半导体多站处理腔体的制作方法

文档序号:21313910发布日期:2020-06-30 20:41阅读:376来源:国知局
半导体多站处理腔体的制作方法

本发明揭露一种半导体处理腔体,尤其是一种具有可彼此隔离的多站处理腔体及其移动晶圆的手段。



背景技术:

在半导体制程中,产能一直是具有挑战性的。随着技术的进步,半导体基板必须以连续且有效率的方式进行处理。例如,多腔体的制程设备或集束型设备(clustertools)满足了这样的需求,其可分批处理多个基板,而不必为了某个基板的处理来改变整个处理过程的主要真空环境。这种多腔体的设备取代了仅处理单个基板并随后再将此基板传递至另一腔体期间内使此基板暴露于空气的作法。藉由将多个处理腔体连接到一共同的传递腔体(transferchamber),使得基板在一个处理腔体完成处理后,可在相同的真空环境下,将此基板传递至下一个处理腔体进行处理。

美国专利公告第us6319553揭露了一种可同时执行不兼容处理的多站处理腔体,包含具有多个下沉空间的一基座,这些下沉空间放置有晶圆或基板支撑座(pedestals),而下沉空间与支撑座之间形成有一间隙。所述腔体也包含多个喷淋头配置且对齐于支撑座的上方,供应反应气体至支撑座上的基板或晶圆。反应气体经由所述间隙被拉至下沉空间底并经由排气泵浦抽出。所述腔体还包含一分度盘(indexingplate)用于将一基板或晶圆从腔体中的一站移动至另一站。藉由一气流手段,所述腔体的多个站可彼此隔离以同步执行不兼容的处理。由于不同的处理可在同一时间执行,降低了机器空转的期间,据此提升了产量。

然而,其他类似前述多站处理腔体的设备可能存在一些缺失,如基板或晶圆于站至站的移动中可能会发生污染,在电浆或加热处理的环境中这些站可能会彼此干扰,进而影响产品良率和产量。

因此,抑制处理过程中的污染以及改进多站处理腔体中站与站的隔离能力为业界所存在之需求。



技术实现要素:

为了解决前述缺失及达到所述改进,本发明目的在于提供一种半导体多站处理腔体,具有相连通的多个站,该等多个站可执行相同或不同的处理。这些站的每一者包含:由多个壁所定义的一下沉空间,其提供有用于支撑基板或晶圆的一支撑座,该支撑座与定义该下沉空间的多个内壁之间形成一第一间隙;一覆盖组件固定于一盖体且分别位于该支撑座的上方以定义一处理区,该覆盖组件包含一喷淋板,其与该上盖之间形成用于提供吹扫气体的一第二间隙;一隔离组件可升降于该下沉空间与该覆盖组件之间,以选择地包围该支撑座与该覆盖组件之间定义的处理区或退回下沉空间中。当该隔离组件包围该处理区时,该站与相邻的另一站形成结构上的隔离。

在一具体实施例中,该等多个站经由一传输层相连通,该传输层允许所述腔体内的一或多个托臂通过该等多个站。所述托臂具有一第一延伸部及连接该第一延伸部的一第二延伸部,该第一延伸部与该第二延伸部的连接定义一夹角,该夹角经配置以使该托臂可停留在经隔离的相邻两个站之间定义的一停留空间。

在一具体实施例中,该等多个站的每一者还包含一带孔罩体,其固定容置于该下沉空间中以定义一抽气气室,该带孔罩体具有多个穿孔使该处理区经由该等多个孔与该抽气气室相连通。所述第一间隙、第二间隙、穿孔及抽气气室决定该站的排气路径。

本发明还有另一目的在于提供一种半导体处理系统,包含:前述多站处理腔体;一负载腔体,用于承载经处理及未处理的基板或晶圆;一传输腔体,连接于该半导体多站处理腔体与负载腔体之间以传递基板或晶圆。

在一具体实施例中,该负载腔体具有多个垂直堆栈的层用于放置基板或晶圆,且该负载腔体还具备预热和冷却的能力。

在一具体实施例中,该负载腔体具有一上腔体及一下腔体,其中该上腔体用于放置经处理的基板或晶圆,该下腔体用于放置未处理的基板或晶圆。

在一具体实施例中,该传输腔体还经由一缓冲腔体耦接至另一传输腔体,且该缓冲腔体还具备预热和冷却的能力。

本发明还基于前述多站处理腔体提供一种半导体多站处理腔体的操作方法,包含:将该等多个托臂转动至一第一等待位置,由所述腔体的一第一对站接收一第一对基板;将该等多个托臂转动至一第一接取位置以将该第一对基板从该第一对站转移至该等多个托臂上;将该等多个托臂转动至一第二等待位置,由所述腔体的该第一对站接收一第二对基板;将该等多个托臂转动至一第二接取位置以将该第二对基板从该第一对站转移至该等多个托臂上;将该等多个托臂转动至一第三等待位置,由所述腔体的该第一对站接收一第三对基板;将该等多个托臂转动至一第三接取位置以将该第一对基板及该第二对基板从该等多个托臂分别转移至一第二对站及一第三对站;及将该等多个托臂转动至一第四等待位置,以等待所述腔体执行相同或不相同的处理。

本发明还基于前述多站处理腔体提供一种半导体多站处理腔体的操作方法,包含:将该等多个托臂转动至一第一等待位置,以从所述腔体的一第一对站取出一第一对基板;将该等多个托臂转动至一第一接取位置,以将一第二对基板从一第二对站转移至该等多个托臂上;将该等多个托臂转动至一第二接取位置,以将该第二对基板转移至该第一对站;及将该等多个托臂转动至一第二等待位置,以从所述腔体的该第一对站取出该第二对基板。

本发明还基于前述多站处理腔体提供又一半导体多站处理腔体的操作方法,尤其所述腔体使用单一托臂进行加载和卸除,该方法包含:将该托臂在一接取位置与该等多个站之间移动,以依序加载多个基板至该等多个站或自该等多个站卸除多个基板,其中该托臂在移动的过程中并未通过任一基板的上方。

本发明的再一目在于提供一种隔离组件,用于一半导体多站处理腔体中的一个站,使该站与其他站相互结构隔离,其中该站包含由多个壁定义的一下沉空间及一覆盖组件,该下沉空间提供有用于支撑基板的一支撑座。其中,该隔离组件的结构配置成适于可于该下沉空间及该覆盖组件之间升降,以选择地包围该支撑座与该覆盖组件之间定义的一处理区或退回该下沉空间。在一具体实施例中,该隔离组件为环形结构。在另一实施例中,该隔离组件的结构配置为适于在该支撑座与该多个壁之间定义的一间隙中被升降。在又一实施例中,隔离组件具有一啮合手段用于和该覆盖组件连接。

对于相关领域一般技术者而言这些与其他的观点与实施例在参考后续详细描述与伴随图示之后将变得明确。

附图说明

参照下列图式与说明,可更进一步理解本发明。非限制性与非穷举性实例系参照下列图式而描述。在图式中的构件并非必须为实际尺寸;重点在于说明结构及原理。

图1为本发明半导体多站处理腔体主体的一具体实施例(移除上盖和转动组件);

图2为本发明半导体多站处理腔体的上盖底视图;

图3为本发明半导体多站处理腔体主体的俯视图(含转动组件和托臂);

图4为局部放大第三图的转动组件及托臂;

图5为本发明半导体多站处理腔体的剖面图,包含上盖及主体;

图6为本发明半导体多站处理腔体其中一站的剖面图(未结构隔离);

图7为本发明多站处理腔体其中一站的剖面图(经结构隔离);

图8a至i为本发明半导体多站处理腔体的基板加载动作;

图9为本发明半导体多站处理腔体的一操作方块流程(加载);

图10a至h为本发明半导体多站处理腔体的基板卸除动作;

图11为本发明半导体多站处理腔体的一操作方块流程(卸除);

图12a至c为本发明半导体多站处理腔体的一操作;

图13a至b为本发明半导体多站处理腔体的另一操作;

图14a至b为本发明半导体多站处理腔体的半导体处理系统。

其中,100、主体;200、上盖;101、外壁;201、覆盖组件;102、内壁;102、内壁;202、环状间隙;103、中央壁;300、传输层;104、观察窗;500、气体供应源;105、载卸埠;600、封衬;106、气体供应组件;601、环形组件;120、下沉空间;a、b第一对站;121、支撑座;c、d、第二对站;122、隔离组件;e、f、第三对站;123、罩体;w1、第一对基板;124、抽气通道;w2、第二对基板;130、转动组件;w3、第三对基板;140、托臂;1、2、3、4、5、第一至第六基板;141、第一延伸部;400、设备前端模块;142、第二延伸部;410、负载腔体;150、连接器;420、传输腔体;430、多站处理腔体;440、缓冲腔体。

具体实施方式

现在将参考本发明之伴随说明书附图详细描述实施例。在该说明书附图中,相同及/或对应组件系以相同参考符号所表示。

在此将揭露各种实施例;然而,要了解到所揭露之实施例只用于作为可体现为各种形式之例证。此外,连接各种实施例所给予之每一范例都预期作为例示,而非用于限制。进一步的,该附图并不一定符合尺寸比例,某些特征系被放大以显示特定组件之细节(且该附图中所示之任何尺寸、材料与类似细节都预期仅为例示而非限制)。因此,在此揭露之特定结构与功能细节并不被解释做为限制,而只是用于教导相关领域技术人员实作所揭露之实施例的基础。

在以下多个示例具体实施例的详细叙述中,对该等随附图式进行参考,该等图式形成本发明之一部分。且系以范例说明的方式显示,藉由该范例可实作该等所叙述之具体实施例。提供足够的细节以使该领域技术人员能够实作该等所述具体实施例,而要了解到在不背离其精神或范围下,也可以使用其他具体实施例,并可以进行其他改变。此外,虽然可以如此,但对于「一实施例」的参照并不需要属于该相同或单数的具体实施例。因此,以下详细叙述并不具有限制的想法,而该等叙述具体实施例的范围系仅由该等附加申请专利范围所定义。

本发明半导体多站处理腔体包含一腔体主体及覆盖在该腔体主体的一上盖,形成多个独立的处理站。图1本发明半导体多站处理腔体主体(移除上盖、支撑座及转动组件)的一具体实施例100。图2为本发明半导体多站处理腔体上盖200的底部视图。图3为本发明半导体多站处理腔体主体100的俯视图,包含复数个支撑座、转动组件及复数个托臂。

所述腔体的主体100具有多边形定义的一外壁101、复数个内壁102、一中央壁103及一底部(未显示)。在显示的实施例中,外壁101为由一正六边形所定义的外壁,其可提供有观察窗104,允许外部人员经由腔体外部观看腔体内部。外壁101和底面(未显示)定义了所述腔体中的主要空间,足以配置多个可提供处理的站。外壁101的一侧提供有一对载卸埠105用于加载待处理的基板或晶圆以及卸除经处理的基板或晶圆。外壁101的一侧还可提供有一气体供应组件106,其大致上沿着外壁101的侧横向延伸并提供有多个限制结构(如孔),允许各种气体管线垂直通过以分配反应气体和吹扫气体(隔离气体)至上盖200的覆盖组件。可替代地,在其他实施例中,所述外壁可由其他大于六的多边形定义,或者所述外壁可以是圆形或矩形。

内壁102自底部垂直延伸且在外壁101和中央壁103之间横向延伸,其中中央壁103位于主体100的正中央。藉此,外壁101、该等内壁102与中央壁103定义主体中的多个下沉空间120。这些下沉空间120的每一者分别对应和靠近六边形外壁的夹角,使彼此保持一适当间距。尽管第一图未显示,这些下沉空间120中还分别配置有支撑基板的一支撑座,而下沉空间120的底部还提供有与抽气系统流体耦接的一排气通道。

上盖200覆盖于主体100的上方,且包含复数个与下沉空间120对正的覆盖组件201。覆盖组件201位于上盖200的内侧,意即位于主体100的顶端。上盖200可具有与主体100对应的结构,例如六边形外壁及气体供应组件。藉此,单一下沉空间、单一支撑座和单一覆盖组件的结合主要形成了单一的处理站。如图标之配置,所述腔体具有六个站,可分别执行不同的处理。其中,相邻的一对站经配置以对应所述载卸埠105的一对阀以支持基板的接收和卸除。

覆盖组件201用于提供反应气体至被支撑的基板上。每一覆盖组件201的结构是复杂的,例如,可包含一气体混合区、一固定板、一绝缘器、气体分配组件和一喷淋板。其中,喷淋板具有供应所述反应气体的多个穿孔,且喷淋板还可配置成为射频(rf)反应板,用于产生电浆。所述喷淋板在腔体中与支撑座上下对正,且一般而言喷淋板的直径略大于支撑座的直径。此外,覆盖组件201还配置成提供吹扫气体或隔离气体,确保站与站之间的隔离。每一覆盖组件201连通耦接至一或多个气体供应源,如第五图所示。为了精简目的,一对站的覆盖组件201可共享同一气体供应源。气体供应源可经由歧管将反应气体以等路径的方式传递至覆盖组件201的其中两者。气体供应源还包含加热器和气流控制器,这些都为本发明领域者所熟知,故不在此赘述。所述覆盖组件201可配置成适用于pecvd、3d-nandpecvd、原子层沉积、pvd或其他化学气向沉积的处理。

图3显示所述腔体的主体100,包含位于下沉空间120中的复数个支撑座121、一转动组件130及与转动组件所连接的复数个托臂140。每一支撑座121的位置独立调节且顶端具有一承载面用于放置一基板或晶圆。支撑座121的材质主要为金属或陶瓷。支撑座121还包含加热器,其可内嵌于支撑座121中或从中分离出来。此外,支撑座121可配置成作为电浆产生的下极。在其他可能的实施例中,支撑座121除了具备加热能力外,还可配置为具备冷却晶圆或保持晶圆温度的能力。转动组件130放置于所述腔体的中心。如图标实施例,转动组件130为放射状的分度盘(indexingplate),其通过一轴与一驱动器(未显示)耦接并相对于所述腔体沿着顺时或逆时方向转动。转动组件130具有多个径向延伸的结构,用于分别通过一连接器150连接由耐热材质构成的托臂140。在如图标实施例,转动组件130具有六个延伸结构。在其他实施例中,转动组件130具有更多或更少的延伸结构。转动组件130的延伸结构经配置以连接所述连接器150。连接器150提供有多个可选择的连接使连接器150与托臂140连接。在一实施例中,所述可选择的连接是由可拆卸的螺栓实现,藉此调整托臂140与所述腔体中心的径向距离或调整托臂140的仰角和方向。托臂140的材质可为陶瓷(氧化铝)或膨胀系数相当甚至更小的其他材质。在一实施例中,转动组件130的垂直移动受限制,故这些托臂140均维持在腔体中的一高度且围绕着所述腔体中心转动,藉此托臂140能通过承载有基板的支撑座121的上方。在其他实施例中,更多或更少的托臂140可被安装于所述腔体中。较佳地,托臂140的数量为二的倍数。

图4显示放大的托臂140示意图。基本上,托臂140为扁平状,且具有一第一延伸部141及连接该第一延伸部141的一第二延伸部142。第一延伸部141与连接器150连接,第二延伸部142较为靠近外壁101。第一延伸部141与第二延伸部142的连接可定义一夹角,该夹角经选择以使托臂140可停留在相邻两个下沉空间120之间定义的一停留空间。所述角度小于九十度或为其他变化,使托臂140形成如字母「c」的结构。较佳地,托臂140的第一延伸部141可具有曲折结构以符合下沉空间20的边界。

图5为所述腔体的剖面示意图,显示以所述腔体中心对称的两个相对应的站。所述站包含位于下沉空间120中的支撑座121、位于上盖200的覆盖组件201及耦接该覆盖组件201的气体供应源500。气体供应源500供应各种处理所需气体,如反应气体、净化气体和堕性气体等。在一实施例中,所述气体供应源500可包含电浆产生源。在一些实施例中,两个相邻的站配置成共享同一个气体供应源,以精简设备体积。所述腔体的上盖200和主体100之间具有一传输层300。站与站之间经由传输层300相连通,允许基板经由传输层300在站与站之间移动。转动组件130位于传输层300中,而支撑座121低于传输层300,藉此转动组件130所连接的多个托臂(未显示)在传输层300中通过多个站。一般而言,所述托臂会经由转动而在传输层300中的多个的等待位置和接取位置之间移动。

覆盖组件201位于腔体上盖200的内侧并与支撑座121定义出站的一处理区域。覆盖组件201可配置成rf反应极以执行电浆处理。在一实施例中,覆盖组件201可包含提供反应气体的喷淋板及配置于喷淋板周围并提供吹扫气体的环状间隙(一第二间隙,202),其尺寸约为1mm。环状间隙202的直径略等于或略大于下沉空间120的直径,使吹扫气流隔离所述处理区,将反应气体保持在站中。在另一实施例中,覆盖组件201与上盖200之间可形成提供吹扫气体的另一环状间隙(未显示),使吹扫气流延可伸至腔体的死区(deadzone),意即站与站之间未进行反应的区域。在其他可能的实施例中,喷淋板的配置成具有提供反应气体的孔洞及提供吹扫气体的其他独立孔洞。在一些可能实施例中,吹扫气流的产生可为上述举例组合的结果。一般而言,吹扫气体为堕性气体,如氩气。位于相邻覆盖组件201之间的所述环状间隙提供的吹扫气体有助于防止一处理区的反应气体沿着传输层300泄漏至另一处理区。

站还包含一或多个隔离组件,用于将覆盖组件201和支撑座121之间的处理区围绕,使腔体的站予以结构隔离。如第五图,每一站的下沉空间120与支撑座121之间具有一环形间隙(一第一间隙,未编号),其中提供有可升降于下沉空间120与覆盖组件121之间的隔离组件122。隔离组件122是由控制腔体操作的控制器控制。隔离组件122包含一环状墙,其高度足以涵盖所述处理区的侧面。环状墙藉由一升降手段选择地包围该支撑座与该覆盖组件之间定义的处理区或退回下沉空间中。当该隔离组件包围该处理区时,该站与相邻的另一站形成结构上的隔离。在处理期间,环状墙自下沉空间120升起,同时转动组件130将所述托臂移动至对应的等待位置。本文所述包围是指完全包围或部分包围,其至少给予了每一站一定程度上的结构隔离。

在传送基板期间,环状墙降落并退回至下沉空间120中,允许所述托臂进入处理区中转移基板。在一实施例中,在定义下沉空间1的内表面上可适当地提供有环形封衬(liner,该图未显示),使升起的环状墙与所述环形封衬结合来防止反应气体从环状墙的下方泄露。在另一实施例中,覆盖组件201与上盖200之间可适当地提供有一或多个其他的环形组件(该图未显示)固定于其间,使升起的环状墙与所述环形组件结合来防止反应气体从环状墙的上方泄露。所述环状墙、封衬及环状组件的材料为热绝缘材料,如陶瓷、peek或ptfe等,且结构厚度通常不小于4mm。

下沉空间120的下方还提供有一带孔罩体123,其可由一或多个组件构成。带孔罩体123与支撑座121外表面和下沉空间120的底部定义出一抽气气室。抽气气室又与位于下沉空间120下方的一抽气通道124相通。带孔罩体123具有多个穿孔,通过穿孔使上方处理区与下方抽气气室相通。在一实施例中,带孔罩体123具有十八个直径不同的穿孔,且这些穿孔的位置可适当地安排以获得不同的抽气速率。对于每一站来说,吹扫气体和处理气体通过支撑座121四周的间隙汇聚于所述抽气气室并通过藏于其中的抽气通道124排出腔体外。在一实施例中,每一站的抽气通道的数量大于一个。带孔罩体123形成的抽气气室将反应后的产物、未反应的气体和吹扫气体维持在其中,避免这些物质回流处理区造成污染。

图6为站的剖面,其中隔离组件122隐藏在下沉空间120和支撑座121之间,意即该站为开启的状态并允许一托臂140停留在支撑座121上方。支撑座121的承载面可提供有多个升降杆(未显示)以将基板自承载面升起至与托臂140位置相当的一高度。图6还例示下沉空间120的内侧面提供有封衬600面对着隔离组件122,而覆盖组件201周围的下方向下延伸有一环形组件601包围着处理空间的上部,但不与托臂的动作路径抵触。第七图为站的剖面,其中隔离组件122升起以包围所述处理区。虽然图中未显示,环状墙,即隔离组件122的顶部与上方的环形组件601啮合,而环状墙的底部与封衬600之间仍保有些微的间隙。此目的是为了在某些特定情况中,可允来自死区的吹扫气流进入站下方的抽气气室。当然,在某些设计中,环状墙的底部与封衬600啮合,提升站的隔离能力。根据以上说明,站可具有至少一排气路径,其由该第一间隙、该第二间隙、该等多个穿孔及该抽气气室决定该站的排气路径。

图8a至i示意本发明半导体多站处理腔体的一连串基板加载动作。图9显示本发明半导体多站处理腔体执行基板加载的步骤流程,包含步骤s900至s906。同时参阅第八a图至第八i图及第九图,基板载入腔体多个站的操作说明如下。

在步骤s900,图8a图,托臂转动至一第一等待位置,并由所述腔体的一第一对站a、b接收一第一对基板(w1)。为了说明托臂的一连串动作,这些托臂其中一者以灰阶填满作为第一托臂。在接收第一对基板w1之前,站与站相通,这些托臂的每一者转动至站与站之间的第一等待位置,此时第一托臂位于b站和c站之间,同时a站和b站与卸除埠105之间没有阻碍。第一对基板(w1)由一对机械手臂通过卸除埠递送至腔体中,并放置在a站和b站支撑座上。此时,a站和b站的支撑座的升降杆位于高位,步骤s900结束。

在步骤s901,如图8b图,托臂转动至一第一接取位置以将第一对基板(w1)从第一对站a、b转移至对应的托臂上。如图示,托臂顺时方向分别进入对应的站。此时第一托臂进入b站并位于b站基板的下方。升降杆移动至低位以将第一对基板(w1)转移至位于a站和b站的托臂上,结束步骤s901。

在步骤s902,如图8c图及d图,托臂转动至一第二等待位置,由所述腔体的第一对站a、b接收一第二对基板(w2)。在接收第二对基板(w2)之前,站与站相通,这些托臂的每一者转动至站与站之间的第二等待位置,此时第一托臂位于a站和f站之间,同时a站和b站与卸除埠之间没有阻碍。第二对基板(w2)由机械手臂通过卸除埠递送至腔体中,并放置在a站和b站的支撑座上。此时,a站和b站的支撑座的升降杆位于高位以支撑第二对基板(w2),步骤s902结束。

在步骤s903,如图8e图,托臂转动至一第二接取位置以将该第二对基板(w2)从第一对站a、b转移至托臂上。托臂顺时方向分别进入对应的站。此时第一托臂进入f站,同时托臂的其中两者分别进入a站和b站。a站和b站的升降杆移动至低位以将第二对基板w2转移至托臂上,结束步骤s903。

在步骤s904,如图8f及g,托臂转动至一第三等待位置,由所述腔体的第一对站a、b接收一第三对基板(w3)。在接收第三对基板(w3)之前,站与站相通,这些托臂的每一者转动至站与站之间的第三等待位置,此时第一托臂位于d站和e站之间,同时a站和b站与卸除埠之间没有阻碍。第三对基板(w3)由机械手臂通过卸除埠递送至腔体中,并放置在a站和b站的支撑座上。此时,a站和b站的支撑座的升降杆位于高位以支撑第三对基板(w3),结束步骤s904。

在步骤s905,如图8h,托臂转动至一第三接取位置以将第一对基板w1及第二对基板w2从托臂分别转移至一第二对站c、d及一第三对站e、f。托臂顺时方向进入对应的站。此时第一托臂进入d站,而其他托臂分别进入对应的各站中。c站至f站的升降杆移动至高处以将第一对基板w1和第二对基板w2分别转移至c站至f站的支撑座上,此时这些托臂与这些基板分离,结束步骤s905。

在步骤s906,如图8i,托臂转动至一第四等待位置,以等待所述腔体执行相同或不相同的处理。托臂转动至站与站之间的第四等待位置。此时,第一托臂回到一初始位置(如分度盘数值设定为零度的一位置)。所述初始位置不同或接近于第四等待位置。如图示第一托臂逆时方向转动至d站和e站之间。a站至f站的升降杆移动至低位,使这些基板(w1、w2、w3)位于支撑座上的一处理高度。之后,站的环形墙升起,使这些站结构地隔离,结束步骤s906。

在一些可能的实施例中,一或多个处理步骤可穿插在上述步骤中,不必是腔体满载的情况下。所述托臂的第一等待位置、第二等待位置及第三等待位置不同,且所述第一接取位置、该第二接取位置及该第三接取位置也不同。在一实施例中,腔体中站的数量不必然只有六个,该数量可以是二的倍数。此外,所述等待位置及接取位置不必然是指物理上的一固定位置。意即,在不同的處理批次中,本文所述等待位置及接取位置可以是指不同的物理位置。本案附图所示某具体实施例的单一批次处理,其后后续接批次处理可为类似的流程,但不必然具有完全相同的托臂移动行程。

图10a至h,示意本发明半导体多站处理腔体的一连串基板卸除动作。第十一图显示本发明半导体多站处理腔体执行基板卸除的步骤流程,包含步骤s1200至s1206。同时参阅图10a图至h图及图11,经处理的基板自满载腔体多个站卸除的操作说明如下。

在步骤s1200,如图10a图,托臂转动至一第一等待位置(此处不同于前述第一等待位置),以从所述腔体的一第一对站a、b取出一第一对基板(未显示)。站于处理结束后降下环状墙,使站与站相通。此时托臂可位于第一等待位置,其中第一托臂位于d站和e站之间,使a站和b站与卸除埠之间没有阻碍。a站和b站中位于高位升降杆上的第一对基板由机械手臂通过卸除埠取出腔体,同时c站至f站的升降杆可位于高位以将第二对和第三对基板撑起,结束步骤s1200。

在步骤s1201,如图10b,托臂转动至一第一接取位置(此处不同于前述第一接取位置),以将一第二对基板(w2)从一第二对站e、f转移至托臂上。托臂顺时方向进入e站和f站的基板(w2)下方,此时第一托臂位于d站的基板w3下方。c站至f站的升降杆移动至低位,使第二对基板w2和第三对基板w3转移至对应的托臂,结束步骤s1201。

在步骤s1202,如图10c,托臂转动至一第二接取位置(此处不同于前述第一接取位置),以将第二对基板w2转移至第一对站a、b。托臂逆时方向转动,此时第一托臂位于f站,同时第二对基板(w2)位于a站和b站中。a站和b站的升降杆移动至高位以将托臂上的第二基板(w2)转移至a站和b站的支撑座上,同时第三对基板w3位于托臂上,结束步骤s1202。

在步骤s1203,如图10d至e,托臂转动至一第二等待位置(此处不同于前述第一接取位置),以从所述腔体的第一对站a、b取出第二对基板(w2)。托臂逆时方向离开站至站与站之间的第二等待位置,此时第一托臂位于a站和f站之间,使a站和b站与卸除埠之间没有阻碍。第二对基板(w2)由机械手臂通过卸除埠取出腔体外,结束步骤s1203。

在步骤s1204,如图10f,托臂转动至一第三接取位置(此处不同于前述第一接取位置),以将第一对基板w3转移至第一对站a、b。托臂逆时方向进入对应的站,此时第一托臂位于b站中,同时第三对基板(w3)分别位于a站和b站中。a站和b站的升降杆移动至高位以将托臂上的第三对基板(w3)转移至a站和b站的支撑座上,结束步骤s1204。

在步骤s1205,如图10g和图10h,托臂转动至一第三等待位置(此处不同于前述第一接取位置),以从所述腔体的第一对站a、b取出第三对基板w3。托臂逆时方向离开站至站与站之间的第三等待位置,此时第一托臂位于b站和c站之间,使a站和b站与卸除埠之间没有阻碍。第三对基板(w3)由机械手臂通过卸除埠取出腔体外,结束步骤s1205。

在一些可能的实施例中,一或多个处理步骤可穿插在上述步骤中,不必是腔体满载的情况下。在其他可能的实施例中,步骤s900至s906与步骤s1200至s1205的部分可重新安排或相互组合,使基板加载、处理及卸除可以在一系列程序中连续执行。

上述说明使用了多个托臂运送基板的流程,但在其他可能的实施例中,本发明腔体可使用单一托臂完成基板的加载和卸除。考虑只有单一托臂的情形,该托臂可在一接取位置与该等多个站之间移动,以依序加载多个基板至该等多个站或自该等多个站卸除多个基板,其中该托臂在移动的过程中并未通过任一基板的上方。以第八图或第十图等图示为例,该托臂可在一接取位置(a站或b站)接取自腔外载入的一基板,并先放置于腔体最内端的站(d站和e站),接着才放置中端的站(c站和f站),最后放置外端的站(a站和b站)。换言之,单一托臂首先填满内端的站,接着才填满外端的部分,卸除的过程则相反。且,该托臂在移动的过程中并未通过任一基板的上方,以防止基板表面污染。在可能操作中,该等站的其中一者可作为闲置的缓冲站,其可以是靠近外端的a站或b站。基板位于缓冲站不进行任何处理。针对单一托臂的配置,腔体的站的数量可为大于二。

基于所述腔体的转移机制,本发明腔体可执行一循环镀膜的处理,意即通过多个单层薄膜的循环累积达到预期的目标膜厚。每个单层薄膜可以是相同的薄膜,也可以是不同的薄膜。在一些实施例中,对称分布的两站、三站或四站的基板都可彼此交换,藉此被交换的基板可以由各站的覆盖组件处理以使基板表面的沉积厚度获得补偿,从而改善基板表面沉积膜厚度的均匀性,举例如下。

图12a至c图示意本发明半导体多站处理腔体的一操作。腔体具有六个站,分别载有多个基板(1、2、3、4、5、6,按顺序逆时方向编排)。本发明的满载腔体可在不开启的状态下于站和站之间交换内部基板。如图示,第一基板1、第三基板3及第五基板5停留在各自的站,而第二基板2、第四基板4及第六基板6相对于其他停留的基板逆时方向转移至其他站。过程中,支撑第一基板1、第三基板3及第五基板5的升降杆位于低位,而支撑第二基板2、第四基板4及第六基板6的支撑杆位于高位和低位之间移动以完成托臂和站之间的转移。在一些可能的实施例中,图12a的腔体执行第一处理,图12b的腔体执行第二处理,而图12c的腔体执行第三处理。这些处理可以是全部站同时的处理或部分站的同时处理,且这些站可执行相同或不同的处理以及更多次的循环。

图13a至图13b示意本发明半导体多站处理腔体的另一操作。同样是满载腔体具有多个基板(1、2、3、4、5、6,按顺序逆时方向编排),其中第一基板1与第四基板4的位置在一次的转移中彼此交换,而其他基板停留在各自的站中。

图14a示意本发明半导体处理系统的配置,包含一设备前端模块efem,400、一负载腔体410、一传输腔体420及三个多站处理腔体430。第十四b图示意本发明半导体处理系统的另一配置,包含两个传输腔体420,且传输腔体420之间以一缓冲腔体440连接。efem400包含机械手臂及升降机构,负责系统的基板或晶圆卸除工作。从多个埠口加载的基板通过efem加载负载腔体410准备前往处理腔体430。在一实施例中,负载腔体410具有用于放置复数基板或晶圆的多个垂直堆栈的层,甚至针对高温工艺还兼具预热和冷却的能力,有助于半导体处理系统提升产能。在其他实施例中,负载腔体410具有一上腔体及一下腔体,其中上腔体用于放置经处理的基板或晶圆,下腔体用于放置未处理的基板或晶圆。在一些实施例中,负载腔体410配置成对称的垂直堆栈腔体,以提升负载腔体的成载能力。负载腔体还包含抽气及填气系统,其调节负载腔体410的压力与传输腔体420匹配。一般而言,传输腔体420具有一对机械手臂,可同时传递至少两个基板。缓冲腔体440包含多个隔离的层或腔室,其可配置成兼具加热和冷却基板,有助于半导体处理系统提升产能。

多站处理腔体430,其中的每一站包含由多个壁所定义的一下沉空间、一覆盖组件及一隔离组件。下沉空间提供有用于支撑基板或晶圆的一支撑座,该支撑座与定义该下沉空间的多个内壁之间形成一第一间隙。覆盖组件则固定于一盖体且分别位于支撑座的上方以定义一处理区。覆盖组件包含一喷淋板,该喷淋板与上盖之间形成用于提供吹扫气体的一第二间隙,或者吹扫气体的输出口可以整合在喷淋板上。隔离组件可升降于下沉空间与覆盖组件之间,以选择地包围支撑座与覆盖组件之间定义的处理区或退回下沉空间中。当隔离组件包围该处理区时,相邻两个站彼此形成结构上的隔离。图14a,每个处理腔体430具有六个站,该系统最多可同步处理十八个基板,且利用前述循环沉积使膜厚均匀化。相较之下,图14b虽然仅增加一处理腔体,但缓冲腔体440的设置使该系统的实际承载量明显提升。整体而言,基板产能可有效提升。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1