却滚筒上来制造膜。为了稳定所制造的膜的晶体结构,将膜在约110°C的炉 中保持60分钟,通过使用滚筒拉伸机在90°C以五倍于其原始长度的拉伸率在MD (Machine direction)上单轴拉伸膜来生产多孔膜,之后,通过使用133°C的滚筒引起多孔膜在MD上 热收缩20%来进行热固定,由此获得具有微孔的20 μ m厚的隔膜。
[0056] [实施例2]
[0057] 除了使用1. 6kg的聚丙烯(JPP, FY6H)和0· 4kg的聚丙烯弹性体(LGChem.,Lucene LC100, Tm: 96 °C )而代替1. 8kg的聚丙烯(JPP,FY6H)和0· 2kg的聚丙烯弹性体(LG Chem.,Lucene LC100, Tm:96°C )之外,通过使用与实施例1相同的方法制造并获得隔膜。
[0058] 比较实施例
[0059] 除了使用2. 0kg的聚丙烯(JPP, FY6H)代替1. 8kg的聚丙烯(JPP, FY6H)和0. 2kg 聚丙烯弹性体(LG Chem.,Lucene LC100,Tm:96°C )之外,通过使用与实施例1相同的方法 制造获得隔膜。
[0060] 比较试骑
[0061] [表 1]
[0062] 断裂伸长率的比较试验结果
[0063] I断裂伸长率(%) 实施例1 320 实施例2 3T5 比较实施例1 ~?20
[0064] 在20°C ±2的温度和65±2%的相对湿度的条件下,使用实施例1和2以及比较 实施例1中获得的5cmX 5cm大小的隔膜样本来测量了断裂伸长率。如表1所示,实施例1 和2中制造的隔膜呈现出大于或等于300%的断裂伸长率。相反,发现不含聚丙烯弹性体的 比较实施例1中制造的隔膜具有120%的断裂伸长率,远低于实施例1和2。
【权利要求】
1. 一种多孔隔膜,其含有含量比为基于重量比的40:60至5:95的弹性材料和聚合物树 脂的混合物,其中, 在所述混合物中,所述弹性材料均匀地分散于所述聚合物树脂中,并且室温下在低拉 伸强度方向上的断裂伸长率数值为大于或等于250%。
2. 根据权利要求1所述的多孔隔膜,其特征在于, 所述聚合物树脂是基于聚烯烃的聚合物。
3. 根据权利要求2所述的多孔隔膜,其特征在于, 所述基于聚烯烃的聚合物树脂选自聚乙烯、聚丙烯、聚丁烯和聚戊烯中的一种或其两 种以上的组合物。
4. 根据权利要求1所述的多孔隔膜,其特征在于, 所述弹性材料是弹性体、天然橡胶或合成橡胶。
5. 根据权利要求4所述的多孔隔膜,其特征在于, 所述弹性体是聚烯烃弹性体(POE)。
6. 根据权利要求5所述的多孔隔膜,其特征在于, 所述聚烯烃弹性体选自乙烯、丙烯、丁烯、戊烯、己烯、庚烯和辛烷,或其中两种或更多 种的共聚物,或与其共聚的弹性体。
7. 根据权利要求1所述的多孔隔膜,其特征在于, 所述多孔隔膜是单轴拉伸或双轴拉伸的。
8. 根据权利要求7所述的多孔隔膜,其特征在于, 所述单轴拉伸是在加工方向(MD)上进行的。
9. 一种二次电池,其包含阴极、阳极和插入所述阴极和所述阳极之间的权利要求1至8 中任一项所述的多孔隔膜。
10. 根据权利要求9所述的二次电池,其特征在于, 所述二次电池是锂二次电池。
11. 一种制造多孔隔膜的方法,该方法包括: 以95:5至60:40的重量比混合聚合物树脂和弹性材料而制备混合物,并通过经由挤出 机挤出所述混合物而形成挤出板的步骤; 通过对挤出板进行退火并拉伸而形成膜的步骤;以及 通过对经拉伸的膜进行热固化而形成多孔隔膜的步骤。
12. 根据权利要求11所述的制造多孔隔膜的方法,其特征在于, 所述聚合物树脂是基于聚烯烃的聚合物。
13. 根据权利要求12所述的方法,其特征在于, 所述基于聚烯烃的聚合物树脂选自聚乙烯、聚丙烯、聚丁烯和聚戊烯中的一种或其两 种以上的组合物。
14. 根据权利要求11所述的制造多孔隔膜的方法,其特征在于, 所述弹性材料是弹性体、天然橡胶或合成橡胶。
15. 根据权利要求14所述的制造多孔隔膜的方法,其特征在于, 所述弹性体是聚烯烃弹性体(POE)。
16. 根据权利要求15所述的制造多孔隔膜的方法,其特征在于, 所述聚烯烃弹性体选自乙烯、丙烯、丁烯、戊烯、庚烯和辛烷中的一种或其两种以上的 共聚物,或与其共聚的弹性体。
17. 根据权利要求11所述的制造多孔隔膜的方法,其特征在于, 所述挤出板的拉伸包括单轴或双轴拉伸。
18. 根据权利要求17所述的制造多孔隔膜的方法,其特征在于, 所述单轴拉伸是在加工方向(MD)上进行的。
【文档编号】H01M2/16GK104272500SQ201380022185
【公开日】2015年1月7日 申请日期:2013年9月25日 优先权日:2012年9月25日
【发明者】李柱成, 辛秉镇, 成东昱, 金钟勋 申请人:株式会社Lg化学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1