引线框材料及其制造方法以及半导体封装件与流程

文档序号:18005069发布日期:2019-06-25 23:16阅读:171来源:国知局
引线框材料及其制造方法以及半导体封装件与流程

本发明涉及适用于树脂密封型半导体装置的引线框材料及其制造方法以及半导体封装件,所述树脂密封型半导体装置通过将半导体元件和具有表面处理层的引线框彼此电连接并用模制树脂将其密封而形成。



背景技术:

这种树脂密封型半导体装置具有将通过导线等彼此电连接的半导体元件和引线框利用模制树脂密封的结构。这样的树脂密封型半导体装置一般通过对引线框实施如外部镀覆这样的表面处理,从而利用例如sn-pb合金或sn-bi合金等sn合金形成表面覆膜来制造。

近年来,为了简化组装工序并降低成本,已开始采用如下引线框(预镀框,pre-platedframe),即、在利用焊料等向印刷基板安装时预先在引线框的表面实施用于提高与焊料的润湿性的镀覆(例如ni/pd/au)(例如,参见专利文献1)。

另一方面,为了提高树脂密封型半导体装置中的引线框和模制树脂之间的密合性,已经提出了使引线框的镀覆表面粗化的技术(例如,参见专利文献2)。

将镀覆表面粗化的技术通过对引线框实施粗化镀覆而使表面粗化,可期待:(1)模制树脂进入粗化的镀覆膜的凹凸并形成牢固的机械结合的效果(锚固效果)、(2)由模制树脂和镀覆表面之间的接触面积的提高带来的化学接合的提高等。

通过使引线框的表面粗化,提高了模制树脂与引线框的密合性,抑制了引线框和模制树脂之间的剥离,结果可使树脂密封型半导体装置的可靠性提高。

现有技术文献

专利文献

专利文献1:日本特开平4-115558号公报

专利文献2:日本特开平6-029439号公报



技术实现要素:

本发明要解决的问题

通过将引线框的表面粗化,使得与传统的树脂密封型半导体装置相比,的确能够改善模制树脂对引线框的密合性。然而,近年来,对可靠性所要求的水平变得比以前更加严苛,所以要求即使进行高温高湿耐久性测试,例如,在温度85℃、湿度85%的环境中放置168小时的苛刻条件下的高温高湿试验的情况下,也必须满足可靠性的合格标准。另一方面,在如专利文献1那样仅使引线框的表面粗化的传统构成中,有时在树脂和引线框之间产生间隙,不满足可靠性的合格标准。这被认为是因为,作为树脂密封型半导体装置,近年来,基于使用如qfn(四方扁平无引线封装,quadflatnon-leadedpackage)型和sop(小外形封装,smalloutlinepackage)型等封装逐渐增多,对于树脂对引线框的密合性要求的水平进一步变高。由此,在树脂密封型半导体装置中,关于树脂对引线框的密合性,由于要求即使在如上所述的苛刻条件下也需要保持良好的密合性,因此,需要进一步改善。

本发明的课题为,提供引线框材料及其制造方法以及具有高可靠性的半导体封装件,所述引线框材料适用于形成即使在特别是如上所述的苛刻条件下进行高温高湿试验时也能保持良好的树脂密合性的引线框表面。

解决问题的手段

本发明的发明人为解决上述问题进行了深入研究,考虑到构成形成于导电性基体上的粗化覆膜的粗化层的粗化颗粒的突起物的截面形状对树脂密合性影响较大,研究了锚固效果引起而产生的良好密合性即使在上述严苛条件下进行高温高湿试验时是否也能保持,所谓的锚固效果是通过在引线框材料的表面形成的突起物引起的凹凸表面(特别是凹部)中填充形成树脂而产生的。

本发明人得到如下认识:通过将用于构成在导电性基体上形成的粗化覆膜的粗化层的突起物控制为具有以下形状:在粗化覆膜的厚度方向的截面测定时的最大宽度相对于在位于比最大宽度测定位置更靠近导电性基体侧的下侧部分测定时的最小宽度为1~5倍,从而特别是在粗化颗粒的突起物的最小宽度的位置,能够有效地控制由于树脂的膨胀、收缩等引起的应力集中而容易发生的、树脂剪切导致的剥离现象。其结果发现:可将由锚固效果引起的良好密合性通过粗化层最大限度地发挥出来,进而通过将形成粗化层的突起物控制为上述形状,即使在进行通常不能耐受的高温高湿耐久性测试、例如在温度85℃、湿度85%的环境下放置168小时的严酷条件下进行高温高湿测试的情形下,也能保持树脂对引线框良好的密合性。

即,本发明的主要构成为如下。

(1)一种引线框材料,具有:

导电性基体,和

粗化覆膜,其包括在该导电性基体的至少单面上直接或经由中间层由多个粗化颗粒的突起物形成的至少一层粗化层,

所述突起物具有以下形状:在所述粗化覆膜的厚度方向的截面测定时的最大宽度相对于在位于比该最大宽度的测定位置更靠近所述导电性基体侧的下侧部分测定时的最小宽度,为1~5倍。

(2)上述(1)中所述的引线框材料,其中所述导电性基体是铜、铜合金、铁、铁合金、铝或铝合金。

(3)上述(1)或(2)所述的引线框材料,其中所述粗化层包括选自铜、铜合金、镍、镍合金、钯、钯合金、银、银合金、锡、锡合金、锌、锌合金、铑、铑合金、钌、钌合金、铱和铱合金中的金属或合金。

(4)上述(1)~(3)中任一项所述的引线框材料,其在所述粗化覆膜的表面的至少一部分上还具有包括至少一层表面被覆层的表面覆膜,所述表面被覆层包含选自钯、钯合金、铑、铑合金、钌、钌合金、铂、铂合金、铱、铱合金、金、金合金、银和银合金中的金属或合金。

(5)上述(4)所述的引线框材料,其中,所述中间层是镍、镍合金、钴、钴合金、铜或铜合金。

(6)一种引线框材料的制造方法,包括形成粗化覆膜的工序,所述粗化覆膜包括在导电性基体的至少单面上直接或经由中间层采用电镀由多个粗化颗粒的突起物形成的至少1层粗化层;所述突起物具有以下的形状:在所述粗化覆膜的厚度方向截面测定时的最大宽度相对于在位于比该最大宽度的测定位置更靠近所述导电性基体侧的下侧部分测定时的最小宽度,为1~5倍。

(7)一种半导体封装件,具有上述(1)~(5)中任一项所述的引线框材料。

发明的效果

本发明的引线框材料通过包括导电性基体,和包括在该导电性基体的至少单面上直接或经由中间层由多个粗化颗粒的突起物形成的至少一层粗化层的粗化覆膜,且所述突起物具有在所述粗化覆膜的厚度方向截面测定时的最大宽度相对于在位于比该最大宽度的测定位置更靠近所述导电性基体侧的下侧部分测定时的最小宽度为1~5倍的形状,从而即使在进行高温高湿耐久性试验,例如在温度85℃、湿度85%的环境中放置168小时的苛刻条件下进行高温高湿测试时,也可以对引线框保持良好的树脂密合性,而且该密合性几乎不会劣化,并且使用该引线框材料构成的半导体封装件可实现高的可靠性。

附图说明

图1是根据本发明的代表性引线框材料的示意性截面图。

图2是用于说明计算粗化层的比表面积的方法的图。

图3是用于说明构成一层粗化层的突起物的最大宽度wmax和最小宽度wmin的图。

图4是根据本发明的其他引线框材料的示意性截面图。

图5是用于说明构成两层粗化层的突起物的最大宽度wmax和最小宽度wmin的图。

具体实施方式

接下来,以下参考附图,举出实施方式的具体示例对根据本发明的引线框材料进行说明。图1示出了根据本发明的代表性引线框材料的示意性截面,图1中的附图标记1是导电性基体,2是粗化层,3是粗化覆膜,4是突起物,并且10是引线框材料。本发明的引线框材料10包括导电性基体1和包括至少一层粗化层2的粗化覆膜3。

(导电性基体)

导电性基体1只要是具有导电性的材料即可,例如可举出铜、铜合金、铁、铁合金、铝或铝合金等,优选铜合金、铁合金或铝合金。对于引线框材料,特别优选使用在导电率和强度之间的平衡良好的铜合金,因为当与半导体元件接合时需要能够耐受弯曲加工等的变形的强度。其中,作为铜合金,例如,cda(铜开发协会,copperdevelopmentassociation)中列出的合金,即“c14410(cu-0.15sn,由古河电气工业株式会社制造,商品名:eftec(注册商标)-3)”、“c19400(cu-fe系合金材料,cu-2.3fe-0.03p-0.15zn)”,“c18045(cu-0.3cr-0.25sn-0.2zn,由古河电气工业株式会社制造,商品名:eftec(注册商标)-64t),“c50710(cu-2.0sn-0.2ni-0.05p),由古河电气工业株式会社制造,商品名:mf202”,“c70250(cu-3ni-0.65si-0.15mg),由古河电气工业株式会社制造,商品名:eftec(注册商标)-7025”等。应予说明,紧接在各元素之前的数字的单位均是“质量%”。优选使用如这些铜合金那样,拉伸强度为350-800n/mm2、优选为500-800n/mm2、导电率为30-90%iacs、优选为50-80%iacs的铜合金的条材。上述“%iacs”表示将国际标准软铜(internationalannealedcopperstandard)的电阻率1.7241×10-8ωm设定为100%iacs时的导电率,例如,“50%iacs”的导电率表示国际标准软铜的导电率的50%。

另外,在铁合金的情况下,例如可列举42合金(fe-42质量%ni)、不锈钢等。含有这样的铁合金的导电性基体1的导电率没有那么高,但是可以应用于导电率不需要那么高、以传输电信号为目的的引线框材料10。

此外,在铝合金的情况下,例如可以举出a5052等al-mg系合金。

对于树脂密封型半导体装置而言,由于热容易通过模制树脂积聚在内部,因此沿导电性基体释放内部的热变得重要。在本发明中,通过在导电性基体的表面形成粗化覆膜,与未形成粗化覆膜的情况相比,可以提高散热效果的同时,使导电性基体变薄至0.05mm。如果导电性基体的厚度薄于0.05mm,则不能获得足够的散热,如果导电性基体的厚度为2mm以上,则不能实现半导体装置的小型化。因此,导电性基体1的厚度优选为0.05~2mm,更优选为0.1~1mm。

(粗化覆膜)

粗化覆膜3由在导电性基体1的至少单面上直接或经由中间层(未示出)由多个粗化颗粒的突起物4形成的至少一层粗化层2构成。

另外,粗化覆膜3只要由至少一层粗化层2构成即可,但考虑到制造工序的复杂性等时,优选由1~3层的粗化层2构成。就粗化覆膜3的形成方法而言,通过在形成第一层粗化层2-1之后在第一层粗化层2-1上层叠形成组成和形成条件等中的一个以上因素与第一层粗化层2-1不同的第二层粗化层2-2的所谓的多次粗化而形成,可以以较薄的膜厚使比表面积有效地增加,因此更优选(参见图4)。应予说明,在本发明中,粗化覆膜3的膜厚度不是局部测定的,而是以通过至少荧光x射线法(例如,由sii公司制造的如sft9400(商品名)等的膜厚度测定装置)在准直仪直径0.2mm以上、在任意3个点测定时的平均膜厚来表示。另外,当粗化覆膜3由多个粗化层2构成时,将所有层的总厚度定义为粗化覆膜3的厚度。

另外,粗化覆膜3的膜厚度没有特别限制,但是膜厚度越大,由粗化引起的凹凸趋于变得越大。因此,为了使粗化形状增大,粗化覆膜3的膜厚的下限值优选为0.2μm以上,更优选为0.5μm以上,进一步优选为0.8μm以上。另一方面,当粗化覆膜3的膜厚超过3μm时,输送时粗化覆膜3脱落、所谓的“落粉”有可能增多。因此,粗化覆膜3的膜厚的上限值优选为3μm以下,更优选为2μm以下,进一步优选为1.5μm以下。

[粗化层]

粗化层2由多个粗化颗粒的突起物4形成。

作为形成粗化层2的方法,可以列举湿式镀覆、干式镀覆等各种方法,但从可简便且廉价地形成等的观点考虑,特别优选通过电镀形成。

粗化层2例如优选包含选自铜、铜合金、镍、镍合金、钯、钯合金、银、银合金、锡、锡合金、锌、锌合金、铑、铑合金、钌、钌合金,铱和铱合金中的金属或合金。从提高对表面覆膜的密合性的观点考虑,特别是在粗化覆膜3上进一步形成后述的表面覆膜(未图示)时,更优选粗化层2含有铜、铜合金、镍或镍合金。作为铜合金,可举出铜-锡合金和铜-锌合金,作为镍合金,可举出镍-锌合金、镍-锡合金等。

并且,本发明的构成上的主要特征在于,实现构成粗化层2的粗化颗粒的突起物4的截面形状的合理化,更具体而言,如图3所示,控制突起物4以使其具有在粗化覆膜3的厚度方向的截面测定时的最大宽度wmax相对于在比该最大宽度的wmax测定位置更位于导电性基体1侧的下侧部分测定时的最小宽度wmin为1~5倍的形状。

这是本发明人深入研究后的结果,即:如果以相同表面粗糙度形成粗化层,则剪切试验中树脂的剪切强度(粘合强度)高,获得良好的树脂粘合性,但在进行高温高湿耐久性试验、例如在温度85℃、湿度85%的环境下放置168小时的苛刻条件下进行高温高湿试验后,具有相同表面粗糙度的粗化层中,存在剪切强度大大降低,不能保持良好的树脂密合性的情形。对这一点进一步研究,结果发现,形成粗化层的粗化颗粒的突起物的截面形状受到较大影响,特别是在突起物的宽度最小的位置,树脂的热膨胀、收缩引起的应力集中,密合性降低。

为此,本发明人进行了进一步的详细研究发现,控制形成粗化覆膜的粗化层的粗化颗粒的最大宽度与最小宽度的比率为1~5,即,控制突起物以使其具有在粗化覆膜的厚度方向的截面测定时的最大宽度相对于在比该最大宽度的测定位置更位于导电性基体侧的下侧部分测定时的最小宽度为1~5倍的形状,由此,具有相同程度的表面粗糙度的粗化层中,即使在进行高温高湿耐久性试验,例如,温度85℃和湿度85%的环境中放置168小时的苛刻条件下进行高温高湿试验之后,也可以保持良好的树脂密合性,且树脂的剪切强度(粘合强度)几乎没有降低。

在突起物中,最大宽度是最小宽度的1倍表示最大宽度和最小宽度相同,作为突起物的形状,可以举出大致圆柱状或棱柱状的情形。另一方面,如果突起物的最大宽度超过最小宽度的5倍,则由于在形成粗化层的突起物的最小宽度的位置处树脂的膨胀或收缩引起的应力集中增加,因此,锚固效果不能有效发挥,导致在突起物的最小宽度的位置变得容易破裂。因此,突起物的最大宽度设为最小宽度的1~5倍。另外,不仅模制树脂发挥锚固效果,而且使树脂在形成粗化层的突起物的最小部分的位置处难以发生破裂,由此,对于引线框材料,在不仅需要使剪切强度提高,而且垂直方向的拉伸强度也需要进一步提高的情形下,突起物的最大宽度与最小宽度的比率优选为1.1~4.9倍,更优选为1.2~4.8倍,进一步优选为1.5倍~4.0倍,最优选为1.5倍~3.0倍。应予说明,突起物的表面的形状可以是尖锐的也可以是圆滑的,突起物的最大宽度与最小宽度的比率是重要的。

<关于突起物的最大宽度和最小宽度的定义>

就本发明中的突起物的最大宽度和最小宽度而言,通过对采用如聚焦离子束(fib)、机械研磨等方法而形成有粗化层的引线框材料进行加工来制造垂直截面试样,接下来,对于垂直截面试样的粗化层,采用光学显微镜、扫描电子显微镜等进行截面观察,从导电性基体的表面朝向粗化层的表面平行移动线段,对于形成粗化层的多个突起物,对每1个突起物测定宽度,确定最大值(最大宽度)wmax和最小值(最小宽度)wmin。如下进行更详细的说明,如图3所示,从导电性基体1向粗化层的方向引出垂线,在从其顶点朝向导电性基体1的方向上扫描平行于基体的线(平行线),将此时的表示突起物4的最大值的宽度确定为最大宽度,设为wmax,进而,在从最大宽度wmax位置朝向导电性基体1的方向进一步扫描平行线,将此时的表示突起物4的最小值的宽度确定作为最小宽度,设为wmin。于是,在本发明中,其比率wmax/wmin的值必须是1~5。

应予说明,突起物4的最小宽度wmin是指当在粗化覆膜3的厚度方向截面测定时位于比突起物4的最大宽度wmax的测定位置更靠近导电性基体1侧的下侧部分测定时的最小宽度wmin。这基于在剪切试验中由位于导电性基体1侧的突起物4的下侧部分(底端部分)的宽度决定剪切强度的认识。应予说明,为了观察任意的横截面,在粗化层2的各个位置观察突起物4。这是因为粗化层2通常基本上以三维方式被形成,因此,作为测定突起物4的最大宽度wmax和最小宽度wmin的粗化层2,将一层的粗化层2的情形、如图5所示为2层以上的粗化层(例如,图5中为两层的粗化层2-1和2-2)并且能够测定突起物4的最大宽度wmax和最小宽度wmin的情形作为测定对象,除此以外,例如,为2层以上的粗化层并且粗化覆膜3的最外表面轮廓不清楚的情形、看起来从导电性基体1鼓起的粗化层2的情形等在本发明中作为不能成为测定对象的粗化层。通过这些方法,在任何横截面,对于存在于一个粗化层2中的10个突起物4,测定各自的最大宽度wmax和最小宽度wmin,计算最大宽度wmax相对于最小宽度wmin的比率wmax/wmin,将具有这些比率的平均值为1~5倍的粗化层2的引线框材料10定义为本发明的引线框材料。

<关于突起物的最小宽度和突起物之间的间隔>

此外,对本发明中形成粗化层2的突起物4的最小宽度wmin的大小没有特别规定,但是当最小宽度wmin太小时,存在树脂在粗化层2的突起物4和4之间的间隙难以流动的倾向,而当最小宽度wmin太大时,增加剪切强度的效果具有变小的趋向。因此,突起物4的最小宽度wmin优选平均在0.2μm~3μm的范围内,更优选为0.5μm~1μm的范围。另外,对突起物4、4之间的间隔没有特别限制,但突起物4、4的顶点之间的平均间隔优选0.2~20μm的范围,进一步优选0.5μm~10μm的范围。

<关于粗化层的比表面积>

本发明的引线框材料10首先相对于导电性基体(下文中也简称为“基体”)1具有粗化层2。该粗化层2的比表面积优选为110%以上。这是因为如果比表面积小于110%,则不能充分获得锚固效果。应予说明,对于比表面积的上限没有特别限定,但如果比表面积过大,则粗化的凹凸变得过大,粗化层变得容易脱落,因此比表面积优选为500%以下。

应予说明,作为计算比表面积的方法,如图2中所示引线框材料10的横截面那样,在引线框材料10的截面观察,粗化覆膜3的最外层的线段长度(图2中由虚线a表示)除以导电性基体1的表面(直线)长度(图2中粗实线b)得到的比率a/b的百分率成为比表面积(%),例如可以使用如非接触式干涉显微镜等测定装置(例如,由brukeraxs公司制造)进行测定。另外,在本发明中粗化层的形成位置只要形成于树脂模塑的部分的至少一部分即可,不言而喻,可以整面处理,也可以部分地形成粗化层2。另外,例如,优选在引线框材料10被树脂模塑的部分的至少1/5以上,更优选在1/2以上的面积形成,由此可发挥密合性提高效果。最优选将粗化层2形成在树脂模塑的整个面。作为该部分设置的粗化层2的形状,可以采用条状,点状、环状等各种形式。此外,在树脂模塑仅为一面的制品中,例如,也可以仅一面形成粗化层2。

(中间层)

另外,本发明的引线框材料10也可以在导电性基体1和粗化覆膜3之间形成中间层,该中间层例如用于抑制构成导电性基体1的组成成分的扩散并改善密合性。中间层例如可举出镍、镍合金、钴、钴合金、铜或铜合金。

(表面覆膜)

另外,本发明的引线框材料10优选在粗化覆膜3的表面的至少一部分上直接或经由中间层进一步包括表面覆膜,所述表面覆膜包括至少1层表面被覆层,表面被覆层优选包含选自钯、钯合金、铑、铑合金、钌、钌合金、铂、铂合金、铱、铱合金、金、金合金、银和银合金中的金属或合金。

[表面被覆层]

作为构成表面被覆层的各种合金,例如可以举出作为钯合金的钯-银合金,作为铑合金的铑-钯合金,作为钌合金的钌-铱合金,作为铂合金的铂-金合金,作为铱合金的铂-铱合金,作为金合金的金-银合金和作为银合金的银-锡合金等。表面覆膜可以是一种,但优选2层以上。作为构成表面覆膜的表面被覆层为两层以上的情况下的代表性层构造,按从粗化覆膜3侧的层叠顺序可举出pd/au,rh/au,pd/ag/au,pd/rh/au,ru/pd/au等。通过如上所述在粗化覆膜上形成表面覆膜层,从而能够提高引线框对发热的耐热性,同时可提高形成粗化覆膜的粗化层的粗化颗粒的突起物的强度,防止突起物的破损,可进一步发挥锚固效果。另外,从提高对表面覆膜的密合性的观点考虑,更优选粗化层为铜和镍2层而表面覆膜层为pd/au2层或rh/au2层,进一步优选作为粗化层的层构成,下侧粗化层为铜、上侧粗化层为镍的2层,而作为表面覆膜层的层构成,下侧表面被覆层为pd、上侧表面被覆层为au的2层或者下侧表面覆膜层是rh、上侧表面被覆层是au的2层。

如果这些表面被覆层的膜厚太厚,则会掩埋粗化覆膜3的表面凹凸,可能无法充分发挥上述本发明的效果,并且表面覆膜主要由贵金属材料构成,因而可能会导致成本增加。因此,各表面被覆层的膜厚,以层叠后的表面被覆层的总膜厚度(表面覆膜的膜厚度)计,优选为1μm以下,更优选为0.03μm以下。

(关于引线框材料的制造方法)

接下来,说明本发明的引线框材料10的制造方法。

准备导电性基体1,对该导电性基体1进行阴极电解脱脂工序和酸洗工序。接下来,根据需要,通过电镀形成中间层,然后通过电镀形成包括至少一层粗化层2的粗化覆膜3,然后进一步根据需要,通过电镀,形成包括至少一层表面被覆层的表面覆膜,由此可制造引线框材料10。作为具体制造条件的代表性实例,表1中示出阴极电解脱脂条件,表2中示出酸洗条件,表3中示出各种中间层的形成条件,表4中示出各种粗化层2的形成条件,表5中示出各种表面被覆层的形成条件。在上述引线框材料10的制造方法中,例示了中间层、粗化层2和表面被覆层都是通过电镀制造的情形。由于通过电流密度,搅拌,温度,处理时间等可以比较容易地控制突起物的形状并且操作简便,所以,优选用电镀法形成粗化层2,此外,对于中间层和表面被覆层,从生产率的观点来看,也优选通过如电镀法那样的湿式镀覆法形成,但也可以通过干式镀覆法或其他制造方法制造,没有特别限定。

[表1]

表1.阴极电解脱脂条件

[表2]

表2.酸洗条件

[表3]

表3.各种中间层的形成条件

[表4]

表4.各种粗化层的形成条件

[表5]

表5.各种表面被覆层的形成条件

实施例

以下基于实施例对本发明进一步详细说明,但是本发明不受这些实施例的限定。

准备预先切割成40mm×40mm的试验片尺寸的板厚为0.2mm的表6中所示的各种导电性基体,并在上述表1中所示的条件下进行阴极电解脱脂。接下来,在表2所示的条件下进行导电性基体的酸洗之后,在导电性基体的表面以表6所示的层结构形成至少一层粗化层,获得引线框材料的试验片。应予说明,在粗化层的形成中,不仅控制比表面积,还控制截面中粗化层的突起物的最大宽度与最小宽度的比率。在实施例1~30中,对于实施例11~13,除了下侧粗化层之外,粗化覆膜还进一步形成上侧粗化层,从而由两层粗化层构成,另外,对于实施例22~24,在导电性基体和粗化覆膜之间进一步形成中间层,并且对于实施例29和30,粗化覆膜除了下侧粗化层外还形成上侧粗化层,从而由2层粗化层构成,并进一步形成包括下侧表面被覆层和上侧表面被覆层的两层的表面覆膜。作为参考,在比较例1中,虽然粗化层的比表面积非常大,为550%,但未控制形成粗化层的突起物的最大宽度与最小宽度之比,所以,制作得到在本发明的范围之外(5.2倍)的引线框材料的试验片。

针对上述试验片,采用上泷(kohtaki)精机株式会社制传递模塑试验装置(产品名称:modelfts),在130℃的模具温度、模塑后保持时间90秒、注射压力6.865mpa的条件下注入模制树脂并成型,从而形成10mm2接触面积的布丁状试验片。将各试验片置于高温高湿试验(在85℃,85%rh下保持168小时),对于各试验片在下述条件下评价树脂密合性和落粉性。其评价结果如表7所示。

(树脂密合性评价)

评价树脂:g630l,由sumitomobakeliteco.,ltd.制造(商品名)

评价条件:装置:4000plus,nordsonadvancedtechnologyco.,ltd.制造(商品名),

载荷传感器:50千克

测量范围:10千克

测试速度:100μm/s

测试高度:10μm

将树脂密合性的评价结果示于表7。应予说明,在表7中所示的树脂密合性的评价中,当剪切强度(剥离强度)平均为9.8mpa以上时认为树脂密合性优异,表示为“a”,剪切强度(剥离强度)平均为4.9mpa以上且低于9.8mpa时认为树脂密合性良好,表示为“b”,并且当剪切强度(剥离强度)平均低于4.9mpa时,认为树脂密合性差,表示为“c”。

通过测定“初始剪切强度”和“高温高湿试验后的剪切强度”来分别评价树脂密合性。“高温高湿试验后的剪切强度”是在将各试验片进行了树脂模塑后在温度85℃、湿度85%的环境下放置168小时后的值。另外,“初始剪切强度”是在将各试样片刚进行了树脂模塑之后(高温高湿试验前)的剪切强度。

(落粉性评估)

通过目视来感觉评价落粉性。将其评价结果示于表7。应予说明,针对表7中所示的落粉性在没有确认到从表面落粉时表示为“a(优)”,当略微产生落粉时表示为“b(良)”,落粉发生非常多时表示为“c(不合格)”,“a”和“b”为可供实用的水平。

[表6]

[表7]

表7.性能评价结果

根据表7的评价结果,对于实施例1~30的任一个而言,初始剪切强度和高温高湿试验后的剪切强度都为“a”或“b”,保持了良好的树脂密合性,另外,落粉性也是“a”或“b”的水平,可供实用。而在粗化层的比表面积为非常大的550%、但对形成粗化层的突起物的最大宽度与最小宽度的比率未进行控制并在本发明的范围外(5.2)的比较例1中,虽然初始剪切强度为“a”,树脂密合性优异,但高温高湿试验后的剪切强度变为“c”,树脂密合性大幅地劣化,此外,落粉性也差,为“c”,不是可供实用的水平。

产业上的可利用性

本发明的引线框材料即使在进行高温高湿耐久性试验、例如在温度85℃和湿度85%的环境中放置168小时的苛刻条件下进行高温高湿试验时,也可以保持对引线框的良好的树脂密合性而几乎不会劣化,使用该引线框材料构成的半导体封装件可以实现高的可靠性。

附图标记说明

1导电性基体

2粗化层

2-1第一粗化层(从基材侧开始的第一层粗化层)

2-2第二粗化层(从基材侧开始的第二层粗化层)

3,3-1粗化覆膜

4,4-1突起物

10,10a引线框材料

a粗化覆膜的最外表面的截面线段长度

b导电性基体的表面的截面线段长度

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1