光电耦合器的制作方法

文档序号:12474062阅读:343来源:国知局
光电耦合器的制作方法与工艺

本发明涉及一种光电耦合器。



背景技术:

光电耦合器充分已知。简单的光电耦合器具有发送器部件和接收器部件,其中,这两个部件电流隔离(galvanisch getrennt),然而光学耦合。这种构件由US 4 996 577已知。光学部件也由US 2006/0048811 A1,US 8 350 208 B1和WO 2013/067969 A1已知。

另外,由US 4 127 862、US 6 239 354 B1、DE 10 2010 001 420 A1、由Nader M.Kalkhoran等人的《Cobalt disilicide intercell ohmic contacts for multijunction photovoltaic energy converters》,Appl.Phys.Lett.64,1980(1994)和由A.Bett等人的《III-V Solar cells under monochromatic illumination》,Photovoltaic Specialists Conference,2008,PVSC'08.33rd IEEE,页码1-5,ISBN:978-1-4244-1640-0已知可扩展(skalierbar)的电压源或由III-V族材料构成的太阳能电池。



技术实现要素:

在此背景下本发明的任务在于,给出一种扩展现有技术的设备。

该任务通过具有权利要求1的特征的光电耦合器来解决。本发明的有利的构型是从属权利要求的主题。

根据本发明的主题提出一种具有发送器部件和接收器部件的光电耦合器,其中,发送器部件和接收器部件互相电流隔离并且互相光学耦合并且这两个部件集成在共同的壳体中,接收器部件包括电压源,其中,电压源包括数量为N的互相串联连接的部分电压源,所述部分电压源构造为半导体二极管,其中,这些部分电压源中的每一个具有一个半导体二极管,所述半导体二极管具有p-n结,每个半导体二极管具有p掺杂的吸收层,其中,p吸收层被p掺杂的钝化层钝化,该p掺杂的钝化层具有比该p吸收层的带隙更大的带隙,所述半导体二极管具有n吸收层,其中,该n吸收层被n掺杂的钝化层钝化,该n掺杂的钝化层具有比该n吸收层的带隙更大的带隙,各个部分电压源的部分电源电压互相具有小于20%的偏差,在每两个彼此相继的部分电压源之间构造有一个隧道二极管,其中,所述隧道二极管具有多个半导体层,这些半导体层具有比p/n吸收层的带隙更大的带隙,具有更大带隙的半导体层分别由具有经改变的化学计量和/或与所述半导体二极管的p/n吸收层不同的元素成分的材料组成;所述部分电压源和所述隧道二极管单片地集成在一起并且共同构成具有上侧和下侧的第一堆叠(Stapel),所述部分电压源的数量N大于等于3;光在上侧处入射到第一堆叠上,并且堆叠上侧处的照射面的尺寸基本上是所述第一堆叠在上侧处的面的尺寸,所述第一堆叠具有小于12μm的总厚度;在300K的情况下,只要所述第一堆叠被光子流照射,则所述第一堆叠具有大于3伏的电源电压,其中,在从堆叠的上侧向第一堆叠的下侧的光入射方向上,半导体二极管的p吸收层和n吸收层的总厚度从最上面的二极管向着最下面的二极管增加,并且所述电压源在堆叠的下侧附近具有环绕的、台阶形的边缘。

应注意的是,表述“基本上”结合堆叠上侧处的照射面与第一堆叠在上侧处的面的尺寸的比较应理解为,面积的区别尤其小于20%,或者优选小于10%,或者优选小于5%,或者最优选两个面积相等。

还应注意的是,用于照射堆叠上侧的“光”的表述应理解为具有吸收层的吸收范围内的波长光谱的光。显然,具有一个确定的、即吸收的波长的——也就是吸收层的吸收范围内的波长的单色光也是适合的。

显然,只要在发送器部件中的光子发射受到调制,该调制就引起交流电压,换言之,电源电压的幅值随时间变化。还应注意的是,优选以确定波长的光照射第一堆叠的整个上侧,即整个表面或几乎整个表面。

还显然,术语“光”指的是具有确定波长的光、尤其是LED的光,在此发射谱一般是高斯分布形状的,例如在典型的850nm的LED情况下具有20-30nm的半值宽度。也显然,该光的波长至少大于或等于所述半导体二极管的吸收层的带隙能量。

应注意的是,深入的研究以惊人的方式表明:与现有技术不同地,借助在此的单片堆叠方式以有利的方式得到了3V以上的电源电压。

显然,部分电压源的数量N优选在10以下,并且第一堆叠的电源电压的幅值主要由部分电源电压的相加确定。

根据本发明的设备的一个优点是,通过多个部分电压源的串联连接也能够实现具有4伏以上或更大的电压值的电压源,并且借助单片集成结构能够制造简单的且成本有利的以及可靠的电压源。另一个优点是,借助堆叠形式的布置与至今以硅二极管的横向布置相比实现了大的面积节省。尤其由发送二极管或光源仅需照射接收器部件的第一堆叠的小得多的接收面。

优选部分电压源的数量N大于等于3,只要以具有确定波长的光子流照射第一堆叠,则第一堆叠在300K情况下具有大于3伏的电源电压。

在一种扩展方案中,各个部分电压源的电源电压互相偏差小于10%。由此实质地改进了作为可扩展的电压源、尤其作为参考电压源的适用性。显然,术语“可扩展”涉及整个堆叠的电源电压的幅值。

在另一种扩展方案中,半导体二极管分别具有相同的半导体材料,在此二极管的半导体材料具有相同的晶体组成(kristalline Zusammensetzung),优选化学计量几乎相同或者优选完全相同。也有利的是,第一堆叠布置在衬底上。在一种实施方式中,半导体材料和/或衬底由III-V族材料组成。尤其优选的是,衬底包括锗或砷化镓,和/或,衬底上的半导体层具有砷和/或磷。换言之,半导体层包括含砷的层和含磷的层,也就是说由GaAs或AlGaAs或InGaAs制成的层作为砷化物层的示例以及InGaP作为磷化物层的示例。

优选的是,在第一堆叠的下侧上构造第二电压连接端,尤其是所述第二电压连接端构造成穿过衬底。

在另一种实施方式中,半导体二极管由与衬底相同的材料组成。优点是,尤其这两个部分的膨胀系数相同。有利的是,半导体二极管基本上由III-V族材料组成。尤其有利的是,半导体二极管分别具有相同的半导体材料。尤其优选的是,应用GaAs。

在一种优选的实施方式中,在第一堆叠的上侧上构造有第一电压连接端,作为边缘附近的环绕的金属接触部或者作为边缘处的单个接触面。

还优选的是,第一堆叠具有小于2mm2或小于1mm2的基面。研究已表明,有利的是,所述基面以四边形构造。堆叠的基面优选构造成正方形。

进一步的研究还表明,为了达到更高的电压,有利的是,构造第二堆叠并且将这两个堆叠互相串联连接,使得第一堆叠的电源电压和第二堆叠的电源电压相加。第一堆叠和第二堆叠优选并置在共同的载体上。

在一种扩展方案中,第一堆叠的电源电压与第二堆叠的电源电压偏差小于15%。

研究还表明,有利的是,在所述壳体中集成分析处理电路,并且电压源与分析处理电路存在电有效连接。在一种优选的实施方式中,接收器部件包括集成的半导体镜,其中,半导体镜优选单片集成,最优选集成在每个堆叠中。

还优选的是,半导体镜构造在堆叠的最下面的半导体二极管下方。研究表明,多个堆叠可以并置地构造在一个半导体晶片上或半导体衬底片上,其方式是,在整面地、优选外延地制造所述层以后,实施所谓的台面蚀刻。为此借助掩膜工艺产生漆掩膜,随后优选实施用于产生台面沟槽的湿化学蚀刻。台面蚀刻优选终止在衬底中或终止在衬底上。

在一种实施方式中,在相应二极管的p吸收层与n吸收层之间构造有本征层。在此,对于本征层应理解为具有小于1E16 1/cm2、优选小于5E151/cm2、最优选小于1.5E15 1/cm2的掺杂的半导体层。

在一种扩展方案中优选的是,每一个堆叠在下侧附近具有环绕的、台阶形的边缘,其中,在两个堆叠直接相邻的情况下在堆叠结构的外侧构成环绕的边缘作为共同的环绕的边沿,使得电压源具有环绕的边缘。

边缘优选是阶台形的或者构造为阶台。在此,边缘或阶台的表面优选大部分具有平面,其中,边缘或阶台的表面的法线构造为平行或几乎平行于第一堆叠的表面的法线或者相应堆叠的表面的法线。要注意的是,边缘或阶台的侧面构造为基本或恰好垂直于边缘或阶台的表面。

边缘或阶台的棱边分别与第一堆叠的四个侧面中的每一个或者分别与多个堆叠的侧面距离至少5μm且最大500μm。棱边到直接相邻的侧面的距离范围分别优选在10μm与300μm之间。所述距离范围尤其在50μm与250μm之间。

第一堆叠的侧面和尤其堆叠的所有侧面优选构造为平的,并且尤其构造为垂直的或几乎垂直的。侧面上的法线相对于相邻边缘面的法线或者堆叠表面的法线优选在80°与110°之间的角度范围内,即,侧面的法线与直接相邻的边缘面的法线彼此基本正交。所述角度范围优选在85°与105°之间。

附图说明

以下参照附图详细阐述本发明。在此以同样的附图标记表示同类组件。示出的实施方式是高度示意性的,也就是说距离以及横向延展和纵向延展不是按比例的,只要不另外说明,互相也不具有可推导的几何关系。附图示出:

图1:光电耦合器的根据本发明的第一实施方式,该光电耦合器具有可扩展的电压源,该电压源具有一个堆叠;

图2:光电耦合器的第二实施方式,该光电耦合器具有可扩展的电压源,该电压源具有多个堆叠;

图3:具有总共5个二极管的实施方式,这些二极管具有不同厚度的吸收区;

图4:具有环绕的台阶形的阶台的堆叠;

图5a:接收和发送器部件纵向布置的横截面图;

图5b:接收和发送器部件横向布置的横截面图。

具体实施方式

图1的示图示出第一实施方式的示意图,该第一实施方式具有光电耦合器OPK,该光电耦合器OPK具有发送器部件S和接收器部件EM,该发送器部件S具有发送二极管SD。接收器部件EM具有可扩展的电压源VQ和分析处理单元AWE。显然,术语“可扩展”涉及整个堆叠的电源电压的幅值。发送二极管SD的光L借助镜SP被引导到可扩展的电压源VQ的表面上。显然,光电耦合器OPK在此是有壳的,也就是说,所述的构件集成在共同的壳体中。

电压源VQ具有第一堆叠ST1,该第一堆叠ST1具有上侧和下侧,该第一堆叠ST1具有二极管,这些二极管的数量N等于3。该第一堆叠ST1具有由第一二极管D1和第一隧道二极管T1和第二二极管D2和第二隧道二极管T2和第三二极管D3组成的串联电路。在第一堆叠ST1的上侧构造有第一电压连接端VSUP1并且在第一堆叠ST1的下侧构造有第二电压连接端VSUP2。电源电压在此由单个二极管D1至D3的部分电压组成。为此,第一堆叠ST1经受来自发送二极管SD的光子流L。只要发送二极管SD发出经调制的光子流,就在第一堆叠ST1中也调制第一堆叠ST1的电源电压VQ1。

包括二极管D1至D3和隧道二极管T1和T2的第一堆叠ST1实施成单片构造的块。分析处理单元AWE包括未示出的集成电路。发送器部件S和接收器部件EM分别具有两个彼此电流隔离的连接端。

在图2中示出图1的光电耦合器的另一种实施方式,该实施方式具有第一堆叠ST1和第二堆叠ST2的有利的相互串联。以下只阐述与图1的示图的不同。第二堆叠ST2如第一堆叠ST1那样具有由三个二极管与构造在这些二极管之间的隧道二极管组成的串联电路。两个堆叠ST1和ST2互相串联地连接,使得只要两个堆叠ST1和ST2经受发送二极管SD的光子流L,则第一堆叠ST1的电源电压VQ1和第二堆叠ST2的电源电压VQ2相加。接收器部件EM在此不具有分析处理电路,使得第一电压连接端VSUP1和第二电压连接端VSUP3直接向外引导。

在一种未示出的实施方式中,两个堆叠ST1和ST2互相具有不同数量的分别以串联电路连接的二极管。在另一种未示出的实施方式中,至少第一堆叠ST1和/或第二堆叠ST2具有多于三个以串联电路连接的二极管。由此可扩展电压源VQ的电压幅值。数量N优选处于4至8之间的范围内。

在图3的示图中示出半导体层有利地相互串联成第一堆叠ST1的实施方式。以下只阐述与图1的示图的不同。第一堆叠ST1总共包括五个串联连接的部分电压源,所述部分电压源构造为二极管D1至D5。光L照射到第一二极管D1的表面OB上。所述表面OB被几乎或完全照亮。在两个彼此相继的二极管D1-D5之间分别构造有一个隧道二极管T1-T4。随着各个二极管D1至D5离表面OB的距离增大,吸收区的厚度也增大,使得最下面的二极管D5具有最厚的吸收区。第一堆叠ST1的总厚度总共小于等于12μm。在最下面的二极管D5的下面构造有衬底SUB。

在图4的示图中示出半导体层有利地相互串联成第一堆叠ST1的实施方式,所述第一堆叠ST1具有环绕的台阶形的阶台。以下只阐述与图3的示图的不同。在第一堆叠ST1的表面OB上,在边缘R上构造有金属的第一连接接触部K1。该第一连接接触部K1与第一电压连接端VSUP1连接(未示出)。衬底SUB具有上侧OS,其中,衬底SUB的上侧OS材料锁合地与最下面的、也就是说第五二极管D5连接。在此显然,在将第五二极管布置在衬底上并且使其材料锁合地与衬底的上侧OS连接之前,在衬底上外延地制造薄的核化层(Nukleationsschicht)和缓冲层(Pufferschicht)。衬底的上侧OS具有比第一堆叠ST1的下侧处的面更大的表面。由此形成环绕的阶台STU。所述阶台STU的边缘与所述阶台的第一堆叠ST1的直接相邻的侧面距离大于5μm且小于500μm,以附图标记STU的长度示出。在衬底SUB的下侧处构造有整面的金属的第二接触部K2。该第二连接接触部K2与第二电压连接端VSUP2连接(未示出)。

在图5a和5b的示图中示出发送器部件S和接收器部件EM的纵向布置的横截面图以及发送器部件S和接收器部件EM的横向布置的横截面图,其中,分别具有第一堆叠ST1的发送器部件S包括环绕的台阶形的阶台。以下只阐述与在以上图中示出的实施方式的不同。可见,在纵向布置的情况下镜SP是没有必要的。显然,以示出的光L的平行光线仅示出光L的原理上的走向。发送器部件的光通常具有发散的光束。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1