基于平面二元结构的频率扫描反射面天线及衍射波增强方法

文档序号:7040774阅读:168来源:国知局
基于平面二元结构的频率扫描反射面天线及衍射波增强方法
【专利摘要】本发明涉及一种基于平面二元结构的频率扫描反射面天线,包括多个反射单元,所述反射单元为二维周期排列;所述多个反射单元分布在同一平面内,每个反射单元包括多个子反射单元、介质基板和金属地板,在介质基板的一侧面固接金属地板,在介质基板的另一侧面固接多个子反射单元,每个子反射单元与相邻的子反射单元之间具有一距离,所述多个子反射单元组成平面二元结构;入射波照射到多个反射单元上,周期性排列的多个反射单元将入射波生成镜像反射波和波束指向随频率变化的衍射波模式。本发明还包括一种基于平面二元结构的衍射波增强方法。本发明天线能够在0.2THz附近的频段内,实现大角度范围的扫描,且具有高增益、低镜像反射副瓣的性能。
【专利说明】基于平面二元结构的频率扫描反射面天线及衍射波增强方法
【技术领域】
[0001]本发明属于太赫兹【技术领域】,涉及一种基于平面二元结构的频率扫描反射面天线。
技术背景
[0002]能够对入射波的相位或振幅进行空间周期性的调制,由系列密集、平行、等宽而又等间距的刻线构成的光学器件成为光栅。当光栅刻划成锯齿形的线槽面时,光栅的能量便集中在预定的方向上,这种现象成为闪耀,这种光栅成为闪耀光栅。
[0003]太赫兹波一般是指频率在0.1THz?IOTHz之间的电磁波,是人们研究和利用最少的频段,近十几年来引起了人们的极大关注。由于所处的频段位于微波与红外频谱之间,属于宏观电子学向微观电子学过渡的范围。太赫兹波表现出不同于其他频段电磁波的特性。比如,太赫兹波具有很好的穿透沙尘烟雾的能力,对纤维、衣物等非极性材料有良好的穿透性;太赫兹波光子能量小,没有类似X射线的电离效应,不会对物质产生破坏作用。因此太赫兹波可以广泛的应用在遥感、国土安全、无损探测、反恐安检、医疗诊断等领域。其中应用于安全检测领域的太赫兹成像技术是各个国家都在积极开展研究的技术,将太赫兹成像系统放到机场安检及重要场所的入口处,可以实现非接触的安全检测,可以透过衣服等遮挡物探测到藏匿在人身上毒品、炸药、枪支、匕首等危险违禁物品。现在已经研制出的太赫兹成像原理样机,如美国PNL实验室在2009年研制的0.345THZ?0.355THz扫描三维成像系统,美国JPL实验室在2011年研制的0.66THz?0.69THz调频连续波三维成像系统,这些系统都是利用一个或多个反射面的转动来实现二维波束扫描,成像时间长达数秒钟,这在实际应用中是极为耗时的。由于频率扫描是不同的频率对应空间中不同指向的波束,这样扫描的时间将会极大地缩短,因此利用频率扫描的方式实现波束扫描是非常有应用前景的,但是目前尚未有人实现太赫兹频段的频率扫描反射面天线。
[0004]另外,F.STEFAN JOHANSSON在1990年提出了一种频率扫描反射栅天线。这种反射栅天线工作的中心频率为10GHz,在9.5GHz?10.5GHz频段内扫描角度9°,同时直接反射波远低于扫描主波束。反射栅天线的介质层由四层介质构成,介质的介电常数选择是上层大、下层小,顶层介质上是偶极子阵列。通过优化偶极子长度、低介电常数层的厚度,使入射波到衍射波的转化率最大,也就是直接反射波相对于扫描主波束最小。这样的设计方法得到的介质层总厚度大约为波长的四分之一,则每层的厚度远小于波长,如果把用这种方法用到太赫兹波段,所需要的介质层厚度大约为几十个微米,这在工程上是很难实现的。同样如果像经典的闪耀光栅那样,直接在基底上刻槽,以现实的加工工艺,在太赫兹波段同样是很难加工的,所以需要找到新的设计方法,使天线易于加工。

【发明内容】

[0005]本发明的目的是提出一种基于平面二元结构的衍射波增强机制,并且基于此机制设计一种太赫兹频率扫描反射面天线,太赫兹频率扫描反射面天线可以应用到太赫兹成像、太赫兹通信、无损检测、目标快速识别和跟踪等领域。
[0006]为达到上述目的,本发明的第一方面,提供一种基于平面二元结构的频率扫描反射面天线所采用的技术方案包括:多个反射单元,所述反射单元为二维周期排列;所述多个反射单元分布在同一平面内,每个反射单元包括多个子反射单元、介质基板和金属地板,在介质基板的一侧面固接金属地板,在介质基板的另一侧面固接多个子反射单元,每个子反射单元与相邻的子反射单元之间具有一距离,所述多个子反射单元组成平面二元结构;入射波照射到多个反射单元上,周期性排列的多个反射单元将入射波生成镜像反射波和波束指向随频率变化的衍射波模式。
[0007]为达到上述目的,本发明的第二方面,提供基于平面二元结构的衍射波增强方法,该方法包括步骤如下:
[0008]步骤S1:将基于平面二元结构的频率扫描反射面天线中的每个反射单元分成N个子反射单元;
[0009]步骤S2:选择 不同子反射单元的尺寸,使相邻子反射单元之间的衍射波模式的反射相位差恒定;
[0010]步骤S3:根据衍射波模式的反射相位差调节相邻子反射单元的间距,使每个子反射单元的衍射波模式同相叠加,实现入射波束到衍射扫描波束的增强。
[0011]本发明的有益效果是:其一,多个反射单元在介质层的表面,介质不用做的非常薄,非常易于加工。其二,基于平面二元结构的频率扫描反射面天线,在0.2THz左右的频段内,实现高增益、大扫描角度、低直接反射副瓣,可以应用于太赫兹成像系统、目标快速检测与跟踪、太赫兹通信、无损探伤、目标快速识别和跟踪等方面。其三,引入基于平面二元结构的衍射波增强方法,实现了扫描波束高效转化,使扫描波束能量占据总能量的绝大部分,满足不同场合的应用需求,为此类平面反射式的频率扫描反射面天线提供了通用的设计指导。其四,引入基于平面二元结构的频率扫描反射面天线,易于扩展到其他频段。
【专利附图】

【附图说明】
[0012]图1是本发明的基于平面二元结构的频率扫描反射面天线示意图;
[0013]图2是本发明的基于平面二元结构的频率扫描反射面天线的一个周期单元示意图;
[0014]图3是本发明的基于平面二元结构的频率扫描反射面天线的二元阵列结构示意图;
[0015]图4是天线的辐射方向图;
[0016]图5是天线的镜像波束抑制效果图。
[0017]A反射单元,I第一子反射单元,2第二子反射单元,
[0018]3第三子反射单元, 4介质基板,5金属地板。
【具体实施方式】
[0019]为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。[0020]图1是本发明的基于平面二元结构的频率扫描反射面天线实物图,包括多个反射单元A,所述反射单元A为二维周期排列;所述多个反射单元A分布在同一平面内,入射波照射到多个反射单元A上,周期性排列的多个反射单元A将入射波生成镜像反射波和波束指向随频率变化的衍射波模式;图2示出本发明的频率扫描反射面天线中每个反射单元的结构示意图,每个反射单元A包括多个子反射单元1、2、3、介质基板4和金属地板5,在介质基4板的一侧面固接金属地板5,在介质基板4的另一侧面固接多个子反射单元1、2、3,每个子反射单元与相邻的子反射单元之间具有一距离,所述多个子反射单元1、2、3组成平面二元结构。
[0021]本发明提供的基于平面二元结构的衍射波增强方法,该方法包括步骤如下:
[0022]步骤S1:将基于平面二元结构的频率扫描反射面天线中的每个反射单元A分成N个子反射单元;
[0023]步骤S2:选择不同子反射单元的尺寸,使相邻子反射单元之间的衍射波模式的反射相位差恒定;
[0024]步骤S3:根据衍射波模式的反射相位差调节相邻子反射单元的间距,使每个子反射单元的衍射波模式同相叠加,实现入射波束到衍射扫描波束的增强。
[0025]根据上述的基于平面二元结构的频率扫描反射面天线和基于平面二元结构的衍射波增强方法中所述子反射单元1、2、3是不同尺寸的I字形金属片或H字形金属片,多个子反射单元1、2、3之间距离根据不同子反射单元的尺寸确定。所述二维周期中每个维度的反射单元数目大于6个。所述子反射单元1、2、3的I字形和H字形金属片不同尺寸对应着衍射波模式的不同的反射相位,所述I字形和H字形金属片的尺寸小于半个波长。
[0026]相邻子反射单元之 间的距离d与相邻子反射单元衍射波模式的反射相位差Φ之
间的关系为'd =冬~P,其中P为周期。
In
[0027]多个子反射单元具有相同结构和不同尺寸且尺寸小于半个波长,要满足在较宽频带内衍射波模式的反射相位差恒定,相位差由仿真软件求得。由电磁仿真软件Ansoft HFSS计算不同尺寸的子反射单元的衍射波模式的反射相位,从中选择N个不同尺寸的子反射单元,使相邻子反射单元之间的衍射波模式的反射相位差恒定;反射单元A有一层介质基板4的支撑。
[0028]按照本发明的思想,所述子反射单元数目可以变化。为达到波束扫描的目的,通过光栅方程计算出多个反射单元在X方向的周期,此周期选择要满足除了 -1阶高次模外,不出现其他高次模式;为了抑制栅瓣,多个反射单元在y方向的周期选择小于半个波长;
[0029]已知的入射波入射角Θ i,所需要的衍射波扫描角P,自由空间中的波数k,由光栅方程初(sing.+Sin^ = 2;r ,可得反射单元重复周期ρ。
[0030]以入射波入射角Qi方向入射的波,在衍射波扫描角口方向,相邻子反射单元1、2、3的反射相位差为Φ i Φ2,子反射单元I和子反射单元2之间的距离为4 =^P,子反射单元
2和子反射单元3之间的距离为之令P,这样根据光栅方程相邻子反射单元的出射波束在


In
衍射方向同相叠加,扫描衍射波模式加强,形成衍射增强机制。
[0031]所述一层介质基板4的介电常数一般在1.5~8之间,介质基板4的厚度约为介质中波长的1/3?1/5,这样可以使子反射单元有平缓变化的反射相位分布,有利于提高带宽。
[0032]作为一设计实例,我们设计了一种基于平面反射式二元闪耀光栅的太赫兹频率扫描反射面天线。在0.18THz?0.22THz的频率范围内,波束扫描角为15.4°。如图3,所述子反射单元1、2、3的尺寸,子反射单元的宽度w = 0.06mm,子反射单元的长度L1 = 0.44mm,L2 = 0.24mm, L3 = 0.14mm, L4 = 0.48mm, L5 = 0.12mm,相邻子反射单元之间的距离 Cl1 =
0.22mm,d2 = 0.51mm。
[0033]我们选择平面波或高斯波束在XOZ平面50°斜入射,由光栅方程可以得到反射栅X方向的周期P为1.24mm,选择Y方向周期Dy为0.6mm。介质基板4采用Rogers5880高频板。介质基板4厚度为0.254mm,如图1,反射栅天线的尺寸长为50mm,宽为50mm, x方向有36个单元,y方向有75个单元。如图4,给出了 0.18THz?0.22THz的辐射方向图,可以看出天线实现了从-20°?-35.4°的扫描。如图5,给出了 185GHz、200GHz、215GHz处实验和仿真的扫描波束与镜像波束的比较,可以看出天线的镜像波束远低于衍射扫描波束,入射波到扫描波束的转化效率高于96%,从而印证了衍射增强机制的正确性。
[0034]以上是对本发明的频率扫描反射面天线的一个实例的描述。在其他实例中,所述频率扫描反射面天线并不限于该实例所描述的内容。
[0035]在上述实例中,所述反射单元A并不限于本实例所述的尺寸,在其他实例中,所述反射单元A的长与宽,与入射波角度、所需要的频率扫描范围及工作频率有关,通过所述光栅方程得到。
[0036]在上述实例中,所述子反射单元的形状不限于本实例的‘I’字和‘H’字形,在其他实例中可以根据需要调整,只要满足在较宽频带内衍射波模式的反射相位差恒定的条件即可。
[0037]在上述实例中,所述子反射单元的形状为‘I’和‘H’形,不限于本实例的尺寸,在其他实例中可以根据需要调整。
[0038]在上述实例中,所述反射单元A包含子反射单元的数目,不限于本实例中的3个,在其他实例中,可以根据需要调整,但要满足相邻子反射单元距离与衍射波模式的反射相位差的关系。
[0039]所述一层介质基板4的介电常数、厚度不限于本实例所给的具体参数,在其他实例中,所述介质基板4可以选择其他材料,也可以选择多层介质基板4,但应保证介质层总厚度为介质中波长的1/3?1/5。
[0040]在上述实例中,天线两个维度各包含36、75个单元。在其他实例中,天线单元数目根据具体情况而定,不限于本实例的数目。
[0041 ] 在对本发明的频率扫描反射面天线经过多次试验可以证明,本发明的频率扫描反射面天线可以实现增益大,扫描范围宽,直接反射副瓣低的目的。尤其是在太赫兹波段,其他频率扫描反射面天线的设计方法很难实现在太赫兹波段的频率扫描,而本发明所述的设计方法能够实现太赫兹波段的频率扫描。
[0042]最后应当说明的是,以上实例仅用于说明本发明的技术方案而非限制。尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,本发明所述技术方案不仅仅适用于太赫兹波段,在其他波段也适用,对本发明的技术方案进行修改或者同等替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
【权利要求】
1.一种基于平面二元结构的频率扫描反射面天线,其特征在于,包括多个反射单元,所述反射单元为二维周期排列;所述多个反射单元分布在同一平面内,每个反射单元包括多个子反射单元、介质基板和金属地板,在介质基板的一侧面固接金属地板,在介质基板的另一侧面固接多个子反射单元,每个子反射单元与相邻的子反射单元之间具有一距离,所述多个子反射单元组成平面二元结构;入射波照射到多个反射单元上,周期性排列的多个反射单元将入射波生成镜像反射波和波束指向随频率变化的衍射波模式。
2.根据权利要求1所述基于平面二元结构的频率扫描反射面天线,其特征在于,所述子反射单元是不同尺寸的I字形金属片或H字形金属片,多个子反射单元之间距离根据不同子反射单元的尺寸确定。
3.根据权利要求1所述基于平面二元结构的频率扫描反射面天线,其特征在于,所述二维周期中每个维度的反射单元数目大于6个。
4.根据权利要求1所述基于平面二元结构的频率扫描反射面天线,其特征在于,所述介质基板的介电常数在1.5~8之间,介质基板的厚度为介质中波长的1/3~1/5。
5.根据权利要求1所述基于平面二元结构的频率扫描反射面天线,其特征在于,所述子反射单元的I字形 和H字形金属片不同尺寸对应着衍射波模式的不同的反射相位,所述I字形和H字形金属片的尺寸小于半个波长。
6.根据权利要求1所述基于平面二元结构的频率扫描反射面天线,其特征在于,相邻子反射单元之间的距离d与相邻子反射单元衍射波模式的反射相位差Φ之间的关系为:
,其中P为周期。
7.一种基于平面二元结构的衍射波增强方法,其特征在于,该方法包括步骤如下: 步骤S1:将基于平面二元结构的频率扫描反射面天线中的每个反射单元分成N个子反射单元; 步骤S2:选择不同子反射单元的尺寸,使相邻子反射单元之间的衍射波模式的反射相位差恒定; 步骤S3:根据衍射波模式的反射相位差调节相邻子反射单元的间距,使每个子反射单元的衍射波模式同相叠加,实现入射波束到衍射扫描波束的增强。
8.根据权利要求7所述基于平面二元结构的衍射波增强方法,其特征在于,多个子反射单元具有相同结构和不同尺寸且尺寸小于半个波长,要满足在较宽频带内衍射波模式的反射相位差恒定,相位差由仿真软件求得。
9.根据权利要求7所述基于平面二元结构的衍射波增强方法,其特征在于,所述反射单元有一层介质基板的支撑。
10.根据权利要求8所述基于平面二元结构的衍射波增强方法,其特征在于,所述介质基板的介电常数在1.5~8之间,介质基板的厚度为介质中波长的1/3~1/5。
【文档编号】H01Q19/10GK103715516SQ201410029391
【公开日】2014年4月9日 申请日期:2014年1月22日 优先权日:2014年1月22日
【发明者】李世超, 李超, 张晓娟, 方广有 申请人:中国科学院电子学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1