马达驱动器、马达驱动器驱动的马达以及利用马达的装置的制作方法

文档序号:7278973阅读:228来源:国知局
专利名称:马达驱动器、马达驱动器驱动的马达以及利用马达的装置的制作方法
技术领域
本发明涉及马达驱动器、要由马达驱动器驱动的马达以及装备了马达的装置,如空气调节器、空气清洁器和热水器。
背景技术
在例如空气调节器中使用的各种马达通常使用永磁铁无刷DC马达(以下简称为马达),它的转子装备永磁铁,利用其长服务寿命、高可靠性和容易的速度控制。
用于驱动如上所述的这样的马达的传统的马达驱动器在日本专利申请未审查公开No.2002-369576中公开。这个马达驱动器具有这样的结构,使得如果当驱动器要开始驱动马达时由外力或惯性在相反方向驱动转子,驱动器被禁止驱动马达。这种结构阻止高电流穿过定子齿上缠绕的马达驱动线圈,使得转子磁铁中不发生退磁。
更特别的,根据从马达中布置的霍尔传感器提供的位置检测信号的变化,安排在马达驱动器中的控制单元检测转子的旋转方向。当驱动器要开始驱动马达时,如果使转子停止或转子以与马达要旋转的方向相同的方向旋转,那么控制单元允许驱动马达并且输出控制信号用于导通变换器(inverter)部件中的晶体管。控制信号的输出引起驱动电流穿过马达驱动线圈,使得马达开始旋转。
另一方面,当驱动器要开始驱动马达时,如果转子以与马达要旋转的方向相反的方向旋转,控制单元就禁止马达旋转并且输出控制信号用于截止变换器部件中的每个晶体管。控制信号的输出导致不提供驱动电流给马达驱动线圈。这种结构阻止高电流穿过马达驱动线圈,使得转子磁铁中不发生退磁。
图6显示另一个传统的马达驱动器的电路图,而图7显示信号波形,该波形的一部分说明图6中所示的马达驱动器的正常励磁(energizing)中的信号,剩余部分说明图6中所示的马达驱动器的非正常励磁中的信号。
如图6中所示,在正常励磁的马达驱动器中,励磁信号生成器190输出励磁信号UH0、UL0、VH0、VL0、WH0和WL0。那些信号控制六个晶体管131、132、133、134、135和136顺序导通或截止。那六个晶体管构成励磁单元120。这个控制使得电流供应给三相驱动线圈111、113和115,从而如图7中所示的信号U、V和W顺序地切换,因此旋转马达。驱动线圈配备给马达的定子。
当提供给励磁单元120的电流增大到给定值时,前面的马达驱动器停止电流供应给驱动线圈111、113和115。这个行为称为非正常励磁。更特别的,当电流增大时,过载电流检测器170输出信号OC,该信号由信号选择器150接收。然后,选择器150在输出信号到励磁单元120之前,切换从励磁信号生成器190提供的信号为从励磁信号输出单元140提供的信号UH1、UL1、VH1、VL1、WH1和WL1。那些从励磁信号输出单元140提供的信号截止励磁单元120中的所有晶体管131-136。这个机制停止电流供应给驱动线圈111、113和115。
存在不同于前面的方法的用于停止电流供应给驱动线圈的方法,例如提供信号以导通晶体管131、133、135并截止晶体管132、134、136,或者从相反方向,即导通晶体管132、134、136并截止晶体管131、133、135。
但是,假定将后一种情况作为传统的马达驱动器的例子,当截止励磁单元120中的所有晶体管131-136时,存储在三相驱动线圈111、113和115中的能量穿过调速轮(flywheel)二极管121-126中任何一个,即作为电流通过。这个电流的通过急剧地改变如图7中所示的驱动线圈两端的电压U、V和W。结果,驱动线圈振动,这是听得见的并且有时引起噪声。正常励磁和非正常励磁以各种间隔重复,使得如果重复落入音频范围,就产生刺耳的噪声。
如前所述,另一种用于停止电流供应给驱动线圈111、113和115的方法可用通过导通晶体管131、133、135并截止晶体管132、134、136,或者从相反方向,即截止晶体管131、133、135并导通晶体管132、134、136,互相短路驱动线圈。通过那些方法可以停止来自电源Vdc的电流供应;但是,旋转期间在驱动线圈中产生反电动势(BEMF),并且由BEMF引起的电流将流动。
上述方法在正旋转(由正常励磁驱动的旋转方向)的情况下具有减小穿过驱动线圈的电流的效果。但是,在其风扇由马达驱动的装置中,当某种外力如风能使风扇反方向(与正常励磁方向相反的方向)旋转时,穿过驱动线圈的电流有时进一步增大。电流的增大妨碍过载电流调节功能,该功能在正常励磁状态中应该激活。这个妨碍在实际操作中留下了问题。

发明内容
本发明的马达驱动器包含下面的元件(a)励磁单元,用于提供电流给马达的驱动线圈;(b)励磁信号生成器,用于生成励磁单元对驱动线圈执行的正常生成模式;(c)第一励磁信号输出单元,其中存储第一非正常励磁模式;(d)第二励磁信号输出单元,其中存储不同于第一模式的第二非正常励磁模式;(e)旋转方向检测器,用于检测马达的旋转方向;(f)过载电流检测器,用于检测马达的电流;(g)第一信号选择器,用于选择要提供给励磁单元的信号;以及(h)第二信号选择器,用于选择要提供给第一信号选择器的信号。
第一信号选择器从励磁信号生成器接收信号,从第二信号选择器接收信号,以及从过载电流检测器接收信号,然后在输出所选择的信号之前,根据来自过载电流检测器的信号从来自励磁信号生成器的信号或来自第二信号选择器的信号中任选一个。
第二信号选择器从第一励磁信号输出单元接收信号,从第二励磁信号输出单元接收信号,以及从旋转方向检测器接收信号,然后在输出所选择的信号之前,根据来自旋转方向检测器的信号从来自第一励磁信号输出单元的信号或来自第二励磁信号输出单元的信号中任选一个。
当电流调整功能对马达中流动的过载电流保持有效时,前面的结构允许降低噪声。
本发明也涉及由前面的马达驱动器驱动的马达,以及包括由该马达驱动的如风扇的被驱动部件的装置。
当电流调整功能对马达中流动的过载电流保持有效时,本发明的马达和装置可以实现降低噪声。


图1显示根据本发明示范性的实施例的马达驱动器的电路图。
图2说明图1中所示的马达驱动器的操作。
图3A显示根据本发明示范性的实施例的空气调节器的室内单元的结构。
图3B显示根据本发明示范性的实施例的空气调节器的室外单元的结构。
图4显示根据本发明示范性的实施例的热水器的结构。
图5显示根据本发明示范性的实施例的空气清洁器的结构。
图6显示传统马达驱动器的电路图。
图7说明图6中所示的传统马达驱动器的操作。
具体实施例方式
以下参考

本发明的示范性的实施例。图1显示根据本发明示范性的实施例的马达驱动器的电路图,而图2说明图1中所示的马达驱动器的操作。
根据本发明示范性的实施例的图1中所示的马达驱动器包含下面的元件(a)励磁单元20,用于提供电流给马达的驱动线圈;(b)励磁信号生成器90,用于生成励磁单元对驱动线圈执行的正常生成模式;(c)第一励磁信号输出单元41,其中存储第一非正常励磁模式;(d)第二励磁信号输出单元42,其中存储不同于第一模式的第二非正常励磁模式;(e)旋转方向检测器60,用于检测马达的旋转方向;(f)过载电流检测器70,用于检测马达的电流;(g)第一信号选择器51,用于选择要提供给励磁单元20的信号;以及(h)第二信号选择器52,用于选择要提供给第一信号选择器51的信号。
第一信号选择器51从励磁信号生成器90接收信号,从第二信号选择器52接收信号,以及从过载电流检测器70接收信号,然后在输出所选择的信号到励磁单元20之前,根据来自过载电流检测器70的信号从来自励磁信号生成器90的信号或来自第二信号选择器52的信号中任选一个。
第二信号选择器52从第一励磁信号输出单元41接收信号,从第二励磁信号输出单元42接收信号,以及从旋转方向检测器60接收信号,然后在输出所选择的信号到第一信号选择器51之前,根据来自旋转方向检测器60的信号从来自第一励磁信号输出单元41的信号和来自第二励磁信号输出单元42的信号中任选一个。
在图1中描述的这个示范性实施例中,三相马达由具有120度电角(electrical angles)的矩形励磁波形驱动,在该马达中,相U驱动线圈11、相V驱动线圈13以及相W驱动线圈15星形连接。在这个实施例的说明中,正常励磁指根据来自励磁信号生成器90的输出信号的励磁,并且在正常励磁状态中,马达为了它的最初的目的被驱动,即相U、相V和相W由具有120度电角的矩形波形顺序驱动。
这个实施例中的非正常励磁指根据来自第一励磁信号输出单元41或来自第二励磁信号输出单元42的输出信号中任何一个的励磁,在该第一励磁信号输出单元41中存储特定励磁模式(第一非正常励磁模式),在该第二励磁信号输出单元42中存储不同于前面特定励磁模式的励磁模式。换句话说,三相驱动线圈从正常励磁状态被有差别地励磁。例如,三相驱动线圈变为开路,即与励磁单元20电隔离,并且作为结果,马达处于自由运转状态。另一个例子是互相短路三相驱动线圈,并且作为结果,马达处于制动状态。
在励磁单元20中,三个励磁元件,如场效应管(FET)31、33和35构成上臂,并且另三个场效应管(FET)32、34和36以类似方式构成下臂,使得那六个励磁元件构成变换器部件。
相U驱动线圈11的第一端耦合到晶体管31和32之间的连接点。相V驱动线圈13的第一端耦合到晶体管33和34之间的连接点,而相W驱动线圈15的第一端耦合到晶体管35和36之间的连接点。相U线圈11、相V线圈13和相W线圈15的各第二端互相耦合,因此形成中点N。
在各晶体管31、32、33、34、35和36的每个源极和漏极之间,分别连接调速轮二极管21、22、23、24、25和26。dc电源(未显示)施加输出电压Vdc到励磁单元20,并且通过励磁单元20为前面的三相驱动线圈供电。
来自第一信号选择器51的六个输出信号UH、UL、VH、VL、WH和WL通过栅极驱动器27施加到晶体管31-36的各栅极。因此励磁单元20由栅极驱动器27、六个晶体管和六个二极管构成。
励磁信号生成器90输出信号UH0、UL0、VH0、VL0、WH0和WL0。如图2中所示,当电角保持在120度时,那些信号停留在电平H,并且当电角保持在240度时,那些信号停留在电平L。在正常励磁期间,当信号UH0停留在电平H或电平L时,即使通过第一信号选择器51,信号UH也落在电平H或电平L。当信号UL0停留在电平H或电平L时,即使通过信号选择器51,信号UL也落在电平H或电平L。当信号VH0停留在电平H或电平L时,通过信号选择器51,信号VH也落在电平H或电平L。当信号VL0停留在电平H或电平L时,通过信号选择器51,信号VL也落在电平H或电平L。当信号WH0停留在电平H或电平L时,通过信号选择器51,信号WH也落在电平H或电平L。当信号WL0停留在电平H或电平L时,通过信号选择器51,信号WL也落在电平H或电平L。
信号UH、UL、VH、VL、WH和WL通过栅极驱动器27分别施加到晶体管31、32、33、34、35和36的栅极。当相应的信号UH、UL、VH、VL、WH和WL停留在电平H时,那些晶体管导通,而当那些信号停留在电平L时那些晶体管截止。
另一方面,第一励磁信号输出单元41输出信号UH1a、UL1a、VH1a、VL1a、WH1a和WL1a。输出单元41存储励磁模式(第一非正常励磁模式),该励磁模式在电平L输出所有那些信号。通过第二信号选择器52和第一信号选择器51,那些信号变为信号UH、UL、VH、VL、WH和WL,全部停留在电平L。
信号UH、UL、VH、VL、WH和WL通过栅极阵列27分别施加到晶体管31、32、33、34、35和36的栅极,因此截止所有晶体管31、32、33、34、35和36。结果,三相驱动线圈11、13和15与dc电源的正极侧和负极侧都隔离,使得所有驱动线圈变为开路并进入非正常励磁状态。这时,马达进入自由运转状态。
接下来,第二励磁信号输出单元42输出信号UH1b、UL1b、VH1b、VL1b、WH1b和WL1b。输出单元42存储励磁模式(第二非正常励磁模式),该励磁模式输出在电平L的信号UH1b、VH1b和WH1b以及在电平H的信号UL1b、VL1b和WL1b。通过第二信号选择器52和第一信号选择器51,那些信号变为处于电平L的信号UH、VH、WH以及处于电平H的UL、VL、WL。
信号UH、UL、VH、VL、WH和WL通过栅极驱动器27分别施加到晶体管31、32、33、34、35和36的栅极,使得构成励磁单元20的上臂的晶体管31、33、35截止,而构成下臂的晶体管32、34、36导通。然后,三相驱动线圈11、13和15的各第一端与dc电源的正极侧电隔离,并且耦合到dc电源的负极侧(接地)。结果,驱动线圈11、13和15互相短路。这时,马达进入制动状态,它显示为图2中的非正常励磁状态。
同时,第二励磁信号输出单元42可以存储第二非正常励磁模式,该励磁模式输出处于电平H的信号UH1b、VH1b、WH1b以及处于电平L的UL1b、VL1b和WL1b。在这种情况下,构成励磁单元20的上臂的晶体管31、33、35导通,而构成下臂的晶体管32、34、36截止。然后,驱动线圈11、13和15的各第一端与dc电源的负极侧(接地)电隔离,并且连接到dc电源的正极侧。结果,驱动线圈11、13和15互相短路,并且马达进入制动状态。
根据从布置在马达中的位置传感器提供的转子位置检测信号的变化,旋转方向检测器60检测马达的旋转方向,然后输出给定信号DM。过载电流检测器70检测励磁单元20中流动的电流,并且当检测到超过给定值的电流时,检测器70输出给定信号OC。
第二信号选择器52根据从旋转方向检测器60提供的信号DM从来自第一励磁信号输出单元41的信号或来自第二励磁信号输出单元42的信号中任选一个,然后输出所选择的信号到第一信号选择器51。
第一信号选择器51根据从过载电流检测器70提供的信号OC从来自励磁信号生成器90的信号或来自第二信号选择器52的信号中任选一个,然后输出信号UH、UL、VH、VL、WH、WL到励磁单元20。那些信号在栅极驱动器27转换为足以激活晶体管31、32、33、34、35和36的电压,然后提供给相应的晶体管的栅极。
以下参考图2说明上述马达驱动器的操作,该图显示从正常励磁到非正常励磁转换时信号的变化。
正常励磁期间,马达的驱动线圈由具有120度电角的矩形励磁波形驱动;但是,当过载电流检测器70检测到过载电流时,正常励磁变为非正常励磁。这个变化由下面的第一信号选择器51的操作根据从过载电流检测器70提供的信号OC执行非正常励磁周期期间,根据来自过载电流检测器70的信号OC,第一信号选择器51从正常励磁周期期间从励磁信号生成器90提供的信号UH0、UL0、VH0、VL0、WH0、WL0将输出信号UH、UL、VH、VL、WH、WL切换为从第二信号选择器52提供的信号UH1、UL1、VH1、VL1、WH1、WL1。
进而根据接着从旋转方向检测器60提供的信号DM,第二信号选择器52选择从第一励磁信号输出单元41提供的UH1a、UL1a、VH1a、VL1a、WH1a、WL1a(第一非正常励磁模式)或从第二励磁信号输出单元42提供的UH1b、UL1b、VH1b、VL1b、WH1b、WL1b(第二非正常励磁模式)的任一个,作为输出信号UH1、UL1、VH1、VL1、WH1、WL1。
由本发明的马达驱动器驱动的马达安装在,例如空气调节器的室外单元中,并且假定它的驱动对象(被驱动单元)是风扇。那么,强气流如台风可能使风扇反方向旋转(与正常励磁波形的驱动方向相反),并且马达因此反方向旋转。
在这个状态中,当过载电流检测器70检测到过载电流时,截止励磁单元20的所有晶体管31-36可以减小流经驱动线圈11、13、15的电流。因此,第二信号选择器52从第一励磁信号输出单元41选择信号(第一非正常励磁模式),并且第一信号选择器51从第二信号选择器52选择信号(在这种情况下,第一非正常励磁模式),因此截止励磁单元20的所有晶体管31-36。因此对驱动线圈的电流调整的功能有效。这个操作类似于现有技术的操作,并且伴随听得见的噪声;但是罕见的是马达因为强气流反方向旋转,并且强气流还产生其它噪声,该噪声能够抵消听得见的噪声。
接下来,马达的(由正常励磁波形旋转的)正旋转期间,当马达电流增大并且检测到过载电流时,第二信号选择器52从第二励磁信号输出单元42(第二非正常励磁模式)选择信号。进而,第一信号选择器51选择从第二信号选择器52提供的信号(在这种情况下,第二非正常励磁模式)。那些选择截止构成励磁单元20的上臂的晶体管31、33、35,并且导通构成下臂的晶体管32、34、36。结果,驱动线圈11、13、15与dc电源的正极侧隔离,并且那些线圈互相短路。如此,在正旋转的情况下,不必为减小线圈电流截止所有晶体管,并且电流调整仍然有效地工作。这个操作不涉及如图2中所示的施加到驱动线圈的电压U、V、W的猛烈变化,使得噪声可被抑制。
如上所述,当电流调整功能对马达中的过载电流保持有效时,本发明可以减小噪声。
这个实施例中的各种信号处理可以由硬件完成,如模拟或数字电路。它们也可以使用微机、数字信号处理器(DSP)由软件完成。信号处理电路可以集成到IC或LSI中。
上述示范性的实施例不仅当马达由具有120度电角的矩形励磁波形驱动时有效,而且由其它波形如150度电角或正弦励磁波形驱动时也有效。当使用脉冲宽度调制(PWM)驱动或脉冲幅度调制(PAM)驱动时这个实施例也有效。
接下来,以下说明由本发明的马达驱动器驱动的马达,以及使用由马达驱动的非驱动部分如风扇的装置的几个例子。在下面的说明中,马达驱动器独立于马达;但是它可以合并马达。
图3A显示根据本发明的这个实施例的空气调节器的室内单元的结构,而图3B显示根据这个实施例的空气调节器的室外单元的结构。
在图3A中,室内单元301包括其中的马达301,并且作为被驱动部分的交叉流(cross-flow)风扇312连接到由马达驱动器314驱动的马达301的轴。马达驱动器314为马达301提供动力以旋转,这伴随着交叉流风扇312的旋转。风扇312的旋转将由室内热交换器(未显示)调节的空气吹到室内。当电流调整功能对马达中的过载电流保持有效时,使用前面实施例中说明的马达驱动器作为马达驱动器314允许减小室内单元的噪声。
在图3B中,室外单元320包括其中的马达302,并且作为被驱动部分的螺旋推进器风扇322连接到由马达驱动器324驱动的马达302的轴。马达驱动器324为马达302提供动力以旋转,这伴随着螺旋推进器风扇322的旋转。风扇322的旋转将空气吹到室外的热交换器(未显示)。当电流调整功能对马达中的过载电流保持有效时,使用前面实施例中说明的马达驱动器作为马达驱动器324允许减小室外单元的噪声。
图4显示根据本发明的这个实施例的热水器的结构。在图4中,热水器330包括其中的马达303,并且作为被驱动部分的风扇332连接到由马达驱动器334驱动的马达303的轴。马达驱动器334为马达303提供动力以旋转,这伴随着风扇332的旋转。风扇332的旋转将燃烧所必需的空气吹到燃料蒸发室(未显示)。当电流调整功能对马达中的过载电流保持有效时,使用前面实施例中说明的马达驱动器作为马达驱动器334允许减小热水器的噪声。
图5显示根据本发明的这个实施例的空气清洁器的结构。在图5中,空气清洁器340包括其中的马达304,并且作为被驱动部分的空气循环风扇342连接到由马达驱动器344驱动的马达304的轴。马达驱动器344为马达304提供动力以旋转,这伴随着风扇342的旋转。风扇342的旋转使空气循环。当电流调整功能对马达中的过载电流保持有效时,使用前面实施例中说明的马达驱动器作为马达驱动器344允许减小热水器的噪声。
如上所述,当电流调整功能对马达中的过载电流保持有效时,在各种装置中使用由本发明的马达驱动器驱动的马达允许减小该装置的噪声。
产业上的可利用性本发明的马达驱动器包含下面的元件(a)励磁单元,用于提供电流给马达的驱动线圈;(b)励磁信号生成器,用于生成正常生成模式;(c)第一励磁信号输出单元,其中存储第一非正常励磁模式;(d)第二励磁信号输出单元,其中存储不同于第一模式的第二非正常励磁模式;(e)第一信号选择器,用于选择要提供给励磁单元的信号;(f)第二信号选择器,用于选择要提供给第一信号选择器的信号;(g)旋转方向检测器,用于检测马达旋转方向;以及(h)过载电流检测器,用于检测马达的过载电流。
第一信号选择器在输出所选择的信号之前,根据来自过载电流检测器的信号从来自励磁信号生成器的信号或来自第二信号选择器的信号中任选一个。第二信号选择器在输出所选择的信号之前,根据来自旋转方向检测器的信号从来自第一励磁信号输出单元的信号或来自第二励磁信号输出单元的信号中任选一个。
当电流调整功能对马达中的过载电流保持有效时,在各种装置中使用由本发明的马达驱动器驱动的马达允许减小该装置的噪声。
权利要求
1.一种马达驱动器,包含(a)励磁单元,用于提供电流给马达的驱动线圈;(b)励磁信号生成器,用于生成励磁单元对驱动线圈执行的正常生成模式;(c)第一励磁信号输出单元,其中存储第一非正常励磁模式;(d)第二励磁信号输出单元,其中存储不同于第一模式的第二非正常励磁模式;(e)旋转方向检测器,用于检测马达的旋转方向;(f)过载电流检测器,用于检测马达的电流;(g)第一信号选择器,用于选择要提供给励磁单元的信号;以及(h)第二信号选择器,用于选择要提供给第一信号选择器的信号,其中,第一信号选择器从励磁信号生成器接收信号,从第二信号选择器接收信号,以及从过载电流检测器接收信号,然后在输出所选择的信号之前,根据来自过载电流检测器的信号从来自励磁信号生成器的信号或来自第二信号选择器的信号中任选一个,其中,第二信号选择器从第一励磁信号输出单元接收信号,从第二励磁信号输出单元接收信号,以及从旋转方向检测器接收信号,然后在输出所选择的信号之前,根据来自旋转方向检测器的信号从来自第一励磁信号输出单元的信号或来自第二励磁信号输出单元的信号中任选一个。
2.如权利要求1所述的马达驱动器,其中第一非正常励磁模式用于控制励磁单元中的励磁元件,使得驱动线圈可以开路,而第二非正常励磁模式用于控制励磁单元中的励磁元件,使得驱动线圈可以互相短路。
3.一种马达,由如权利要求1所述的马达驱动器驱动。
4.一种马达,由如权利要求2所述的马达驱动器驱动。
5.一种装置,包括由如权利要求3所述的马达驱动的被驱动部分。
6.一种装置,包括由如权利要求4所述的马达驱动的被驱动部分。
7.如权利要求5所述的装置,其中被驱动部分是风扇。
8.如权利要求6所述的装置,其中被驱动部分是风扇。
全文摘要
一种马达驱动器,包括第一信号选择器和第二信号选择器。第一信号选择器用于选择要提供给驱动线圈的励磁单元的信号,并且根据来自过载电流检测器的信号,选择从励磁信号生成器提供的正常励磁模式信号或来自第二信号选择器的信号的任一个。第二信号选择器根据来自旋转方向检测器的信号,从来自第一励磁信号输出单元的第一非正常励磁模式信号或来自第二励磁信号输出单元的第二非正常励磁模式信号中任选一个。
文档编号H02P6/10GK1799191SQ20048001511
公开日2006年7月5日 申请日期2004年4月27日 优先权日2003年6月18日
发明者杉浦贤治, 八十原正浩 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1