被动式MEMS流致振动强化传热装置及其传热方法与流程

文档序号:11955843阅读:679来源:国知局
被动式MEMS流致振动强化传热装置及其传热方法与流程

本发明涉及一种被动式温度控制的MEMS流致振动强化传热装置及其工作方法,可广泛应用于现代电子器件的散热领域。



背景技术:

电子器件已经深入到现代生活的各个角落,在许多技术领域中都发挥着巨大的作用。随着技术的进一步发展,人们对电子器件的性能要求越来越高,总体呈现出高性能、小体积的发展趋势,这一发展趋势,使得电子器件的热设计问题越来越重要。以增大传热面积为代表的传统被动式散热技术,在现代电子器件封装尺寸小型化的约束下,已经难以再提升其散热性能,而水冷、相变等新一代被动式散热技术,其整体结构较为复杂,难以应用于微小型电子器件。至于合成射流、机械扰动等主动式强化传热技术,其结构也较为复杂,并且在散热的过程中需要消耗额外的能量。



技术实现要素:

为了解决现代电子产品的高热流密度问题,本发明提供了一种被动式MEMS流致振动强化传热装置及其传热方法。

一种被动式MEMS流致振动强化传热装置,包括热沉基座、填充材料、梳齿状结构、振动部分;热沉基座与电子器件的发热部分通过导热管相连接,能够吸收电子器件发出的热量,使自身的温度升高;驱动部分由梳齿状结构和填充在齿间的填充材料构成;梳齿状结构连接着热沉基座;振动部分是梳齿状结构顶部薄层的延伸段,与梳齿状结构、填充材料一同构成悬臂梁结构。

所述的振动部分,它的厚度小于长度、宽度,在外界扰动下,在垂直于厚度的方向上产生振动。

所述的填充材料采用热膨胀系数大于1x10-5/K的聚合物材料。

所述的热沉基座上设有多个悬臂梁结构。

一种所述装置的工作方法,当热沉吸收电子器件发出的热量时,热沉基座和悬臂梁结构的温度同时升高,通过选取填充材料,使其热膨胀系数大于热沉基座,从而使悬臂梁结构的驱动部分产生双金属片效应,向远离热沉基座的方向偏转,并带动振动部分同时偏转;悬臂梁结构的偏转角度与热沉基座的温度呈正相关,热沉基座温度越高,悬臂梁结构的偏转角度越大;当振动部分产生偏转后,与来流流速方向的夹角相应减小,在流体流经振动部分时产生漩涡脱落,使流场对振动部分的作用力呈现周期性变化,从而导致振动部分在垂直其厚度的方向产生振动,振动的剧烈程度与偏转角度呈正相关,偏转角度越大,振动越剧烈;振动部分的振动会对悬臂梁结构附近的流场产生扰动,破坏热边界层的形成,从而实现传热强化。

本发明的有益效果在于:第一,利用电子产品自身发出的热量实现驱动,不需要额外的外部能量输入;第二,当热沉温度升高时,悬臂梁的偏转角会相应增大,形成自适应调节散热强度,不需要人为控制;第三,采用振动强化传热的方式能够有效地破坏热边界层的形成,具备较好的散热效果;第四,MEMS流致振动强化传热装置结构简单、紧凑,响应速度快,不需要铺设额外的电路,可应用于解决各种电子器件的散热问题;第五,采用梳齿状驱动结构,可以在获得较好驱动性能的同时,避免出现材料分离、开裂等问题。

附图说明

图1是被动式MEMS流致振动强化传热装置在未受热时的纵向剖面图;

图2是被动式MEMS流致振动强化传热装置在受热情况下的纵向剖面图;

图3是被动式MEMS流致振动强化传热装置悬臂梁部分的三维结构示意图;

图4是嵌有4x4个MEMS流致振动强化传热装置热沉的三维结构示意图;

附图标记说明:1.热沉基座;2.填充材料;3.梳齿状结构;4.振动部分;5.悬臂梁结构。

具体实施方式

下面结合附图和实施例对本发明作进一步的说明。

如图1所示,一种被动式温度控制的MEMS流致振动强化传热装置,它包括热沉基座1、填充材料2、梳齿状结构3、振动部分4;热沉基座1与电子器件的发热部分通过导热管相连接,能够吸收电子器件发出的热量,使自身温度升高;驱动部分由梳齿状结构3和填充在齿间的填充材料2(通常为热膨胀系数大于1x10-5/K的聚合物材料)构成,梳齿状结构3连接着热沉基座1;振动部分4是梳齿状结构3顶部薄层的延伸段,与梳齿状结构3、填充材料2一同构成MEMS流致振动强化传热装置的悬臂梁结构5。

如图1、2所示,热沉基座1与电子器件的发热部分通过导热管相连接,能够吸收电子器件发出的热量,并传递至强化传热装置的悬臂梁结构5,使悬臂梁结构5的温度升高。另外,它还起到支撑悬臂梁结构5的作用。

如图1、2所示,所述的驱动部分是由填充材料2和梳齿状骨架3组成,两部分材料结合紧密,当两者温度同时升高时,由于填充材料2的热膨胀系数要大于梳齿状骨架3的材料,因此将产生双金属片现象,即结构整体会向顶部薄层的方向发生偏转。

如图1、2所示,所谓的振动部分4,是梳齿状骨架3顶部薄层的延伸段,它可以接收驱动部分传递过来的偏转位移信号,并作同向的偏转运动,最终导致振动部分4与来流速度方向之间的夹角增大。

如图1、2、3所示,一种被动式温度控制的MEMS流致振动强化传热方法,:热沉基座1通过导热管吸收电子器件发出的热量,并将热量传递至强化传热装置的悬臂梁结构5,使悬臂梁结构5的温度升高,通过选取适当的填充材料2,使其热膨胀系数大于热沉材料,就可使悬臂梁结构5的驱动部分产生双金属片效应,向远离热沉基座的方向偏转,并带动与之相连的振动部分4同时偏转;悬臂梁结构5的偏转角度与热沉的温度呈正相关,热沉温度越高,悬臂梁结构5的偏转角度越大;当振动部分4产生偏转后,它与来流流速方向的夹角会相应减小,根据流体力学的知识可知,在流体流经振动部分4时会产生漩涡脱落,这就使得流场对振动部分4的作用力呈现周期性变化,从而导致振动部分4在垂直其厚度的方向产生振动,振动的剧烈程度与偏转角度呈正相关,偏转角度越大,振动越剧烈;振动部分4的振动会对悬臂梁结构5附近的流场产生扰动,破坏热边界层的形成,从而实现传热强化。

如图4所示,在有限的热沉基座面积上可以加工出多个悬臂梁结构5,可大幅提升热沉的散热效果。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1