一种III族氮化物半导体雪崩光电探测器的制作方法

文档序号:12066097阅读:170来源:国知局
一种III族氮化物半导体雪崩光电探测器的制作方法与工艺

本发明涉及一种探测器,尤其涉及一种基于III族氮化物半导体材料的低电流、雪崩光电探测器及其制备方法。

技术背景

随着信息技术的高速发展,基于半导体的固态光电探测技术在现代光电信息探测领域中的地位越来越重要。以GaN基材料为代表的III族氮化物半导体(包括其二元化合物GaN、InN和AlN,三元化合物InGaN、AlGaN和AlInN以及四元化合物AlInGaN)具有禁带宽度调节范围宽、直接带隙、电子迁移率高、击穿电场高、电子饱和漂移速度高、热导率高、介电常数较小、耐高温、抗辐射性强、化学稳定性高等一系列特点,可通过调节三元或四元化合物的组分(带隙)实现可见光至深紫外光范围的探测,非常适合于制作高性能的固态光电探测器。目前,紫外探测器在火焰探测,环境监控,太空光通信,导弹预警系统,量子通信等军事或民用领域上都有着广泛的应用需求。相比于传统的真空倍增管与硅探测器,基于III族氮化物半导体的光电探测器具有量子效率高、耐高温、耐腐蚀,抗辐照、重量轻、寿命长、抗震性、工作电压低好等优点,成为当前光电探测领域内研究和开发的热点。

光电探测器主要分为光电导型和光伏型,其中光伏型光电二极管又包括非增益型的肖特基势垒型、p-i-n结型光电二极管和具有内部增益的雪崩光电二极管(APD)等类型的器件;而基本结构是p-i-n结的APD探测器是目前最具优势的III族氮化物光电探测器,具有工艺简单,内部增益大,响应速度快,灵敏度高等优点,是可实现微弱光信号探测的优选高性能光电探测器。

对于以p-i-n结为基本结构的III族氮化物雪崩光电二极管,器件内部的高电场集中分布在i层,电场强度的调控主要通过调节p型层、n型层的载流子浓度及i层的厚度来实现。为了增强有源层i层的电场强度,需要提高p型层中或是n型层中的载流子浓度,又或是减少i层的厚度。对于III族氮化物,p型层的空穴浓度由于受到离化能高和强自补偿效应的影响,难以达到5×1018cm-2以上;n型层的电子浓度相对容易提高,但实现1019cm-2以上的电子浓度所需的高施主掺杂会导致氮化物外延晶体质量劣化;而减小i层厚度则会损失光吸收,导致量子效率降低。因此,通过p型、n型层中载流子浓度和i层厚度调控电场的空间有限,需要发展其它方法进行场强改善。

另一方面,雪崩光电探测器在其p-i结界面与i-n结界面处中存在着强电场,其中p-i结处电场最强,i-n结处电场次之,特别是器件边缘由于刻蚀损伤等因素使其表面态密度较高,因此在器件p-i结与i-n结的边缘处极易因电场强度过高而引发提前击穿,同时也会因侧壁的表面缺陷而导致漏电流增大等问题。传统上,对于雪崩光电探测器的边缘提前击穿,一般是采用保护环和倾斜台面结构来进行抑制。(参见文献:[1]F Osaka,K Nakazima,T.Kaneda,T.Sakurai,and N.Susa,“InP/InGaAsP avalanche photodiodes with new guard ring structure”Electronics Letters,vol.52,pp.716-717,1980;[2]Ariane L.Beck,Bo Yang,XiangyiGuo,and Joy C.Campbell,“Edge Breakdown in4H-SiC Avalanche Photodiodes”IEEE J.Quantum Electron,vol.40,pp.321-324,2004.)其中,保护环结构需要采用离子注入工艺在器件台型结构的外圈进行局部掺杂来实现,所需设备昂贵,且掺杂离子注入的深度、宽度均需精确控制。对于III族氮化物半导体,由于离子注入工艺的相关研究很少,当前采用该工艺的实施难度更大。而倾斜台面结构,则主要是利用刻蚀的方法,在器件台型侧面制作出特定方向的斜台结构,使得探测器件高电场区在器件表面的面积较之器件内部的截面积大,在相同的偏压下,侧面电场更小,以此避免边缘电场聚集,减少暗电流。然而,由于化合物半导体的刻蚀技术对刻蚀取向不易操控(包括干法或湿法刻蚀),使得制作倾斜台型侧壁的工艺难度较高。此外,为了有效降低边缘电场强度,需要尽量减小侧壁的倾斜度,使得器件的有效光接收面积占器件整体面积的比例大大减小。也就是说,倾斜台面结构的方法也存在着制作工艺难度大,降低器件填充因子的缺点。因此,为了进一步提高III族氮化物雪崩光电二极管的器件性能,需要发展更为优化的边缘电场抑制结构。



技术实现要素:

本发明针对现有技术中存在的不足,提出了一种基于III族氮化物半导体材料的雪崩光电探测器及其制备方法,目的在于增强器件有源区(倍增层)内的电场强度,在较低的工作偏压下产生较高的雪崩增益;同时通过双重抑制,降低器件边缘相对于中央部过高的电场强度,从而减少表面漏电流、防止边缘提前击。

为了实现上述目的,本发明包括如下技术特征:一种I I I族氮化物半导体雪崩光电探测器,该器件至少包括衬底及利用金属有机化学气相沉积外延外生长法(或分子束外延生长法)依次生长在衬底上的缓冲层、过渡层、重掺杂n型氮化物欧姆接触层、非均匀p型掺杂氮化物有源层、p型掺杂氮化物层,重掺杂p型氮化物欧姆接触层,以及位于n型欧姆接触层上的n型欧姆接触电极和位于p型层上的p型欧姆接触电极。

本发明的另外一个目的是提供一种低暗电流、低工作电压、高增益的III族氮化物半导体雪崩光电探测器的制备方法,优选地,包括以下步骤:

(1)利用金属有机化学气相沉积(MOCVD)法或分子束外延(MBE)法在衬底上依次生长缓冲层、过渡层、重掺杂n型氮化物欧姆电极接触层、非均匀p型掺杂有源层,p型掺杂氮化物层,重掺杂p型欧姆电极接触层结构。

(2)采用光刻技术制作掩膜层,利用干法或湿法刻蚀方法制作器件n型欧姆接触面。

(3)采用光刻技术制作掩膜层,利用干法或湿法刻蚀方法制作有源层边缘的电场分布限制台阶。

(4)采用光刻技术制作掩膜层,利用干法或湿法刻蚀方法制作p型氮化物掺杂层边缘的电场分布限制台阶。

(5)三次刻蚀后,进行表面处理,修复刻蚀的晶格损伤;热退火,对p型氮化物掺杂层的受主进行活化,同时修复刻蚀引入的晶格损伤。

(7)采用光刻图形刻出n型欧姆接触区域,利用电子束蒸发或溅射方法蒸镀n型金属,利用快速退火在氮气环境中合金形成n型欧姆接触。

(8)采用光刻图形刻出p型欧姆接触区域,利用电子蒸发方法或溅射方法蒸镀p型金属,利用快速退火合金形成p型欧姆接触。

本技术发明针对III族氮化物雪崩光电二极管器件结构中制约器件性能的关键点进行了改进,具有结构和制作工艺简单的优点。从工作原理上看,雪崩光电二极管的内部高光电增益是由高电场作用下的载流子(电子和空穴)碰撞晶格原子发生电离产生的。因此,雪崩光电探测器是电场作用器件,而利用较小的工作偏压产生较高的电场强度是器件设计与制作中关键的一环。另一方面,对于雪崩光电二极管在制作过程中需要通过刻蚀工艺分离晶圆上各个器件的有源区;对于III族氮化物半导体光电二极管探测器,则通常需要通过刻蚀工艺露出外延结构下层的欧姆接触层、分离晶圆上各个器件的有源区,形成垂直结构。由刻蚀形成的边缘在器件结构和表面电荷的作用下,其电场强度要显著高于器件中央部位(体区部分)的电场强度,程度严重的情况下会导致边缘提前击穿,程度较轻的情况下也会导致高边缘漏电流、雪崩增益分布不均。本技术发明即是针对这一矛盾,一方面,通过在有源层进行非均匀的轻掺杂,利用离化电荷增强有源区的电场强度,同时通过载流子浓度的线性变化(或高斯函数变化)改善有源层内的场强分布。另一方面,在本发明的器件结构中,对有源层进行了p型轻掺杂,使其与上层的导电类型相同,界面电场相对较弱;而强电场区则下移至p型有源层与重掺杂n型欧姆接触层的界面处。针对这两个界面边缘的电场,通过在较弱电场界面边缘、较强电场界面边缘分别制作一次、二次垂直台阶结构,对器件内部的水平方向电场分布进行调整,将器件内部电场集中限制在p型氮化物掺杂层的正下方(即器件正中部区域),而中部区域延伸至外围台阶区域的电场强度则迅速衰减,从而对器件的强弱电场区边缘实施了双重防击穿保护,抑制了边缘漏电通道,能有效抑制了器件在边缘结的提前击穿,提高器件表面耐高压性能。

综上,本发明提出的III族氮化物半导体雪崩光电探测器的主要特点和有益效果是:(1)在本征有源层(兼具光吸收层和倍增层的作用)采用非均匀轻掺杂,通过载流子(空穴)浓度分布的线性或高斯函数变化,增强有源层内电场强度,从而可在较低工作偏压下实现较高的光电增益;(2)采用p型有源层将强电场区下置到有源层与n型欧姆接触层的界面处,通过在器件边缘刻蚀形成的两个台阶结构,将高电场区域限制在器件的中央部分,对器件的弱电场区(p型氮化物掺杂层与非均匀p型轻掺杂有源层界面处)和强电场区(非均匀p型轻掺杂有源层与重掺杂n型欧姆接触层界面处)的边缘电场分别实施了抑制保护,从而可有效防止边缘击穿、减少表面漏电流。

附图说明

图1为本发明一种III族氮化物雪崩光电探测器的结构示意图。

图2为实施例中的III族氮化物雪崩光电探测器的结构示意图

具体实施方式

以下结合附图对本发明进行详细的描述。

本实施例如图2,图中给出了一种III族氮化物AlGaN基雪崩光电探测器,器件采用由衬底侧入射光信号的方式,包括:蓝宝石衬底201及依次生长在衬底至上的的低温AlN缓冲层202、高温AlN过渡层203、重掺杂n型Al0.55Ga0.45N欧姆接触层204,非均匀掺杂p型Al0.4Ga0.6N有源层205,p型掺杂Al0.4Ga0.6N层206,重掺杂p型Al0.4Ga0.6N欧姆电极接触层207,通过刻蚀形成的有源层205边缘的台阶208,通过刻蚀形成的p型掺杂层206边缘的台阶209,以及制作于n型Al0.4Ga0.6N层204上的欧姆接触电极210,制作p型Al0.4Ga0.6N层207上的欧姆接触电极211。

器件结构上,自衬底、缓冲层和过渡层而上,优选地,所述的重掺杂n型欧姆接触层204的厚度为0.3-3μm,所述的n型掺杂浓度为1×1018cm-3-1×1019cm-3;优选地,所述的非均匀p型掺杂有源层205,厚度为0.1-0.3μm,层中空穴浓度自上而下由1×1017cm-3线性减少到5×1015cm-3;优选地,所述的p型掺杂氮化物层206,厚度为30-300nm,层中空穴浓度为3×1017cm-3-5×1018cm-3;优选地,所述的重掺杂p型欧姆接触层207,厚度为5-12nm,层中掺杂浓度为1×1019cm-3-1×1020cm-3;优选地,在有源层205边缘通过刻蚀形成台阶208,台阶宽度为2~6μm,台阶深至有源层205与n型欧姆接触层204的界面上方2-6nm处;优选地,在p型掺杂氮化物层206边缘通过刻蚀形成台阶209,台阶宽度为2-6nm,台阶深至p型掺杂氮化物层206与有源层205的界面上方2-6nm处;优选地,在重掺杂n型欧姆接触层上刻蚀形成的欧姆电极接触面,其深度至有源层205与n型欧姆接触层204的界面下方0.1-1.5μm处。

本发明的一种III族氮化物基雪崩光电探测器制备方法的具体制备流程如下:

(1)材料生长利用金属有机化学气相沉积(MOCVD)法或分子束外延(MBE)法在蓝宝石、SiC、GaN或者AlN衬底201上依次生长低温AlN缓冲层202,高温AlN过渡层203,重掺杂n型Al0.4Ga0.6N欧姆接触层204,非均匀p型掺杂Al0.4Ga0.6N有源层205,p型掺杂Al0.4Ga0.6N层206,重掺杂p型Al0.4Ga0.6N欧姆电极接触层207。

(2)采用光刻技术制作掩模层,利用干法或者湿法刻蚀方法依次制作器件n型Al0.4Ga0.6N欧姆接触面。

(3)采用光刻技术制作掩膜层,利用干法或湿法刻蚀方法制作非均匀p型掺杂Al0.4Ga0.6N有源层205边缘的电场分布限制台阶208。

(4)采用光刻技术制作掩膜层,利用干法或湿法刻蚀方法制作p型掺杂Al0.4Ga0.6N层206边缘的电场分布限制台阶209。

(5)三次刻蚀后,进行表面处理,修复刻蚀的晶格损伤;器件热退火,对p型掺杂Al0.4Ga0.6N层中的受主进行活化,同时修复刻蚀引入的晶格损伤。

(6)采用光刻图形刻出n型欧姆接触区域,利用电子束蒸发方法蒸镀n型金属Ti/Al/Ni/Au,在纯氮气环境中合金形成n型欧姆接触210。

(7)采用光刻图形刻出p型欧姆接触区域,利用电子束蒸发方法蒸镀p型金属Ni/Au,在清洁干燥空气(clean dry air,CDA)环境中合金形成p型欧姆接触211。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1