一种肖特基势垒接触的超势垒整流器的制作方法

文档序号:11762335阅读:527来源:国知局
一种肖特基势垒接触的超势垒整流器的制作方法与工艺

本实用新型属于功率半导体电力电子器件技术领域,具体是一种肖特基势垒接触的超势垒整流器。



背景技术:

功率半导体整流器,广泛应用于功率转换器和电源中。两种基本结构的功率半导体整流器是PIN功率整流器和肖特基势垒整流器。

其中PIN功率整流器正向压降大,反向恢复时间长,但漏电较小,并且具有优越的高温稳定性,主要应用于300V以上的中高压范围。

肖特基势垒整流器主要应用于200V以下的中低压范围,其正向压降小,反向恢复时间短,但反向漏电流较高,高温可靠性较差。结势垒控制整流器(JBS)和混合PIN/肖特基整流器(MPS),结合了PIN功率整流器和肖特基势垒功率整流器的优点,是适用于中高压范围的常用整流器结构。

超势垒整流器,在阳极和阴极之间整合并联的整流二极管和MOS晶体管来形成具有较低正向导通电压、较稳定高温性能的整流器件,在100V以下的应用中具有明显的竞争优势。

已经公开的典型的超势垒整流器有多种结构和相应的制造方法,但其器件结构和制造工艺相对较复杂、不能更加灵活的调节正向导通能力和反向漏电流水平之间的优化关系。



技术实现要素:

本实用新型的目的是解决现有技术中,超势垒整流器器件结构和制造工艺相对较复杂、不能更加灵活的调节正向导通能力和反向漏电流水平之间的优化关系的缺点。

为实现本实用新型目的而采用的技术方案是这样的,一种肖特基势垒接触的超势垒整流器,其特征在于:包括重掺杂第一导电类型衬底层、轻掺杂第一导电类型外延层、第二导电类型体区、栅介质层、栅电极层、肖特基势垒接触区、上电极层和下电极层;

所述重掺杂第一导电类型衬底层覆盖于下电极层之上;

所述轻掺杂第一导电类型外延层覆盖于重掺杂第一导电类型衬底层之上;

所述第二导电类型体区覆盖于轻掺杂第一导电类型外延层之上的部分表面;

所述栅介质层覆盖于轻掺杂第一导电类型外延层之上的部分表面和第二导电类型体区之上的部分表面;

所述栅电极层覆盖于栅介质层之上;

所述肖特基势垒接触区覆盖于第二导电类型体区之上的部分表面;

所述上电极层覆盖于栅电极层和肖特基势垒接触区之上。

进一步,所述一种肖特基势垒接触的超势垒整流器,还包括第二导电类型保护环及结终端区,所述第二导电类型保护环及结终端区为闭合状的环形结构;环形包围的中间区域为有源区。

进一步,所述第二导电类型体区由一个或者多个重复的结构单元构成;所述第二导电类型体区位于有源区内部,位于有源区边缘的结构单元与所述第二导电类型保护环及结终端区可以接触,也可以不接触。

进一步,所述栅介质层还可以覆盖于肖特基势垒接触区之上的部分表面。

进一步,所述栅介质层优选二氧化硅材料,还可以选择氮氧化硅和其它合适的介质材料。

所述栅电极层优选掺杂多晶硅;

所述肖特基势垒接触区优选但不限于高级硅化物;所述高级硅化物优选但不限于钛硅、铂硅、镍鉑硅等材料。

进一步,所述栅电极层可省略,所述上电极层覆盖于栅介质层和肖特基势垒接触区之上。

本实用新型的技术效果是毋庸置疑的,本实用新型中的肖特基势垒接触的超势垒整流器属于超势垒整流器类型,其可调节的肖特基势垒接触区可以采用常规肖特基势垒的制造工艺形成,能够依据具体应用条件方便的调节反向漏电水平和正向导通能力之间的匹配关系。从而该肖特基势垒接触的超势垒整流器具有制造工艺简单和方便应用的优点。

附图说明

图1为本实用新型实施例的新器件1剖面结构示意图;

图2为本实用新型实施例的新器件2剖面结构示意图。

图中:重掺杂第一导电类型衬底层20、轻掺杂第一导电类型外延层30、第二导电类型体区31、栅介质层41、栅电极层42、肖特基势垒接触区43、上电极层50和下电极层10。

具体实施方式

下面结合实施例对本实用新型作进一步说明,但不应该理解为本实用新型上述主题范围仅限于下述实施例。在不脱离本实用新型上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本实用新型的保护范围内。

实施例1:

选择第一导电类型为N型,第二导电类型为P型。

如图1所示,一种肖特基势垒接触的超势垒整流器,其特征在于:包括N+型衬底层20、N型外延层30、P型体区31、栅介质层41、栅电极层42、肖特基势垒接触区43、上电极层50和下电极层10。

一种肖特基势垒接触的超势垒整流器,还包括P型保护环及结终端区,所述P型保护环及结终端区为闭合状的环形结构;环形包围的中间区域为有源区。

所述N+型衬底层20覆盖在下电极层10之上。

所述N型外延层30覆盖在N+型衬底层20之上。所述N+型衬底层20为掺杂浓度19次方以上的砷衬底。所述N型外延层30为杂质浓度15到16次方的磷外延层,一个典型的N型外延层30条件可以选择5微米的厚度、15次方的磷杂质浓度,由此制作出的器件可以达到50伏以上的击穿要求。

所述P型体区31由一个或者多个重复的结构单元构成,并且所有重复单元均位于有源区内,位于有源区边缘的结构单元与所述第二导电类型保护环及结终端区可以接触,也可以不接触。所述P型体区31采用剂量为13次方、能量80KeV的硼注入后快速退火的方式形成。

所述栅介质层41覆盖于N型外延层之上的部分表面和P型体区之上的部分表面;栅介质材料选择二氧化硅。

所述栅电极层42为掺杂多晶层,覆盖在栅介质层41之上。

所述肖特基势垒接触区43覆盖于P型体区之上的部分表面;肖特基势垒接触区43选择钛硅合金材料或者铂硅合金材料。所述栅介质层41还覆盖于肖特基势垒接触区43之上的部分表面,也就是说肖特基势垒接触区43延伸到栅介质层41之下的部分区域。

所述上电极层50覆盖于栅电极层42和肖特基势垒接触区43之上。

一种肖特基势垒接触的超势垒整流器,其可调节的肖特基势垒接触区可以采用常规肖特基势垒的制造工艺形成,能够依据具体应用条件方便的调节反向漏电水平和正向导通能力之间的匹配关系。从而该肖特基势垒接触的超势垒整流器具有制造工艺简单和方便应用的优点。

实施例2:

选择第一导电类型为N型,第二导电类型为P型。

如图2所示,一种肖特基势垒接触的超势垒整流器,其特征在于:包括N+型衬底层20、N型外延层30、P型体区31、栅介质层41、肖特基势垒接触区43、上电极层50和下电极层10。

一种肖特基势垒接触的超势垒整流器,还包括P型保护环及结终端区,所述P型保护环及结终端区为闭合状的环形结构;环形包围的中间区域为有源区。

所述N+型衬底层20覆盖在下电极层10之上。

所述N型外延层30覆盖在N+型衬底层20之上。所述N+型衬底层20为掺杂浓度19次方以上的砷衬底。所述N型外延层30为杂质浓度15到16次方的磷外延层,一个典型的N型外延层30条件可以选择5微米的厚度、15次方的磷杂质浓度,由此制作出的器件可以达到50伏以上的击穿要求。

所述P型体区31由一个或者多个重复的结构单元构成,并且所有重复单元均位于有源区内,位于有源区边缘的结构单元与所述第二导电类型保护环及结终端区可以接触,也可以不接触。所述P型体区31采用剂量为13次方、能量80KeV的硼注入后快速退火的方式形成。

所述栅介质层41覆盖于N型外延层之上的部分表面和P型体区之上的部分表面;栅介质材料选择二氧化硅。

所述肖特基势垒接触区43覆盖于P型体区之上的部分表面;肖特基势垒接触区43选择钛硅合金材料或者铂硅合金材料。所述栅介质层41还覆盖于肖特基势垒接触区43之上的部分表面,也就是说肖特基势垒接触区43延伸到栅介质层41之下的部分区域。

所述上电极层50覆盖于栅电极层42和肖特基势垒接触区43之上。

一种肖特基势垒接触的超势垒整流器,其可调节的肖特基势垒接触区可以采用常规肖特基势垒的制造工艺形成,能够依据具体应用条件方便的调节反向漏电水平和正向导通能力之间的匹配关系。从而该肖特基势垒接触的超势垒整流器具有制造工艺简单和方便应用的优点。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1