用于砷化镓光伏器件的自‐旁路二极管功能的制作方法

文档序号:12681217阅读:257来源:国知局
用于砷化镓光伏器件的自‐旁路二极管功能的制作方法与工艺

技术领域

本发明的实施方案通常涉及光伏器件(例如太阳能电池)以及制造这些光伏器件的方法。



背景技术:

使用光伏器件例如太阳能电池板的一个问题是在太阳能电池板的部分上形成阴影的问题。如图1中所示,太阳能电池板包括在各模块中串联成串的多个光伏电池10,以提供来自太阳光的增加的功率和电压。然而,这些电池的一部分可能在操作过程中遮阳,这影响整个串或模块的性能。例如,电池12被障碍物遮阳,而其他电池10不是这样的。当一个太阳能电池的电气参数和其他电池的那些明显改变时,发生串联失配。由于穿过电池的电流必须相同,因此来自组合的总电流不能超过遮蔽的电池的电流。在低电压下,当一个太阳能电池被遮蔽而串或模块中剩余部分不是这样时,由未遮蔽的太阳能电池产生的电流可能在遮蔽的电池中消散而不是开动负载。因此,在电流失配的串联结构中,如果较差电池产生较少电流,可以发生严重的功率降低。如果结构在短路或低电压下运行,在遮蔽的电池中高局域化功率耗散可以引起局部“热点”加热、雪崩击穿、以及一个或多个太阳能电池和模块的不可逆损害。

在一些太阳能电池上遮蔽的失配效果的一种解决方案是使用一个或多个旁路二极管。内在具有非常高的击穿电压或低分流电阻的太阳能电池可能不需要旁路二极管,但是包括高性能太阳能电池例如砷化镓(GaAs)太阳能电池的多种其他类型可能需要旁路功能。例如,如图2中所示,典型地一个或多个旁路二极管14并联,并且和太阳能电池电路16极性相反。为了降低成本,旁路二极管通常放置穿过一组太阳能电池。在正常(未遮蔽的)操作中,各太阳能电池16a正向偏压,并且旁路二极管14a反向偏压且是开路。如果一个或多个太阳能电池16b被遮蔽,由于串联电池之间的短路电流中的失配,这些电池16b反向偏压,并且旁路二极管14b正向偏压和传导电流,这允许来自未遮蔽的太阳能电池的电流在外部电流中流动,而不适合对各未遮蔽的电池进行正向偏压。穿过遮蔽的电池的最大反向偏压降低至约单二极管压降,从而限制电流和防止热点加热和太阳能电池的损害。

尽管旁路二极管有效地降低太阳能电池中由于遮蔽引起的失配的破坏效果,但是它们是另外组件,所述组件必须制造用于太阳能电池,因此增加太阳能电池板的生产成本和时间。而且,旁路二极管必须集成到太阳能电池设计中,这可是复杂和难以完成的。这些因素增加了当前太阳能电池的较高生产成本,可能降低变为主流能量源的太阳能电池的性能,并且可能限制可适配太阳能电池的应用。

因此,需要增加的效率和生产相容性方法以在光伏器件中提供旁路二极管功能性。

发明概述

本发明的实施方案通常涉及光伏器件(例如太阳能电池),更具体地,涉及光伏器件中的旁路二极管功能。

在一个实施方案中,形成砷化镓基光伏器件的方法包括:提供半导体结构,所述结构包括包含砷化镓的吸收层。提供在所述半导体结构的p-n接面中的旁路功能,其中在反向偏压条件下,所述p-n接面以受控方式通过齐纳击穿效应击穿。在一些实施方案中,在比引起所述p-n接面的雪崩击穿的电场的量级低的电场中,所述p-n接面可以通过所述齐纳击穿效应击穿。旁路功能可以为所述光伏器件的所述p-n接面固有,使得所述光伏器件提供没有连接或包括在所述光伏器件中的区别旁路二极管的旁路功能。

在另外实施方案中,砷化镓基光伏器件包括:半导体结构,包括包含砷化镓的吸收层;以及所述半导体结构内的p-n接面,所述p-n接面提供旁路功能,其中在反向偏压条件下,所述p-n接面以受控方式通过齐纳击穿效应击穿。

附图简述

图1是描述包括遮蔽的太阳能电池的太阳能电池模块中的串联太阳能电池的图;

图2是描述具有并联的分立旁路二极管的串联太阳能电池的图;

图3是依照本文所述一些实施方案的光伏单元的剖视图;

图4示出依照本文所述一些实施方案的半导体结构的剖视图,所述半导体结构从图3的单元形成以形成光伏电池;

图5-6示出依照本文所述异质接面的实施方案图4的半导体结构的剖视图;

图7示出依照本文所述一些实施方案的两侧光伏电池的剖视图;和

图8是描述涉及本文所述旁路功能的砷化镓基太阳能电池的掺杂和击穿特性的图;

图9是描述涉及本文所述旁路功能砷化镓基太阳能电池的电压和电流特性的图;

图10是描述涉及本文所述旁路功能的砷化镓基太阳能电池的带间隧道效应特性的图;以及

图11是描述涉及本文所述旁路功能砷化镓基太阳能电池的电压和电流特性的图。

发明详述

本发明的实施方案通常涉及光伏器件和方法,更具体地涉及光伏电池和形成这些光伏电池的制造方法。展现下列描述以使本领域技术人员能够和利用本发明,并且在专利申请和其要求的上下文中提供。本领域技术人员容易地意识到本文所述的优选实施方案和通常原理与特征的多种修改。因此,本发明不旨在限制所示实施方案,而是具有和本文所述原理与特征一致的最宽的范围。

本文所述光伏器件的实施方案提供光伏电池中的旁路功能,以允许旁路电流在失配条件下流动,例如串联的串中的一些太阳能电池的遮蔽。砷化镓光伏器件中设置的自-旁路功能性允许保护器件,同时避免需要使区别旁路二极管和器件分离或者连接。当相比于常规太阳能电池制造方法时,这些创新可以允许在形成光伏器件中的更高效率和灵活性。

砷化镓太阳能电池是高性能光伏器件,其典型地和单独旁路二极管连接,以在电池集成到太阳能电池板中时保护太阳能电池避免电流失配,例如由串联太阳能电池中的一些的遮蔽引起而不遮蔽其他部分。然而,设置单独旁路二极管增加太阳能电池板的生产成本和时间,并且二极管的集成产生额外的复杂性。另外,一些高性能太阳能电池具有比其他类型的太阳能电池更高的运行电压/电池,从而要求比这些其他类型更多的旁路二极管。本文的实施方案允许旁路二极管的功能性包括在高性能GaAs太阳能电池中,而无需制造或设置连接太阳能电池的单独旁路二极管。

掺杂浓度是指半导体器件实施方案的描述。此处,“掺杂浓度”是指材料中活性掺杂剂的浓度,即大多数载流子浓度。

图3描述光伏单元100的剖视图,其包括通过砷化镓基电池140和生长晶圆101之间设置的牺牲层104偶接生长晶圆101的砷化镓基电池140。图4描述源自光伏单元100的半导体结构的剖视图,其为砷化镓基光伏电池140的形式。含有改变组成的外延材料多层沉积在光伏单元100内,光伏单元100包括缓冲层102、牺牲层104、以及砷化镓基电池140内含有的层中的多个。外延材料多层可以通过沉积法生长或形成,例如化学气相沉积(CVD)法、金属有机CVD(MOCVD)法或分子束外延(MBE)法。

在本文所述的另外实施方案中,光伏单元100可以暴露于湿法蚀刻溶液以蚀刻牺牲层104,和在外延层剥离(ELO)法的过程中使砷化镓基电池140和生长晶圆101分离。一旦分离,如图4中所示,砷化镓基电池140可以进一步加工以形成多种光伏器件,包括光伏电池和模块,如本文数个实施方案所述。

在一些实施方案中,外延生长层可以在高生长速率(例如生长速率大于5μm/hr,例如约10-120μm/hr或更高)气相沉积法的过程中通过生长III-V族材料来形成。其他实施方案可以使用更低生长速率方法以形成层。III-V族材料是外延生长层的薄膜,其含有砷化镓,砷化铝镓,磷化铝镓铟,磷化铝铟,砷化铝或其组合。在一些实施方案中,形成单元100的方法包括:在加工体系内加热晶圆至约550℃或更高(或其他范围)的沉积温度;使晶圆暴露于含有化学前体(例如镓前体气体和砷化氢)的沉积气体,以进行砷化镓沉积方法;以及在晶圆上沉积含有砷化镓的层。在一个实施方案中,一个或多个缓冲层102可以形成在生长晶圆101上,以开始形成光伏单元100。生长晶圆101可含有n-型、p-型或半绝缘材料,并且可以含有和一种或多种随后沉积的缓冲层相同或类似的材料。

一个或多个缓冲层102可以提供在生长晶圆101和最终光伏单元的半导体层之间的中间层,所述最终光伏单元的半导体层可以适应它们和形成的多个外延层不同的晶体学结构。一个或多个缓冲层102可以沉积为厚度约100nm至约600nm,并且可含有III-V族化合物半导体。牺牲层104可以沉积在缓冲层102上。牺牲层104(也称为脱模层)被蚀刻和除去,同时在ELO法的过程中使砷化镓基电池140和生长晶圆101分离。

砷化镓基电池140包括n-型薄膜叠式存储器120,n-型薄膜叠式存储器120含有设置在p-型薄膜叠式存储器130上的n-掺杂的砷化镓材料,p-型薄膜叠式存储器130含有p-掺杂的砷化镓材料。n-型薄膜叠式存储器120和p-型薄膜叠式存储器130各自独立地含有改变的材料组成的多个层,包括砷化镓材料。在一些实施方案中,n-型薄膜叠式存储器120包括n-型接触层105、n-型第一窗口106、临近n-型第一窗口106形成的n-型吸收层108。p-型薄膜叠式存储器130包括p-型射极层110和形成在p-型射极层110上的p-型接触层204。后金属层204可以形成在接触层112上。在其他实施方案中,在电池140中p-型薄膜叠式存储器可以设置在n-型薄膜叠式存储器上。

如在一个实施方案中所述,在制备过程中,n-型接触层105或界面层可以沉积在牺牲层104上。n-型接触层105含有III-V族材料,例如砷化镓,这取决于最终光伏单元的期望组成。n-型接触层105是n-掺杂的,并且对于一些实施方案,掺杂浓度可以在大于约1×1018cm-3的范围内。n-型接触层105可以形成为厚度在约10nm至约1,000nm的范围内。n-型接触层105可以在该阶段形成,例如在ELO法前砷化镓基电池140的一部分,或者可以在ELO法后的稍后阶段形成。

第一窗口106(也称为钝化层)可以形成在牺牲层104上,或者形成在任选的接触层105(如果存在的话)上。第一窗口106可以含有III-V族材料,例如铝镓、砷化铝镓或其组合。窗口层还可以或者可替换地含有另外材料,包括磷化铝镓铟、磷化铝铟、或其衍生物、或其组合。这些磷化铝镓铟化合物提供较大带隙例如约2.2eV或更大,以及当在n-型第一窗口106内利用时在较短波长处的较高集电极效率。例如,在一些实施方案中,第一窗口106材料可以是n-掺杂的并且掺杂浓度可以在大于约1×1018cm-3的范围内,或者可以是未掺杂的。砷化铝镓可以具有摩尔比AlxGa1-xAs的式,例如Al0.3Ga0.7As的摩尔比。第一窗口106可以沉积为厚度在约5nm至约75nm的范围内。

p-n接面在吸收层108和射极层110之间形成。在一些实施方案中,p-n接面的吸收层和射极层包括高度掺杂的半导体。这形成有效的齐纳二极管,其在p-n接面反向偏压时提供带间隧道效应。引起齐纳效应的电场小于p-n接面的雪崩击穿阈值。该效应在下面详细描述。

p-n接面的吸收层108可以形成在第一窗口106上。吸收层108可以含有III-V族化合物半导体,例如砷化镓(GaAs)。在一些实施方案中,吸收层108可以是单晶的。吸收层08可以例如仅具有一种类型掺杂,例如n-掺杂。

为了如本文的实施方案中所述在光伏器件中实现自-旁路二极管功能性,吸收层108的掺杂浓度相对于通常掺杂浓度非常高。例如,在其中吸收层108是n-掺杂的实施方案中,n-掺杂剂浓度可以在约4×1017cm-3至约1×1019cm-3的范围内。n-型吸收层108的厚度可以在约300nm至约3,500nm的范围内,例如约1,000nm至约2,000nm(约1.0μm至约2.0μm),例如2,000nm。在一些实施方案中,吸收层小于1μm;例如n-型吸收层108的厚度可以为约800nm或更小,例如约500nm或更低,例如在约100nm至约500nm的范围内。由于短载流子寿命,这样薄会提供高掺杂浓度引起的载流子收集的降低或忽略的限制,因为太阳能电池较薄并且可以容易地收集载流子。

在其他实施方案中其他材料可以用于吸收层108并且实现本文所述自-旁路二极管功能性。例如,吸收系数足够高的材料例如III-V族材料,磷化物(磷化铟镓(InGaP),磷化铝铟(AlInP),磷化铝铟镓(AlInGaP)),氮化铟镓,砷化铝镓或其组合。

在一些实施方案中,光伏单元100相比于常规太阳能单元(可以为数微米厚)可以具有明显更薄的吸收层(例如,少于500nm)。

对于给定光强度更薄吸收层可以最可能导致更高开路电压(Voc),因此增加效率。薄吸收层还具有涉及载流子扩散长度的优点。更高掺杂水平可以允许电流甚至在非常薄的吸收层中流动,因此增加的掺杂可以用于制造具有增加的效率的非常薄的吸收层。常规光伏器件可以遭受体积复合效应,因此这些常规器件不会在吸收层中使用较高掺杂。当确定合适的厚度时也可以考虑吸收层的薄层电阻。含有较薄吸收层的光伏器件可以比常规太阳能电池(为数微米厚)更高挠性。在一些实施方案中,制造更薄基层/吸收层可以允许使用n-掺杂的基层/吸收层。其他实施方案可以使用p-掺杂的基层/吸收层和n-掺杂的后/射极层,例如由于载流子的扩散长度在更厚吸收层的实施方案中。

在一些实施方案中,p-n接面的射极层110可以临近吸收层108形成。如果吸收层是n-掺杂的,射极层110可以例如含有III-V族化合物半导体并且是p-掺杂的,或反之亦然。在本文所述的一些实施方案中,p-型射极层110比n-型吸收层108更接近电池140的后侧,即,n-型吸收层更接近电池140的前侧。射极层110可以是单晶的。

在一些实施方案中,射极层110可以是高度p-掺杂的,并且对于一些实施方案,p-掺杂的射极层的掺杂浓度可以在约4×1017cm-3至约1×1020cm-3的范围内,例如约1.5×1018cm-3。射极层110的厚度可以在约100nm至约500nm或更高的范围内,例如约300nm。

在一些实施方案中,n-型吸收层108接触p-型射极层110会产生用于吸收光子的p-n接面或界面层,并且射极层110含有和吸收层108相同或类似的材料。p-型吸收层108和n-型射极层110也可以产生p-n接面。

在其他实施方案中,n-型吸收层108含有一种材料(例如砷化镓),并且p-型射极层110含有和吸收层108的材料(例如砷化铝镓)不同带隙的不同材料,并且p-n界面是异质接面。如本文实施方案中所述,相比于常规光伏材料的异质接面,异质接面观察到具有减小的暗电流、改善的电压产生和改善的辐射复合性。在本文所述的一些实施方案中,p-型射极层110的材料比n-型吸收层108的材料具有更高带隙。

射极层110可以含有III-V族化合物半导体以和n-型吸收层108形成异质接面。例如,如果n-型吸收层108含有砷化镓,p-型射极层110可以含有不同半导体材料,例如砷化铝镓(AlGaAs)。如果p-型射极层110和n-型第一窗口106都含有砷化铝镓,p-型射极层110的AlxGa1-xAs组成可以和n-型第一窗口106的AlyGa1-yAs组成相同或不同。例如,p-型射极层110可以具有Al0.3Ga0.7As的摩尔比。

在一些实施方案中,异质接面可以通过在吸收层108和射极层110之间设置中间层114而从p-n接面偏离。中间层114可以在吸收层108和射极层110之间提供材料过渡。例如,这种中间层的一些实施方案参照下面图5和6有所描述。

在一些实施方案中,p-n接面(无论是否有异质接面)的耗尽区域可以设置有和吸收层不同的掺杂浓度,并且实现本文所述自-旁路二极管功能性。这些实施方案参照图5和6在下面详述。

任选地,接触层112可以形成在射极层110上。例如,p-型接触层112可以含有III-V族化合物半导体,例如砷化镓。p-型接触层112通常是单晶的和p-掺杂的,并且对于一些实施方案,p-型接触层112的掺杂浓度可以大于1×1018cm-3。

一旦形成射极层110,腔洞或凹陷(未示出)可以在射极层110(或任选的接触层112)中形成足以到达下面基础吸收层108的深度。这些凹陷可以通过下列方式来形成:例如使用光蚀刻法将掩模施加至射极层110(或任选的接触层112);以及除去未由掩模覆盖的射极层110(和任选的接触层112)中的材料。按照该方式,吸收层108可以通过砷化镓基电池140的后侧接入

图5和6是光伏电池140的实施方案的剖视图,其中异质接面偏离p-n接面。

图5示出包括吸收层108、中间层114和射极层110的电池140的一个实施方案的部分150。在一些实施方案中,中间层114含有和射极层110基本上相同的材料,例如在射极层110含有砷化铝镓的实施方案中是砷化铝镓。另外,中间层114具有和吸收层108相同的掺杂类型,例如n-型掺杂。在一些实施方案中,中间层114可以具有约两个耗尽长度的厚度,其中耗尽长度是围绕p-n接面形成的耗尽区域的宽度。例如,在一些实施方案中,中间层114可以具有约0至200nm的厚度。

电池140的实施方案提供这样的结构,其允许p-n接面产生电压,该电压使电池从由具有不同带隙的材料提供的异质接面偏离。例如,p-n接面152是射极层110和中间层114的n-型和p-型材料之间的界面。因此,在一个实施方案中,p-n接面至少部分设置在构成射极层110和中间层114的更高-带隙材料内(例如AlGaAs),并且异质接面122位于中间层114和吸收层108之间的界面(例如GaAs和AlGaAs之间的界面)。该偏离提供相对于一致的p-n接面和异质接面的一些优点,例如可以减小器件的暗电流。在一些实施方案中,大部分吸收层108在由p-n接面形成的耗尽区域外部。

在一些实施方案中,异质接面154位于p-n接面152的两个耗尽长度内。例如,在一些实施方案中耗尽区域的宽度可以为约耗尽区域典型地仍旧具有通过该区域的耗尽效应,在p-n接面的约两个耗尽区域宽度(耗尽长度)内。

在一些实施方案中,中间层可以掺杂和吸收层108基本上相同的掺杂浓度。这允许本文所述自-旁路功能性。例如,中间层可以具有AlxGa1-xAs的摩尔比的式,例如Al0.3Ga0.7As的摩尔比,并且是约4×1017cm-3或更高n-掺杂的。

在其他实施方案中,中间层114或其部分可以具有和吸收层108和射极层110不同的掺杂浓度。例如,相比于4x1017cm-3或更高的吸收层108的更高掺杂浓度,中间层114可以具有5x1016cm-3或更高、例如1x1017cm-3的较低掺杂浓度。通常,p-n接面的耗尽区域可以具有比吸收层108更低的掺杂浓度。在这些实施方案中,电池200保持自-旁路二极管功能性(下文详细解释),尽管耗尽区域和/或中间层114具有更低掺杂浓度,因此提供自-旁路功能的p-n接面具有穿过中间层的厚度延伸的耗尽区域。该特征可以允许p-n接面和异质接面在不考虑需要获得自-旁路二极管功能性的高掺杂水平的条件下进行设计。否则,在一些实施方案中,吸收层108的耗尽区域中高度掺杂可能影响p-n接面的运行,例如增加载流子复合率。

图6描述中间层114的另外实施方案160,其中中间层114包括递变层115和设置在吸收层108与射极层110之间的后窗口层117。p-n接面162从设置在具有不同带隙的两种材料之间的异质接面164偏离。例如,n-型递变层115可以形成在n-型吸收层108上并且n-型后窗口117可以形成在n-型递变层115上,接着在n-型后窗口117上形成p-型射极层110。实施方案160包括在n-掺杂层117和p-掺杂层110之间形成的p-n接面162。在该例子中,吸收层108中的材料是GaAs并且递变层115中的材料是AlGaAs。尽管异质接面164示于图6以用于因为材料递变而在递变层的中点处的描述性目的,异质接面可以在层115内的任何点处,或者层的整个宽度可以被认为是异质接面。如图5的实施方案中所述,p-n接面优选从异质接面偏离两个耗尽长度内。

递变层115可以是这样的递变层,其包括从吸收层至后窗口117递变的材料,其中递变范围为从接近吸收层的递变层侧处的吸收层材料至接近后窗口侧处的后窗口117的材料。因此,使用上述示例性材料,递变材料可以从邻近n-型吸收层108的砷化镓开始,并且在铝量增加和GaAs量减小的后窗口方向上递变,使得递变邻近n-型后窗口117(和后窗口117的材料大致相同的砷化铝镓材料(摩尔比))结束。在多个例子中,在递变的窗口端处的砷化铝镓可以具有摩尔比AlxGa1-xAs的式,例如,可以使用Al0.3Ga0.7As的摩尔比。递变层115的递变可以是抛物线、指数或线性递变,和/或也可以使用其他递变图线。n-型后窗口117还可以含有砷化铝镓,并且可以具有摩尔比AlxGa1-xAs的式,例如,摩尔比Al0.3Ga0.7As。在其他实施方案中,中间层114仅含有递变层115,或者中间层114仅含有非-递变后窗口117(如图5中所示)。

递变层115和n-型后窗口117均可以是n-掺杂的。对于一些实施方案,掺杂浓度可以基本上等同于n-型吸收层108。在其他实施方案中,递变层115和/或后窗口117的掺杂浓度可以小于吸收层108的浓度,和涉及图5上面用于中间层114所述类似。例如,递变层115和后窗口117的掺杂浓度可以为约1x1017cm-3,而吸收层108的掺杂浓度为约4x1017cm-3

递变层115和后窗口117的厚度可以在不同实施方案中广泛变化,而整个中间层114可以含有标准厚度(例如小于约2个耗尽长度,例如在一些实施方案中在0至200nm的范围内)。在一个例子中递变层115的存在可有助于降低AlGaAs和GaAs层之间的界面的势垒效应。后窗口117还可提供钝化以在吸收层108的表面处降低复合。

图7是适用于本发明的光伏电池200的一个实施方案的剖视图,其中金属接触层202和抗反射涂层206形成在电池140的前侧上。在一些实施方案中,光伏电池200通过ELO法形成,ELO法如上面涉及图1和2所述用在砷化镓基光伏单元100上。

如图7中所示,在一些实施方案中电池200可以是两侧光伏器件,并且可以包括设置在光伏电池140的相对侧的前金属接触层202和后金属接触层204。前金属接触层202设置在前侧或太阳侧上以接收光线210,而后金属接触层204设置在电池200的后侧上。例如,在具有沉积在p-薄膜叠式存储器上的n-薄膜叠式存储器的实施方案中,前金属接触层202可以是n-金属接触,并且后金属接触层204可以是p-金属接触。

根据任一熟知方法前金属接触层202可以沉积在前接触层105上。n-金属接触层202含有为导电材料的接触材料,例如金属或金属合金。在一些实施方案中,金属接触层202含有相同或不同接触材料的多个层。接触材料的比接触电阻率优选为约3×10-3Ω-cm2或更低。在载流子浓度约1×1018cm-3下,优选接触材料也具有肖特基势垒高度(Φbn)为约1eV或更低。

如图7中所示,前金属层202和半导体接触层105可以图案化以形成金属接触。例如,在一些实施方案中,金属接触层202沉积在接触层105上,随后凹陷通过金属接触层202和接触层105形成以在电池200的前侧上暴露第一窗口106。在可选择的实施方案中,凹陷可以初始形成在接触层105中以在电池200的前侧上暴露第一窗口106。此后,金属接触层202可以形成在接触层105的剩余部分上,同时留下暴露的第一窗口106。在另外实施方案中,接触层105不存在,并且金属接触直接和前窗口层106接触。

后金属接触层204可以沉积邻近接触层112(或射极层110)。后金属接触204含有为导电材料的接触材料,例如金属或金属合金。金属接触层204可以含有相同或不同接触材料的多个层。接触材料的比接触电阻率优选为约1×10-1Ω-cm2或更低。在载流子浓度约1×1018cm-3下,优选接触材料也具有肖特基势垒高度(Φbn)为约1eV或更低。后金属接触层204可以通过熟知方法在光伏电池200上制造。任选地,金属保护层或金属粘附层可以沉积在金属接触层204上,金属接触层204含有材料,包括镍、铬、钛或其组合。

抗反射涂覆(ARC)层206可以沉积在暴露的第一窗口106以及半导体接触层105和前金属接触层202上。ARC层含有这样的一种或多种材料,该材料允许光穿过,同时防止光从ARC层的表面反射。对于一些实施方案,第一窗口106、射极层110和/或后接触层112可以是粗糙的或有纹理的,接着施加ARC层。

在一些实施方案中,第一窗口106可以含有多个窗口层。对于这些实施方案,最外窗口层(例如,最接近光伏电池140的前侧的窗口层)可以是粗糙的或有纹理的,接着施加ARC层。在一个实施方案中,第一窗口106含有邻近吸收层108沉积的第一窗口层(未示出)、和夹置在第一窗口层和ARC层之间的第二窗口层(未示出)。第一和第二窗口层可以含有适用于如上所述第一窗口106的任何材料,但典型地具有不同组成。而且,对于一些实施方案,多个窗口层中的一些可以是掺杂的,而其他的则是未掺杂的。

在一些实施方案中,粘合剂层可以临近后金属接触层204形成。粘合剂层可以提供后接触层的邻近材料良好的粘附性,并且提供电池200和背衬(可以放置邻近粘合剂层)的粘附。

在其他实施方案中,在上面讨论的层中可以使用相反类型的掺杂,和/或可以使用其他材料,该材料可以提供所述p-n接面。而且,在其他实施方案中层可以以和上述顺序不同的顺序沉积或者形成。

其他类型、结构和材料的金属接触层也可以用于电池200。例如,金属接触层可以都设置在电池200的背侧上。一旦形成射极层110,腔洞或凹陷可以在射极层110(或后接触层112)中形成足以达到基础吸收层108的深度。按照该方式,吸收层108可以通过砷化镓基结构100的后侧接入。

图8-11是描述具有本文所述旁路二极管功能的示例性太阳能电池的特性的图。

电池140或200的p-n接面设置有上述高度掺杂的吸收层和射极层半导体,以使齐纳二极管在特定条件下形成。齐纳击穿效应能够由带间隧道效应引起,所述带间隧道效应在p-n接面处于足够反向偏压下时发生。假设吸收层和射极层掺杂水平足够高,需要引起齐纳效应的反向偏压的量级低于需要引起雪崩击穿的反向偏压量级,使得齐纳击穿在雪崩击穿前代替其发生。该齐纳击穿是可逆的,并且不破坏太阳能电池。雪崩击穿效应也可以是可逆的;然而,由于太阳能电池中较高电场和晶体缺陷,当接近或超过雪崩击穿点反向偏压时二极管可以遭受不可逆的损害,这称为热点加热。

为了使齐纳效应的带间隧道效应在雪崩击穿前发生,吸附剂的掺杂应该和上述实施方案中那么高。例如,吸收层中大于4x1017cm3的掺杂可以用于砷化镓光伏器件的实施方案。高掺杂的p-n接面太阳能电池比具有较低掺杂的p-n接面的太阳能电池具有更小的半导体薄层电阻。这可以提供优点;例如,薄层电阻越低,在电池的顶侧上的金属接触之间运行越大的间隔,从而增加非金属面积的大小,这可在电池的顶部接收太阳光。

本文所述自-旁路二极管功能性防止太阳能电池阵列或串经历遮蔽(或者失配)的电池的热点加热或破坏性雪崩击穿。这使太阳能电池200本身实现旁路二极管功能性的保护,并且在遮蔽的条件下避免雪崩击穿或太阳能电池板中的其他类似失配。太阳能电池200的p-n接面包括反向偏压的旁路二极管的功能,因此避免需要制造和连接一个或多个单独或区别旁路二极管至一个或多个太阳能电池。

图8示出图300,描述砷化镓太阳能电池的击穿电压vs.太阳能电池的吸收层中的掺杂浓度。线301示出砷化镓单侧接面(例如p-n接面的一半,在接面的其他侧上的理想化行为)的行为,并且数据点302示出在本文所述的一个实施方案中实施的砷化镓太阳能电池的行为。如图中所示,在掺杂浓度降低时,太阳能电池的击穿电压降低。为了使带间隧道效应在雪崩击穿前发生,掺杂应该足够高,带间隧道效应在比雪崩击穿电压更低的电压下发生。在该例子中,在约4x1017cm-3的掺杂浓度下,随着电压增加以及更高掺杂浓度,带间隧道效应(齐纳)击穿效应在雪崩击穿前发生。该齐纳击穿区域在图8中表示为区域303。在该例子中在该掺杂浓度下齐纳效应在约8-9伏特下发生,对于更高掺杂浓度齐纳效应在更低电压下发生。

当吸收层中的掺杂足够高时,例如在本文所述的例子中大于4x1017cm-3,带间隧道效应变为支配性击穿机理。在这样的情况下,当反向偏压时,太阳能电池具有固有自-旁路路径。

图9示出图304,描述当本文所述太阳能电池被足够反向偏压时发生的雪崩击穿。在反向偏压下,直到达到击穿电压Vb时太阳能电池中才有电流流动,在该量级下电流可以在具有极大增加的容量下流动。

图10示出图306,描述具有本文所述旁路功能的太阳能电池的带图在高反向偏压(对于齐纳击穿反向偏压足够,并且足够小以引起雪崩击穿)下。图306表示电池中的厚度或深度vs.载流子的能量,其中虚线表示导带并且实线表示基于从顶面深入到太阳能电池的价带能量。如所示,当耗尽区域的反向偏压场中能量带合并接近时,发生带间隧道效应,其在图10的例子中,如果掺杂浓度为4x1017cm-3或更高,电池深度为0.4至0.6μm。该隧道效应是齐纳效应。

图11示出图308,描述示出在一个量级的反向偏压下太阳能电池中“软性”(更递进)击穿效应的线310,并且第二线312示出在更大量级的反向偏压下更加尖锐的雪崩击穿。软性击穿310由带间隧道效应引起,在具有更高吸收层掺杂(1x1018cm-3)的太阳能电池中,带间隧道效应在雪崩击穿可发生前发生,而雪崩击穿312在具有更低吸收层掺杂(1x1017cm-3)的太阳能电池中发生,并且因此没有带间隧道效应。

如上所述,已经发现取决于吸收层掺杂浓度(如上所述具有高射极层掺杂),砷化镓太阳能电池表现出齐纳击穿效应。例如,如果吸收层掺杂浓度为1或2x1017cm-3,约0.7至2μm厚的薄吸收层在约-10V或更大(量级)的电压下经历雪崩击穿。然而,在吸收层厚度为约0.7至1μm并且掺杂浓度为4x1017cm-3的器件中,在约-9V或更低(量级)的电压下,在可能发生雪崩击穿前发生齐纳击穿,从而避免太阳能电池受到破坏性雪崩击穿的损害。

太阳能电池140或200的高掺杂的吸收层允许在雪崩击穿效应前在反向偏压下发生齐纳击穿效应。该齐纳击穿效应或自-旁路二极管功能性是受控击穿,其允许遮蔽的电池的电流流动,并且避免可以在雪崩击穿下发生的太阳能电池的任何损害。因此,电池的反向击穿由带间隧道效应和自-旁路功能性而不是破坏性雪崩击穿支配。

自-旁路功能性允许太阳能电池串中各太阳能电池在遮蔽的或其他失配条件下接收旁路二极管的保护,然而避免需要连接分立旁路二极管。这降低分立旁路二极管的设计集成的成本和时间。而且,当使用本文所述自-旁路二极管功能性时,在太阳能电池的厚度、掺杂和击穿电压特性之间的效率具有很小或没有妥协。

基于本文所述砷化镓而不是基于不同的、更加奇异的材料的电池来赋予光伏电池的自-旁路功能的能力允许使用已经用于砷化镓结构和电池的已知技术来生产更加通常和低成本的光伏电池。

在太阳能电池中使用齐纳击穿作为自-旁路功能的另一优点是在特定太阳能电池的串中没有遮蔽的太阳能电池仍旧产生功率,尽管在该串中具有一个或多个遮蔽的电池。一旦齐纳击穿电压在特定电池(例如遮蔽的电池)中达到,该电池明显表现为短路。相反,当一个或多个电池足够遮蔽时,使用区别旁路二极管引起太阳能电池的整个串具有旁路,使得串中没有太阳能电池产生功率。

在太阳能电池中使用自-旁路二极管功能的又一优点是相比于雪崩击穿,齐纳击穿是相对温度不敏感的。在没有齐纳击穿的情况下,雪崩击穿的敏感性产生限制,在太阳能电池的最低运行温度下,串联太阳能电池的整个串电压必须小于雪崩击穿电压。因此,当围绕雪崩击穿设计时,存在由温度敏感性引起的另外的限制,当使用本文所述齐纳击穿时这不是限制。

而且,如上所述可以提供实施方案,其中允许光伏器件的耗尽区域在比周围吸收层更低掺杂浓度下,并且仍旧保持本文所述旁路功能。例如,p-n接面处的中间层可以具有比相邻吸收层更低的掺杂浓度。这允许更大的设计灵活性,因为p-n接面可以在没有限制自-旁路功能所需要的较高掺杂浓度的条件下进行设计。

本文所述带间隧道效应可以通过在吸收层中设置高掺杂浓度来至少部分实现。在其他实施方案中,带间隧道效应和自-旁路二极管功能性可以使用其他方法来实现。当增加反向偏压的量级时,带间隧道效应应该支配反向偏压条件,并且在雪崩击穿效应前发生。

尽管已经参照所示实施方案来描述了本发明,但是本领域技术人员将容易地认识到可以对实施方案进行改变,并且这些改变在本发明的精神和范围内。因此,在不偏离所附权利要求书的精神和范围的条件下,本领域技术人员可以进行多种变化。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1