一种钕铁硼磁粉的制备方法与流程

文档序号:20451966发布日期:2020-04-17 23:08阅读:404来源:国知局
一种钕铁硼磁粉的制备方法与流程
本发明涉及烧结钕铁硼永磁体
技术领域
,尤其涉及一种钕铁硼磁粉的制备方法。
背景技术
:钕铁硼磁体广泛应用于存储设备、电子元件、风力发电、电机等领域。为了提高钕铁硼磁体的工作温度,需要提高磁体的矫顽力。目前提高矫顽力最有效的方法是通过添加镝、铽等重稀土取代主相磁体中的钕元素,其机理是dy2fe14b和tb2fe14b比nd2fe14b有更高的磁晶各向异性场常数。但是重稀土元素储量及其有限,价格昂贵,会极大增加磁体的材料成本,且不符合可持续发展的战略方针。为了降低重稀土元素用量,采用晶界扩散方法对磁体进行重稀土元素渗透,可以在使用少量重稀土元素的条件下,显著提高磁体的矫顽力。但是扩散方法工艺复杂,额外增加了加工成本,且原料利用率不高,总体成本增加较多。为了在控制原料成本的前提下,提高性能,优化制造工艺成为重要的手段。当前钕铁硼烧结磁体的制备多使用速凝薄带、氢处理、气流磨制粉的方式获得具有合适粒度的磁粉,在经过取向成型、烧结、时效等工序得到最终磁体。近年来,国内外各企业和研究机构针对氢处理和气流磨工序做了大量的研究和改进。氢处理工序是将经过简单破碎后的速凝薄带合金放入氢处理炉中,通入一定压力的氢气,利用主相和富钕相与氢气发生反应,导致合金的沿晶断裂和穿晶断裂,得到粒度几十微米到几百微米的氢处理粉。氢处理的效果会影响到气流磨制粉的粒度分布、磨粉效率、磁粉收率等,对最终磁体的性能和材料成本的控制起到重要的作用。中国专利cn105405563b在氢处理的吸氢过程中将保护性气体和氢气一起通入氢处理炉中,借助于保护性气体的压力使氢气分子在炉腔内分布的更均匀,从而使氢破碎更彻底。中国专利cn106683814b在氢处理过程中,吸氢破碎后,先不脱氢处理,而是等气流磨制粉完成以后再进行脱氢。该方法的优点在于氢处理粉中含有大量氢,可以在气流磨磨粉过程中起到抑制氧化的作用,同时含氢合金较脆,更容易磨碎。现有的氢处理工艺虽得到很大的改善,但仍有一些不足之处。比如,常规氢处理工艺,在常温下通入一定压力的氢气,合金片开始吸氢放热,温度可达到200℃左右。该温度下,主相和富钕相均可与氢发生反应,但因反应温度相对较低,且主相被富钕相包裹,氢气比较难渗透到中心处,导致吸氢不均匀,从而不同位置的破碎效果不同,使得气流磨磨粉相对困难,主相外侧包覆的富钕相容易被磨掉,粒度1微米以下的超细粉比重偏高,因超细粉极易氧化和氮化,一般不用于制备磁体,这部分超细粉会被旋风分离器过滤掉,材料利用率降低。技术实现要素:本发明的目的是克服上述已有技术的不足,而提供一种钕铁硼磁粉的制备方法。本发明主要利用钕铁硼合金中富钕相和主相的吸氢反应发生的温度不一样,通过控制氢处理过程中的吸氢温度,分别对富钕相和主相进行破碎,最终使得氢处理过程中合金破碎得更彻底,更均匀,再经过气流磨制粉工艺后,得到了粒度分布更均匀的磁粉,磨粉效率和磁粉收率得到提高,节省了时间成本和原材料成本。本发明具体包括以下步骤:步骤1:使用速凝薄带方法制备钕铁硼合金片;步骤2:将薄带钕铁硼合金片放入氢处理炉中,常规检漏后,在氢处理炉中充入氩气,对氢处理炉进行升温,升温至390℃~480℃的高温条件后,通入氢气,维持氢处理炉内压力在0.15mpa~0.20mpa,直至氢气流不在流入时,停止加热,开始降温,当温度降至220℃及以下时,使用氩气置换氢气。步骤3:吸氢后的合金片,升温至550℃进行抽真空脱氢,脱氢时间为5h;步骤4:氢处理完成后的合金,使用气流磨进行磨粉。优选地,步骤2中吸氢后降温过程中通入氩气置换氢气的温度为130℃以下。优选地,步骤4中气流磨磨粉过程中,磨粉介质为氮气或氩气。优选地,步骤4中气流磨磨粉后磁粉的收率大于等于99.1%。在本发明氢处理的吸氢阶段,在390℃~480℃之间导入氢气,该温度下只有富钕相才能发生吸氢反应,而主相不发生吸氢反应,即发生re2fe14b+re-rich—re2fe14b+re-hx,此时合金片仅在晶界吸氢,发生沿晶断裂。由于反应的温度较高,反应速度快,且沿晶断裂更彻底。在之后的降温过程中,当温度降至235℃以下的低温条件时,主相开始发生有效的吸氢,即发生反应re2fe14b—re2fe14bhy,此时合金片主相吸氢后发生穿晶断裂。因第一步富钕相的吸氢产生的沿晶断裂使合金片已经沿着晶界破碎,第二步的吸氢过程中主相可以直接与氢气接触充分发生反应和穿晶断裂,即主相的破碎更均匀,更彻底。而且,在越低的温度下使用氩气置换掉氢气,主相吸氢更彻底,对主相的破碎效果更好。与现有技术相比,本发明的创新之处在于:使用本发明的方法对合金片进行氢处理后,在之后的气流磨制粉过程中,同样的工艺条件下,能够得到粒度分布更窄的磁粉,且磨粉效率和磁粉收率得到提高。既提高了材料利用率,又为磁体性能的改善奠定基础。附图说明图1是本发明的氢处理工艺示意图。具体实施方式为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。原料准备:按照成分prnd含量为32.0wt.%,b含量为0.98wt.%,co含量为1.0wt.%,al含量为0.3wt.%,cu含量为0.10wt.%,ga含量为0.10wt.%,余量为fe及不可避免的杂质,使用速凝薄带方法制成薄带合金片。工艺过程:将薄带合金片放入氢处理炉中,在氩气气氛下升温至390℃~480℃,通入氢气。氢气压力维持在0.15mpa-0.20mpa,监测氢气流量,当氢气流停止时,停止加热,开始冷却。当温度降至220℃及以下时,使用氩气置换氢气,继续降温至室温后,再升温至550℃进行抽真空脱氢,脱氢时间为5h;将氢处理完成的合金使用气流磨进行磨粉,磨粉介质为氮气或氩气。采用小型流化床对撞式气流磨进行试验,为进行有效的对比,试验过程中气流磨各参数均保持一致。磨室压力设定为0.40mpa,分级轮转速为2700rpm,投料质量为10.0kg。磨粉完成后分别测试粉体粒度,并统计各组实验的磨粉效率、超细粉比例、磨室残留料比例、磁粉收率。其中,超细粉是指磨粉过中经旋风分离器分离出的磁粉;磁粉收率定义为料罐收集到的正常粒度磁粉重量与投料总重量的比值。实施例1按照成分prnd含量为32.0wt.%,,b含量为0.98wt.%,co含量为1.0wt.%,al含量为0.3wt.%,cu含量为0.10wt.%,ga含量为0.10wt.%,余量为fe及不可避免的杂质,使用速凝薄带方法制成薄带合金片。将薄带合金放入氢处理炉中,在氩气气氛下升温至390℃,通入氢气。氢气压力维持在0.15mpa,监测氢气流量,当氢气流停止时,停止加热,开始冷却。当温度降至220℃时,使用氩气置换氢气,继续降温至室温后,再升温至550℃进行抽真空脱氢,脱氢时间为5h;将氢处理完成的薄片使用气流磨进行磨粉,磨粉介质为氮气。磨室压力设定为0.40mpa,分级轮转速为2700rpm,投料质量为10.0kg。磨粉完成后测试粉体粒度,并统计磨粉效率、超细粉比例、磨室残留料比例、磁粉收率。实施例2按照成分prnd含量为32.0wt.%,,b含量为0.98wt.%,co含量为1.0wt.%,al含量为0.3wt.%,cu含量为0.10wt.%,ga含量为0.10wt.%,余量为fe及不可避免的杂质,使用速凝薄带方法制成薄带合金片。将薄带合金放入氢处理炉中,在氩气气氛下升温至480℃,通入氢气。氢气压力维持在0.20mpa,监测氢气流量,当氢气流停止时,停止加热,开始冷却。当温度降至100℃时,使用氩气置换氢气,继续降温至室温后,再升温至550℃进行抽真空脱氢,脱氢时间为5h;将氢处理完成的薄片使用气流磨进行磨粉,磨粉介质为氮气。磨室压力设定为0.40mpa,分级轮转速为2700rpm,投料质量为10.0kg。磨粉完成后测试粉体粒度,并统计磨粉效率、超细粉比例、磨室残留料比例、磁粉收率。实施例3按照成分prnd含量为32.0wt.%,,b含量为0.98wt.%,co含量为1.0wt.%,al含量为0.3wt.%,cu含量为0.10wt.%,ga含量为0.10wt.%,余量为fe及不可避免的杂质,使用速凝薄带方法制成薄带合金片。将薄带合金放入氢处理炉中,在氩气气氛下升温至450℃,通入氢气。氢气压力维持在0.18mpa,监测氢气流量,当氢气流停止时,停止加热,开始冷却。当温度降至130℃时,使用氩气置换氢气,继续降温至室温后,再升温至550℃进行抽真空脱氢,脱氢时间为5h;将氢处理完成的薄片使用气流磨进行磨粉,磨粉介质为氩气。为进行有效的对比,试验过程中气流磨各参数均保持一致。磨室压力设定为0.40mpa,分级轮转速为2700rpm,投料质量为10.0kg。磨粉完成后测试粉体粒度,并统计磨粉效率、超细粉比例、磨室残留料比例、磁粉收率。实施例1、实施2、实施3的实验数据如表1。表1实施例实验数据实施例x10x50x90x90/x10磨粉效率(kg/h)超细粉比例(%)磨室残留比例(%)磁粉收率(%)实施例11.433.075.133.592.130.50.499.1实施例21.493.055.033.382.350.30.299.5实施例31.463.085.133.512.280.40.399.3其中,x10是指样品的累计粒度分布数达到10%时所对应的粒径,它的物理意义是粒径小于它的颗粒占10%。x50,x90依次类推。x50也叫中位径或中值粒径。钕铁硼行业中,在x50接近的情况下,x90/x10的值越小,说明粒度分布越窄,粒度越平均。对比例1按照成分prnd含量为32.0wt.%,b含量为0.98wt.%,co含量为1.0wt.%,al含量为0.3wt.%,cu含量为0.10wt.%,ga含量为0.10wt.%,余量为fe及不可避免的杂质,使用速凝薄带方法制成薄带合金片。将薄带合金放入氢处理炉中,常温下通入氢气,维持氢气压力为0.20mpa,监测氢气流量,当氢气流停止时,使用氩气置换氢气。降温至室温后,再升温至550℃进行抽真空脱氢,脱氢时间为5h;将氢处理完成的薄片使用气流磨进行磨粉,磨粉介质为氮气。为进行有效的对比,试验过程中气流磨各参数均保持一致。磨室压力设定为0.40mpa,分级轮转速为2700rpm,投料质量为10.0kg。磨粉完成后测试粉体粒度,并统计磨粉效率、超细粉比例、磨室残留料比例、磁粉收率。对比例1与本发明的制备过程相比,在常温下通入氢气,主相和富钕相的氢破碎同时进行。对比例2按照成分prnd含量为32.0wt.%,,b含量为0.98wt.%,co含量为1.0wt.%,al含量为0.3wt.%,cu含量为0.10wt.%,ga含量为0.10wt.%,余量为fe及不可避免的杂质,使用速凝薄带方法制成薄带合金片。将薄带合金放入氢处理炉中,在氩气气氛下升温至350℃,通入氢气。氢气压力维持在0.20mpa,监测氢气流量,当氢气流停止时,停止加热,开始冷却。当温度降至100℃时,使用氩气置换氢气,继续降温至室温后,再升温至550℃进行抽真空脱氢,脱氢时间为5h;将氢处理完成的薄片使用气流磨进行磨粉,磨粉介质为氮气。磨室压力设定为0.40mpa,分级轮转速为2700rpm,投料质量为10.0kg。磨粉完成后测试粉体粒度,并统计磨粉效率、超细粉比例、磨室残留料比例、磁粉收率。对比例2与本发明的制备过程相比,吸氢阶段通入氢气的温度低于本申请的高温条件。对比例3按照成分prnd含量为32.0wt.%,,b含量为0.98wt.%,co含量为1.0wt.%,al含量为0.3wt.%,cu含量为0.10wt.%,ga含量为0.10wt.%,余量为fe及不可避免的杂质,使用速凝薄带方法制成薄带合金片。将薄带合金放入氢处理炉中,在氩气气氛下升温至480℃,通入氢气。氢气压力维持在0.20mpa,监测氢气流量,当氢气流停止时,停止加热,开始冷却。当温度降至300℃时,使用氩气置换氢气,继续降温至室温后,再升温至550℃进行抽真空脱氢,脱氢时间为5h;将氢处理完成的薄片使用气流磨进行磨粉,磨粉介质为氮气。磨室压力设定为0.40mpa,分级轮转速为2700rpm,投料质量为10.0kg。磨粉完成后测试粉体粒度,并统计磨粉效率、超细粉比例、磨室残留料比例、磁粉收率。对比例3与本发明的制备过程相比,吸氢阶段降温过程中,氩气置换氢气的温度高于本发明的申请条件对比例1、对比例2、对比例3的实验结果如表2。表2对比例实验数据对比例x10x50x90x90/x10磨粉效率(kg/h)超细粉比例(%)磨室残留比例(%)磁粉收率(%)对比例11.343.055.293.951.850.70.698.7对比例21.393.075.253.782.050.60.598.9对比例31.293.095.614.351.580.70.998.4实施例中,x90/x10的值均小于等于3.59,在x50接近的情况下,说明所制备磁粉具有较窄的粒度分布范围。磨粉效率高于2.13kg/h,磁粉收率高于99.1%,说明按照本发明的方法对薄带合金进行氢处理后,合金薄片氢破碎的更彻底,更均匀。在气流磨制粉过程中,氢处理薄片容易磨碎至目标粒度,且磨粉过程中对合金的破碎可以更好的沿着氢处理产生的裂纹进行,而不是硬磨掉主相外侧的富钕相,也不会因为主相氢破碎不够彻底而难以磨碎。因此,超细粉的比例和磨室残留料比例都比较低。比较实施例1、2、3可以看出,在氢处理吸氢阶段降温过程中,使用氩气置换氢气的温度越低,则气流磨磨粉后粒度分布越窄,磨粉效率越高,磁粉收率越高。这说明氩气置换氢气的温度越低,反应进行的越彻底,主相吸氢破碎的越彻底,更有利于气流磨制粉。对比例1中按照传统的工艺对薄带合金进行氢处理,相对于实施例x90/x10值偏高,磨粉效率和磁粉收率均偏低。这可能是因为传统的吸氢过程中,反应开始不对薄带合金进行加热,而是直接通入一定压力的氢气吸氢,主相和富钕相的吸氢反应同时进行,此时主相内部与氢气难以充分接触,即穿晶断裂不够彻底和均匀,导致气流磨粉过程中对主相颗粒的破碎相对困难。主相中没有生成足够的裂纹,要破碎至目标粒度需要更长的时间和颗粒间更多次数的碰撞,这就会导致主相颗粒周边的富钕相被磨掉,产生大量的超细粉,浪费了稀土原料。同时主相难以破碎也会使得磨室残留料增加,最终磁粉收率降低。对比例2与实施例相比,富钕相吸氢反应的温度为350℃,低于实施例,使得磨粉后粒度均匀性和磁粉收率低于实施例。对比例3中氢处理降温过程中,在300℃便用氩气置换氢气,导致主相没有发生有效的氢破碎,因此在磨粉后粒度分布、磨粉效率、磁粉收率等均较差。综上,使用本发明的方法对钕铁硼合金进行氢处理后再用气流磨磨粉,具有更高的磨粉效率和更高的磁粉收率,磁粉粒度分布更均匀。对于提高钕铁硼磁体性能和提高原材料利用率具有明显的改善作用。以上实施例仅用以说明本发明的具体实施方式,不用于限制本发明。凡是根据本
发明内容和思路进行的修改、替换等均应落在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1