一种晶闸管芯片结终端结构的制作方法

文档序号:18093847发布日期:2019-07-06 10:55阅读:178来源:国知局
一种晶闸管芯片结终端结构的制作方法

本发明涉及半导体功率器件领域,尤其是涉及一种晶闸管芯片结终端结构。



背景技术:

目前晶闸管终端结构有两种,一种是双面开槽的结构,如图1所示,该结构的缺点一:在焊接时焊料容易和n区接触,造成器件短路不能承受反向耐压。缺点二:即使焊料未完全与n区短路,但焊料距离n区很近,造成反向耐压降低。此外,阳极和阴极散热面积相同,阳极p1区导热效果差,造成器件长期工作在高温环境下器件工作不稳定。另一种是具有p型隔离墙结构的晶闸管芯片结终端结构,如图2、图3所示,由于设置了隔离墙,占用了阴极的有效面积,造成器件的通态压降增大,引起器件功耗增大。



技术实现要素:

为克服上述技术问题,本发明提供一种晶闸管芯片结终端结构。

本发明解决其技术问题所采用的技术方案是:一种晶闸管芯片结终端结构,包括长基区n,阳极区p1,短基区p2,还设置有电压槽,所述电压槽从短基区p2上表面向下延伸;在长基区n上局部设有扩散形成的p型凸台,该凸台与短基区p1连通成一体,所述p型凸台位于电压槽的下方,电压槽的底部处在p型凸台上或部分位于n型长基区上,部分位于p型凸台上。

进一步的,所述p型凸台包括与长基区n相邻的p型区域及位于p型区域外侧的p+型缓冲阻挡层。

优选的,所述电压槽位于晶闸管芯片的四周且为单边槽结构,所述p型凸台沿晶闸管芯片的四周设置一圈。

作为电压槽的另一种结构方式,所述电压槽位于晶闸管芯片的四周且为双边槽结构,所述p型凸台沿晶闸管芯片的四周设置一圈。

为方便扩散形成p型凸台,所述p型凸台的下方设置有至少一圈盲孔或刻蚀槽,盲孔或刻蚀槽的深度与p型凸台的高度相适配。

为方便扩散形成p型区域和p+型缓冲阻挡层,所述p型区域的下方设置有第一盲孔或第一刻蚀槽,所述p+型缓冲阻挡层的下方设置有第二盲孔或第二刻蚀槽,所述第二盲孔或第二刻蚀槽的深度大于第一盲孔或第一刻蚀槽的深度。

进一步的,所述第一盲孔和第二盲孔为激光孔或刻蚀孔;所述第二盲孔或第二刻蚀槽设置在阳极区p1内部或第二刻蚀槽设置在阳极区p1的侧边缘上,相邻两晶闸管芯片共用一个第二刻蚀槽。

作为另一种技术方案,所述阳极区p1的侧边缘设置有一圈至少有一级台阶的台阶凹槽。

进一步的,所述电压槽底的宽度与槽的边长之和大于n型基区的厚度,有利于耗尽层的展宽。

优选的,所述短基区p2上设有负斜角,负斜角位于电压槽的一侧。

本发明的有益效果:本发明通过在长基区n上局部设有扩散形成的p型凸台,该p型凸台与阳极区p1连通成一体,从而局部增加阳极区p1的厚度,使电压槽底部到阳极区p1表面的厚度增高,在后道工序操作中不容易崩边损伤,提高芯片的合格率;此外,同现有技术相比,该结构增大了阳极和阴极的有效面积,提高了电特性,减少了制造成本。所述p型凸台采用激光打孔或刻蚀的方式获得盲孔,方法简单,易于实现。

当p型凸台只有p型区域的时候,p型区域的宽度在满足空间电荷区展宽的前提下,为减小划片后断面处产生的漏电流和功耗,需要增加p型区域的宽度,但p型区域宽度增加会减少阴极的有效通电面积,使芯片的通态压降增大,功耗增加。因此,在p型区域的宽度满足空间电荷区展宽的前提下,增加p+型缓冲阻挡层,由于p+型缓冲阻挡层浓度高,可以阻挡空间电荷区向外侧继续展宽,可以有效减小p型区域的宽度;因为p+型缓冲阻挡层不在空间电荷区展宽范围内,在p+型缓冲阻挡层划片后,不会产生漏电流使芯片电特性下降。由于增加了p+型缓冲阻挡层,使p型凸台的宽度减小,在阳极面积不变的前提下,增大了阴极的有效通电面积,从而降低了芯片的通态压降,减少了功耗。所述负斜角能够在承受高压的情况下降低电压槽表面电场强度,提高正向电压的耐压值和稳定性。

以下将结合附图和实施例,对本发明进行较为详细的说明。

附图说明

图1为现有晶闸管芯片的结构示意图一。

图2为现有晶闸管芯片的结构示意图二。

图3为现有晶闸管芯片的结构示意图二。

图4为本发明的俯视图。

图5为本发明激光打孔的仰视图。

图6为本发明刻蚀槽的仰视图。

图7为本发明晶闸管芯片的剖视图一。

图8为本发明晶闸管芯片的剖视图二。

图9为本发明晶闸管芯片的剖视图三。

图10为本发明晶闸管芯片的剖视图四。

图11为本发明晶闸管芯片的剖视图五。

图12为本发明晶闸管芯片刻蚀电压槽前的掺杂示意图。

图13为本发明晶闸管芯片的剖视图六。

具体实施方式

实施:1:如图4至9所示,一种晶闸管芯片结终端结构,包括长基区n,阳极区p1、短基区p2,设置在短基区p2上的阴极区n+、短路点6和门极控制区7,在长基区n上局部设有p型杂质扩散形成的p型凸台3,该p型凸台3与阳极区p1连通成一体。所述短基区p2向下延伸设有电压槽1,所述p型凸台3位于电压槽1的下方,电压槽1的底部处在p型凸台3上或部分位于长基区n上,部分位于p型凸台上。优选的,所述电压槽1位于晶闸管芯片的四周,为单边槽结构,如图7所示。所述电压槽1还可以为双边槽结构,如图8所示,位于晶闸管芯片的四周,所述p型凸台3沿晶闸管芯片的四周设置一圈。所述电压槽1上覆盖有玻璃钝化层2。所述电压槽1底部的宽度a与槽的边长l之和大于n型基区的厚度h,有利于耗尽层的展宽,提高晶闸管芯片的耐压。

所述晶闸管芯片的四周设置有一圈p型凸台3,使得整个电压槽1的底部均可以与p型凸台3接触。为了使晶闸管芯片在承受高耐压的情况下,有利于电场的展宽,使电特性更加稳定,所述短基区p2上设有负斜角8,负斜角8位于电压槽1的一侧,宽度为50-200um。

所述p型凸台3的下方设置有至少一圈盲孔4或刻蚀槽5,盲孔4或刻蚀槽5的深度与p型凸台3的高度相适配。p型杂质经过盲孔4或刻蚀槽5扩散后形成如图7所示的p型凸台3。所述p型凸台3的高度优选大于50um,盲孔4的直径或刻蚀槽5的宽度为60~100um,同一圈中相邻两盲孔4的距离为40~120um。所述盲孔4通过激光打孔或者刻蚀的方法获得。当一圈盲孔4或刻蚀槽5所获得的p型凸台3宽度不能满足电场的展宽时,还可以设置两圈或是更多圈的盲孔4或刻蚀槽5,以增加p型凸台3的宽度,所述相邻两圈盲孔4或刻蚀槽5间的距离优选60~160um。所述盲孔4或刻蚀槽5设置在阳极区p1内部,如图7所示;或刻蚀槽5设置在阳极区p1的侧边缘上,如图9所示,相邻两晶闸管芯片共用一个刻蚀槽5,使得划片后在单个晶闸管芯片的侧边缘形成单边槽结构。

实施例2:如图10至12所示,一种晶闸管芯片结终端结构,包括长基区n,阳极区p1、短基区p2,设置在短基区p2上的阴极区n+、短路点6和门极控制区7,在长基区n上局部设有扩散形成的p型凸台3,该p型凸台3与阳极区p1连通成一体。所述短基区p2向下延伸设有电压槽1,所述p型凸台3位于电压槽1的下方,电压槽1的底部处在p型凸台3上或部分位于长基区n上,部分位于p型凸台上。所述p型凸台3包括与长基区n相邻的p型区域301及位于p型区域301外侧的p+型缓冲阻挡层302。p型区域301和p+型缓冲阻挡层302由p型杂质扩散形成,为形成具有p型区域301和p+型缓冲阻挡层302的p型凸台3,所述p型区域301的下方设置有第一盲孔9或第一刻蚀槽10,所述p+型缓冲阻挡层302的下方设置有第二盲孔11或第二刻蚀槽12,所述第二盲孔11或第二刻蚀槽12的深度大于第一盲孔9或第一刻蚀槽10的深度,p型杂质经过第一盲孔9或第一刻蚀槽10和第二盲孔11或第二刻蚀槽12扩散后形成如图12所示的p型掺杂区域。因此,在同一平面上,通过第二盲孔11或第二刻蚀槽12扩散的p型杂质浓度大于通过第一盲孔9或第一刻蚀槽10扩散的p型杂质浓度,电压槽刻蚀时,电压槽刻蚀到第一盲孔9或第一刻蚀槽10上方的低浓度p型杂质区和第二盲孔11或第二刻蚀槽12上方的高浓度p+区域,从而形成具有p型区域301和p+型缓冲阻挡层302的p型凸台3。所述第二盲孔11或第二刻蚀槽12可以设置在阳极区p1内部,如图10所示;第二刻蚀槽12也可以设置在阳极区p1的侧边缘上,如图11所示,相邻两晶闸管芯片共用一个第二刻蚀槽12,使得划片后在单个晶闸管芯片的侧边缘形成单边槽结构。此外,所述的第一盲孔9或第一刻蚀槽10可以设置多圈,所述第二盲孔11或第二刻蚀槽12也可以设置多圈,只要在第一盲孔9或第一刻蚀槽10和第二盲孔11或第二刻蚀槽12上方的长基区n上局部形成具有p型区域和p+型缓冲阻挡层的p型凸台均落入本发明的保护范围。其他同实施例1。

由于增加了p+型缓冲阻挡层,使p型凸台的宽度减小,在阳极面积不变的前提下,增大了阴极和阳极的有效通电面积,从而降低了芯片的通态压降,减少了功耗。所述负斜角能够降低电压槽表面电场强度,提高正向电压的耐压值和稳定性。

实施例3:作为p型区域301和p+型缓冲阻挡层302的另一种形成结构,所述阳极区p1的侧边缘设置有一圈至少有一级台阶的台阶凹槽13,优选的,台阶凹槽13设置有两级台阶结构,如图13所示,台阶凹槽13包括一级台阶131和二台阶132,一级台阶131的深度h1为50~80um,二级台阶132的深度h2为30~50um,一级台阶131的宽度l1为100~200um,二级台阶132的宽度l2为50~100um。在实际生产中,相邻两芯片共用一个凹槽,凹槽对称设计,划片后形成如图12所示的单边台阶凹槽13结构。台阶凹槽13处经p型杂质扩散后,在长基区n上形成台阶式p型凸台,在同一高度上,一级台阶上方的p型杂质浓度低于二级台阶上方的p型杂质浓度,刻蚀电压槽时,电压槽刻蚀到一级台阶上方的低浓度p型杂质区域和二级台阶上方的高浓度p+杂质区域,从而形成具有p型区域301和p+型缓冲阻挡层302的p型凸台3。所述台阶凹槽13还可以设置多级台阶结构,只要该台阶凹槽13能够在长基区n上局部形成具有p型区域和p+型缓冲阻挡层的p型凸台均落入本发明的保护范围。其他同实施例2。

实施例4:以耐压2000v,电流100a的芯片为例,芯片图案设计为17mmx17mm,总厚度为420um,所述阳极区p1的厚度为90um,短基区p2为90um。

采用具有p型隔离墙双边电压槽结构的晶闸管芯片,如图2所示结构,隔离墙的宽度为0.3mm,电压槽的宽度为0.9mm,所述双边电压槽为带有台阶结构的电压槽,因此,阴极区的宽度为17-(0.3+0.9)x2=14.6mm,阴极区的面积为14.6mmx14.6mm=213mm2

采用具有实施例1所述p型凸台结构的晶闸管芯片,其盲孔深优选在80um,使得p型凸台3高出阳极区p1约80um,所述p型凸台3为浓度较低的p型杂质构成。该p型凸台3在经过p型杂质纵向和横向扩散后,宽度为260um,所述电压槽1经刻蚀后的底部处在p型凸台3上,过刻20um-40um即可,该处的p型杂质浓度及宽度足以让空间电荷区展宽,即电压槽1底部到阳极区p1上部的距离约60um,再加上短基区p1原来的厚度90um,使得电压槽1底部到短基区p1下表面的距离为150um,从而有效增加了电压槽1底部到短基区p1下表面的厚度,且该电压槽1又是正斜角结构,有利于耗尽层的展宽,有利于提高芯片的耐压。同时厚度厚,机械强度好,在后道工序加工中不容易崩边,提高产品合格率和电特性。芯片设计的电压越高,硅片越厚,孔深可以相应的提高,从而可以进一步加大电压槽底1部到短基区p1下表面的厚度。阳极的通电散热面积为17mmx17mm=289mm2,刻蚀槽的深度为0.42(片厚)-0.15(电压槽1底部到短基区p1下表面的距离)=0.27mm,按照1:1的横向和纵向腐蚀速率,所以横向腐蚀宽度为0.27mm,槽底宽度为0.4mm,因此,阴极的宽度为17-(0.27+0.4)x2=15.66mm,阴极的有效通电面积为15.66mmx15.66mm=245.2mm2

采用具有实施例2和3所述p型凸台结构的晶闸管芯片,其p型凸台的总宽度为0.18mm,其中p+型缓冲阻挡层的宽度为0.05mm,p型凸台3高出阳极区p180um,电压槽的深度为0.42-0.15=0.27mm,按照1:1的横向和纵向腐蚀速率,所以横向腐蚀宽度为0.27mm,槽底宽度为0.2mm,因此,阴极的宽度为17-(0.27+0.2)x2=16.06mm,阴极的有效通电面积为16.06mm*16.06mm=257.92mm2

从以上三个具体结构比较可以看出,带有p型凸台的晶闸管芯片,其阴极有效通电面积和阳极通电散热面积远大于具有隔离墙及双面开槽结构的晶闸管芯片,因此,能够大大降低通态压降及提高散热面积,减少了高温反向漏电流,减少了功耗。同时,带有p+型缓冲阻挡层的晶闸管芯片,其阴极有效通电面积进一步提高,进一步降低通态压降,减少了高温反向漏电流,减少了功耗。此外,带有p+型缓冲阻挡层的晶闸管芯片,其漏电流比p型凸台的晶闸管芯片更小,高温特性更好,产品性能更加稳定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1