一种特别用于热接合微机电部件的装置的制作方法

文档序号:12071452阅读:316来源:国知局
一种特别用于热接合微机电部件的装置的制作方法

本发明涉及一种特别用于热接合微机电部件的装置,包括一种用于将待接合的部件彼此挤压的压紧装置。



背景技术:

在半导体技术中,可以使用不同的方法将微机电部件,例如,如芯片或管芯,分别地,晶片,LED等,或由其组成的部件,连接到载体。

在该连接中,功率模块的安装技术必须满足关于开关速度,传导损耗,开关损耗以及温度电阻的日益增长的需求,不仅因为分别由硅或经常使用的半导体材料碳化硅(SiC)和氮化镓(GaN)制成的半导体的持续进一步发展,还因为新的应用领域和复杂的形貌。

功率半导体通常应用在具有结构化铜或铝的载体基板上。该基板可以是IMS(绝缘金属基板),或使用具有氧化铝或氮化铝的内陶瓷层的基板,其被称为DCB(直接铜键),DAB(直接铝键)或AMB(有源金属钎焊)基板。在这些情况下,通常通过焊接来形成平面芯片连接。

对于高抗压连接,使用更近期的接合技术,诸如Ag烧结或扩散焊接,也称为TLPB(瞬态液相接合)或TLPS(瞬态液相焊接)。

所有这些已知的接合方法都需要在待接合的部件上施加压力,其压力必须在接合操作期间保持一段预定的时间,这取决于过程,例如在30MPa,Ag烧结中几秒钟。

在实践中已知的装备中,其通常包括具有作为待接合部件支撑件的加热板和可垂直移动的压力机或焊接头的真空室,通过焊接头使用平面压板施加压力。用于实际目的,为了能够实现不同芯片高度的大致均匀接触,硅胶垫分别使用在焊接头或压板上,以便在接合期间将操作压力施加在半导体结构上。

不利的是,即使相对软的硅胶垫也不能保证高度不同的部件上压力均匀分布。只有最高或较高的芯片,相对地,能够被相应地挤压,而较低的芯片不能经受所需的接触压力。这同样适用于不均匀的芯片,其被充分挤压在部分区域。因此,即使使用带硅胶垫的压板,对于高-电阻连接而言,接合质量也是有问题的。

对于不同高度的半导体部件的高-电阻连接,可以选择单芯片连接,然而,这会导致长的总处理时间以及相应地高成本。

本发明公开的技术问题

因此,本发明的一个目的是提供一种特别用于热接合微机电部件的装置,其中即使用于相对于部件具有不同的接近距离的压紧装置,也可以确保将压紧装置的均匀压力施加到待接合的部件上,这样确保了可重复的,高接合质量,即使同时用于多个不同的待接合部件。

技术方案

通过一种特别用于热接合微机电部件的装置实现上述目的,所述装置包括处理腔,该处理腔具有用于接收待接合部件的至少一个第一部件的较低的支撑板和用于沿至少一个第一部件的方向向待接合部件的至少一个第二部件施加压力的压紧装置。根据本发明,压紧装置形成有设置用于接触至少一个第二部件的可膨胀膜,其中,可以在其背离待接合部件的侧面将流体压力,特别是气压,施加到所述膜上。

有益效果

本发明装置的优点是允许几个形貌和高度不同的待接合微机电部件同时以高接合质量接合至载体。通过可膨胀膜施加至部件,尤其是芯片上的压力对所有待压制的芯片来说都是一样的,因为膜适用于目标表面,即,适用于待压制的部件的形貌,由于膜的膨胀是根据流体压力的,从而使压紧装置的流体压力均匀作用在所有芯片上。

有利的是,不同形状的半导体部件的等静压还允许在接合步骤中使用通过热压接来产生高压力连接的接合方法来处理多个这样的半导体部件,例如根据TLPB(瞬时液相键合)工艺或TLPS(瞬时液相焊接)工艺的Ag烧结或平面扩散焊接。

由于该膜允许多个不同的半导体部件通过等静压(isostatic pressing)同时接合,所述部件能够被准确定位至他们的最终位置,相对于单芯片方法,例如,还可以有利地在密封大气中,特别是不含氧气,具有高纯度的大气下进行处理。

具有可通过流体压力膨胀的膜的压紧装置已经显示为在接合方法方面可普遍适用,即,从传统的平面焊接到扩散焊接和烧结技术,以及关于待接合的部件,例如芯片,例如,其表面可以分别相对于基板或芯片,彼此之间的芯片,芯片载体上的LED等,以及他们的不同形貌,都是高度敏感的。

根据本发明的压紧装进一步的优点是,焊接头的接触板相对于载有待接合的部件的支撑板的潜在偏移能够通过在流体压力下适应于相应目标表面的膜来补偿。

此外,在焊接或扩散焊接期间,例如,在TLPS工艺中,膜的柔韧性允许选择不同厚度的焊接材料,因为高度差通常由膜来补偿。

通过可膨胀膜施加压力具有调整膜以适应目标表面的额外的优势,既不会影响待接触部件的位置精确度也不会影响他们表面的灵敏度。

来自压紧装置施加到柔性膜的合适的流体介质源的流体优选为气体,其可以是压缩空气或任何其它可以被加压的气体。

取决于所选的流体,根据使用的接合技术用它同时冷藏或加热也是可能的。

通常,特别是冷却,选择流体而不是气体施加压力至柔性膜,或两者结合。然而,当使用流体施加压力时,相应地必须满足高封闭要求,为的是阻止流体泄露,其可以损坏待接合部件和/或装置。

在本发明有利的实施例中,该膜是由气密性片材,尤其是橡胶状材料制成。材料的选择取决于相应的接合方法、其通常采用的温度、所需的接触压力以及目标表面的形貌。气密性和高度抗撕裂的片材可以用多种厚度和材料组成商购获得,使得根据本发明的压紧装置可以用标准材料以低成本实现。

优选地,根据待接合部件的形貌选择膜的厚度和其可膨胀性,从而使得在接触操作条件下膜在部件上施加至少大致相同的接触压力,而不管它们之间存在的高度上的任何差异。

在一个特别有利的实施例中,膜可以在压板上延伸,也适用于焊接板或模具,其布置成至少基本上平行于支撑板并且至少与其垂直地可移动,其中可以在膜和压板之间提供压力介质,使得膜朝向待接合的部件膨胀。

在该情况下,膜可以通过合适的保持和固定装置,以一种安全、密封的方式,通过其边缘区域依附压板。

焊接板的通常构造,例如,设置为在背离接触表面的一侧上具有中心引导杆的质量板,从而仅需要轻微的修改即可体现本发明。这允许压力介质通过压板中至少一个合适的孔被供给到压板的接触侧,并且因此供给至附接到其上的膜。与压力介质源的相应连接可以分别通过单独的柔性管和/或压力板或引导杆中的通孔实现。

保持和固定装置可以通过任何已知的固定方法实现,采用简单地可释放的连接,如螺钉连接和/或卡扣连接,就由于磨损或改变工艺要求所需的膜更换而言是有利的。

由于密封装置设置在压板和膜之间,如果保持和固定装置包括卡圈,卡圈,特别地,围绕膜的周围延伸,并且允许膜被固定至压板和/或插入的密封装置,那么其是有利的。

在一个有利的实施例中,进一步可以得出,可以在膜背离待接合的部件的一侧上,特别是在膜的非接触操作状态下,将负压施加到膜上。

膜在非接触操作条件下,例如到压板的吸入有利地防止膜由于重力而潜在地下垂,从而接触待接合的部件并且不利地影响它们的定位精度。

加热装置可以设置在压力板上方和/或支撑板下方,以便调节相应类型的连接所需的温度。便利地,支撑板本身可以设置为加热板。

使用上部加热装置和下部加热装置,可以建立两区域加热,其中可以将加热装置设置为红外(IR)辐射器装置,例如,其可以包括平行卤素管的场。

这种IR加热装置具有允许快速加热并且所有元件保持在恒温的优点,从而确保装置中的高温均匀性,并且因此确保部件连接的定性等同性。

为了能够实现用于产生通常需要具有还原空气的封闭系统的高应力连接的接合过程,如果处理腔设置为具有密封壳体的真空腔,并且提供至少一个壳体开口以分别用于真空腔的脱气或抽空和用于充气或引入气体,那么这是有利的。

根据选择的工艺为了确保最佳接触压力,尤其是TLP工艺或TLPB工艺或烧结工艺,本发明的一个有利的实施例设置了一种控制装置,借助该装置至少能够根据选择的工艺和待接合部件的形貌调节压紧装置的流体压力。

根据说明书、附图和权利要求,根据本发明的设备的进一步的优点和有利的实施例是显而易见的。

附图说明

附图中以示意性简化的方式示出了用于将半导体芯片热接合到载体的本发明装置的示例性实施例,并且将在下面更详细地解释。

在附图中:

图1示出了用于热接合半导体部件的装置的简化的三维正视图,所述装置包括真空腔,并且

图2示出了图1中的装置在纵切面的另一三维视图。

具体实施方式

图1和2示出了一种用于将第一微机电部件2热接合至第二微机电部件3的装置1,其中所述第一部件2是不同高度的硅(Si)芯片并且所述第二部件3是本例中的铜(Cu)载体。

装置1包括一两部分壳体4,其能够通过旋转机构5打开和关闭,并且能够通过密封装置6和7密封到环境中。壳体4内形成的处理腔8马上实施为具有开口9的真空腔,分别用于真空腔的脱气或抽空和充气或引入气体。

在处理腔中,以Cu的形式用于第一部件2并且用于其上设置的Si芯片作为第二部件3的支撑板11设置在支撑板10上。在所示的实施例中TLPS工艺用于接合过程,支撑板11设置为加热板。此外,为了调节所需的处理温度,上部加热装置13设置在壳体4的旋转盖4a中的支撑板11的上方,所述上部加热装置13设置为IR辐射器装置,该IR辐射器装置包括平行卤素管13的场。

类似于上部加热装置12,下部加热装置设置在支撑板11的下方,所述下部加热装置14也设置为IR辐射器装置,其中该辐射器装置包括平行卤素管的场,从而允许在接合过程中采用最佳温度分布调节两区域温度。

压紧装置15设置为将芯片3压至Cu载体2上,所述压紧装置15分别包括金属压板或焊接板16,其设置为平行于支撑板11并且在其背离接触压力侧面的一侧上连接至引导杆17。引导杆17以真空密封的方式从壳体4中伸出,并且借助于发动机18在垂直于支撑板11的平面方向是可移动的,即,在当前情况下垂直地移动,并且因此朝向部件2、3并远离它们。在引导杆17的内部形成未详细示出的压力介质管道25。压力介质管道25连接至压力介质源26(只是象征性地示出),并且通过压板16伸出直到部件2、3并且,因此,直到压板16面向目标表面的一侧。

可膨胀膜19设置在压板16接触压力的一侧,其中膜19是由气密的弹性片材组成并且设计为,在当前情况下,承受压缩空气作为压力介质。

在示出的实施例中,膜在压板16的周围延伸,其在此是圆形的,并且通过保持和固定装置20依附于压板16的边缘区域,后者包括卡圈21,其围绕膜19的周围延伸。卡圈21连接至密封圈22在膜和压板16的边缘上的凸缘状台阶之间形成密封装置,并且还连接至压板16本身。

作为保持和固定装置20的连接装置,设置有螺钉连接件23,其分布在卡圈21以及压板16的周围。

设置控制装置24以至少根据待接合部件2、3的预定义的工艺参数和形貌调节压紧装置15的流体压力,所述控制装置24将压缩空气从压力介质源18导向压板16和膜19的接触表面之间的区域。这使得膜19朝向芯片3膨胀形成目标表面并且接触它们使得对所有芯片3施加等静压接触压力,该芯片3目前具有不同的几何形状和不同的高度。

除了通过压力介质管道25施加的压力,膜19可以在非接触状态下被吸入,使其在该状态下与压板16面接触,并且不是朝向待接合的部件2、3膨胀,从而不会对他们有负面影响。

所示的装置1是普遍适用的,并且不仅可用于本文所述的TLPS工艺,而且可用于其它焊接和扩散焊接工艺以及烧结工艺。根据所选的接合工艺,只有工艺参数,例如温度,大气和视情况而定的可交换膜的厚度和材料将会改变。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1