冷冻循环装置的制作方法

文档序号:7289254阅读:91来源:国知局
专利名称:冷冻循环装置的制作方法
技术领域
本发明涉及一种具备膨胀机的冷冻循环装置。
背景技术
近年来,在驱动空气调节器中的压缩机等的电动机的装置中,从地球环境保护的观点出发,降低消耗电能的必要性在增大。作为降低其消耗电能的技术之一,有一种从由制冷剂的膨胀能量所驱动的膨胀机回收动力,利用该回收的动力作为驱动压缩机用的辅助动力的冷冻循环装置(例如,参照专利文献1)。
图4表示了专利文献1所公开的以往冷冻循环装置的系统结构。该冷冻循环装置由压缩制冷剂的压缩机1、凝缩制冷剂的凝缩器3、蒸发制冷剂的蒸发机4、设置在凝缩器3与蒸发器4之间并由制冷剂的膨胀能量驱动的膨胀机2构成;膨胀机2的膨胀涡轮2a,经由动力轴2c与发电机2d直接连接。来自交流电源11的交流电能,通过第一转换器41变换成直流电能,该直流电能通过逆变器16变换成交流电能,作为驱动压缩机1的动力源。
另一方面,由制冷剂的膨胀能量而被驱动的膨胀涡轮2a,经由动力轴2c驱动发电机2d,从发电机2d得到的交流电能被输入到第二转换器42。该第二转换器42将从发电机2d得到的交流电能变换成直流电能,该直流电能经由逆变器16作为用于驱动压缩机1的辅助动力而利用。
然而,在专利文献1的结构中,由于没有控制膨胀涡轮2a的转速、即经由动力轴2c控制发电机2d的转速的机构,所以,在膨胀涡轮2a启动时,一旦压缩机1被驱动而产生的膨胀能量超过处于停止状态的膨胀涡轮2a的静止摩擦力,则膨胀涡轮2a的转速会急剧上升。结果存在以下问题,即,从发电机2d得到的电能急剧增大,不仅在该电能超过第二转换器42、逆变器16的元件的容许值时,元件会受到破坏,而且在转速超过膨胀涡轮2a的容许值时,膨胀涡轮2a也会被破坏。
因此,需要一种控制发电机2d转速的机构,近年来,从地球环境保护的观点出发,作为发电机采用了在转子中配置了永久磁铁的高效同步发电机,为了控制该同步发电机的转速,需要一种基于转子的位置信息进行PWM控制的可变速转换器(以下称作“PWM转换器”)等。尤其在应用于专利文献1所述的冷冻循环装置的膨胀机中的发电机的情况下,由于难以安装用于检测转子的磁极位置的位置传感器,所以,考虑通过推定同步发电机的定子线圈所产生的感应电压,来推定转子的磁极位置的方法(例如,参照非专利文献1)。
图5表示了非专利文献1所记载的风力发电系统的结构。嵌入式永磁同步发电机52(附图标号为IPMSG),通过经由齿轮连接的风车51而被驱动。这里,在位置/速度推定部54中,通过根据将来自电流检测器20a、20b的检测电流iu、iv利用推定位置θ进行坐标变换后的γ-δ轴电流iγ、iδ和电压指令值vd*、vq*,采用内部所具有的嵌入式永磁同步发电机52的模型,推定嵌入式永磁同步发电机52的感应电压,从而推定嵌入式永磁同步发电机52的转子位置θ/速度ω。最大电能追踪控制部55接受嵌入式永磁同步发电机52的推定速度ω导出转矩指令Tg*,最大效率控制部56接受转矩指令Tg*,导出嵌入式永磁同步发电机52的损失为最小的电流指令id*、iq*。在嵌入式永磁同步发电机52中流动的电流,由电压指令制作部57进行电流反馈控制,制作用于向嵌入式永磁同步发电机52施加的电压指令值vd*、vq*。基于利用推定位置θ对该电压指令值vd*、vq*进行坐标变换后的3相电压指令值vu*~vw*使PWM转换器53工作,来控制同步发电机的转速。
然而,即使在将非专利文献1所述的系统结构应用于专利文献1所述的冷冻循环装置的情况下,在膨胀涡轮启动时,一旦压缩机被驱动而产生的膨胀能量超过处于停止状态的膨胀涡轮的静止摩擦力,由于膨胀涡轮的转速急剧上升,所以,难以与急剧的转速对应来推定同步发电机的转子的磁极位置。进而,当在感应电压的推定过程中所使用的检测值等被叠加了噪音的情况下,或因外界因素而无法正常驱动同步发电机的情况下,需要判定运转状态为异常。然而,由于以往的结构中不具备判定运转状态为异常的机构,因此存在着难以判定异常的问题。
专利文献1特开昭61-29647号公报非专利文献1平成14年电气协会全国演讲大会论文集(第四分册)、第209~210页发明内容本发明为了解决上述以往问题,其目的在于提供一种冷冻循环装置,通过推定膨胀机所具备的旋转机的转子的磁极位置来控制旋转机的转数,并且,实现包含启动时在内的可靠性高的膨胀机的驱动。
为了解决上述以往的问题,本发明的冷冻循环装置,具备压缩制冷剂的压缩机;凝缩制冷剂的凝缩器;蒸发制冷剂的蒸发器;膨胀机,其设置在凝缩器与所述蒸发器之间,由制冷剂的膨胀能量而驱动;和旋转机控制机构,其包含可以作为整流器以及逆变器而工作的电能变换器,经由动力轴对与膨胀机直接连接的旋转机的转速进行控制,通过在使压缩机启动之前由旋转机控制机构对旋转机进行牵引运转,使膨胀机启动。
由此,在膨胀机启动时,可以防止一旦压缩机被驱动而产生的膨胀能量超过膨胀机的静止摩擦力,膨胀机的转速急剧上升,且能够实现稳定的膨胀机的启动。
本发明的冷冻循环装置,通过推定膨胀机所具备的旋转机的转子的磁极位置,控制旋转机的转速,且可以实现包含启动在内的可靠性高的膨胀机的驱动。
本发明之一是一种冷冻循环装置,其特征在于,包含压缩制冷剂的压缩机;凝缩制冷剂的凝缩器;蒸发制冷剂的蒸发器;膨胀机,其被设置在凝缩器与上述蒸发器之间,通过制冷剂的膨胀能量而被驱动;和旋转机控制机构,其含有可以作为整流器和逆变器而工作的电能变换器,经由动力轴控制与膨胀机直接连接的旋转机的转速,在使压缩机启动之前,通过由旋转机控制机构对旋转机进行牵引运转,使膨胀机启动。
由此,在膨胀机启动时,可以防止一旦压缩机被驱动而产生的膨胀能量超过膨胀机的静止摩擦力,膨胀机的转速急剧上升,由此,可以实现稳定的膨胀机的启动。
本发明之二是根据本发明之一的冷冻循环装置,旋转机控制机构也可以具备电流检测机构,其检测在上述旋转机的定子线圈中流动的电流;感应电压推定机构,其根据向旋转机施加的施加电压的值和由电流检测机构所检测的电流值,推定旋转机中所产生的感应电压;和转子位置速度检测机构,其基于由感应电压推定机构所推定的感应电压值,推定旋转机的转子磁极位置与速度。由此,由于不用安装编码器和解析器这样的检测转子的磁极位置的位置传感器,所以,可以实现成本降低以及可靠性的提高。
本发明之三根据本发明之二的冷冻循环装置,旋转机控制机构还可以具备正弦波驱动机构,其基于旋转机的转速指令值与由转子位置速度检测机构所推定的推定速度之间的速度误差、由电流检测机构所检测的旋转机的相电流检测值、和由转子位置速度检测机构所推定的磁极位置,运算向上述旋转机施加的施加电压的值。由此,可以更加确切地得到与第二发明同样的效果。
本发明之四根据本发明之二的冷冻循环装置,具备异常判定机构,其基于由感应电压推定机构所推定的感应电压值,判定旋转机的运转状态是否异常,在由旋转机控制机构对旋转机进行牵引旋转之后,当由异常判定机构判定旋转机的运转状态为异常时,立即使旋转机的运转停止,仅在由异常判定机构判定为旋转机的运转状态没有异常时才可使压缩机启动。由此,由于可以使膨胀机确切地启动,所以,可实现在膨胀机启动之际可靠性的提高。
本发明之五根据本发明之四的冷冻循环装置,异常判定机构,在持续规定时间,规定转速的感应电压值变成规定值以下时,也能够判定旋转机的运转状态为异常。由此,在因感应电压变得微小而导致转子的磁极位置的推定产生异常时,由于在该判定之后可以迅速执行异常处理,所以,可以实现可靠性高的膨胀机的驱动。
本发明之六根据本发明之四的冷冻循环装置,异常判定机构,在持续规定时间,感应电压值超过相对转速采用一次函数所设定的感应电压范围时,也可以判定旋转机的运转状态为异常。由此,在所有的转速中产生异常的情况下,由于在该判定之后可以迅速执行异常处理,所以,可以实现可靠性高的膨胀机的驱动。
本发明之七是根据本发明之四~之六中任意一项的冷冻循环装置,异常判定机构也可以在由旋转机控制机构对旋转机进行牵引控制之后的规定时间,不判定旋转机运转状态的异常。由此,不会贻误旋转机启动之后的异常判定,可以实现可靠性高的膨胀机的驱动。
本发明之八根据本发明之一~之六中任意一项的冷冻循环装置,在压缩机启动之后,通过由旋转机控制机构使旋转机再生运转,从膨胀机回收动力,将所回收的动力作为用于驱动压缩机的辅助动力而使用。由此,可以大幅度降低压缩机的动力,能够实现节省能源化。
本发明之九根据本发明之四~之六中任意一项的冷冻循环装置,异常判定机构也可以在启动压缩机之后,当由旋转机控制机构使旋转机再生旋转之际,在判定旋转机的运转状态为异常时立即停止旋转机的运转,并且,使压缩机也与旋转机同时停止运转。由此,即使当正在再生旋转的旋转机的运转状态产生异常的情况下,由于也在该判定之后迅速执行异常处理,并且,还同时使压缩机也停止运转,所以,可以防止膨胀能量增大导致膨胀机的转速增大,由此,可实现可靠性高的膨胀机的驱动。


图1是本发明第一实施方式中的冷冻循环装置的系统结构图。
图2是本发明第二实施方式中的冷冻循环装置的系统结构图。
图3是本发明第二实施方式中的冷冻循环装置的异常判定部的说明图。
图4是以往的冷冻循环装置的系统结构图。
图5是以往的风力发电系统的系统结构图。
图中1—压缩机,2—膨胀机,2a—膨胀涡轮,2b—旋转机,2c—动力轴,2d—发电机,3—凝缩器,4—蒸发器,11—交流电源,12—整流电路,13—平滑电容器,14—运转指令部,15—压缩机控制装置,16—逆变器,17—逆变器控制部,18—旋转机控制装置,19—电能变换器,20a、20b—电流检测器,21—电流检测部,22—正弦波驱动部,23—感应电压推定部,24—转子位置速度检测部,25—PWM信号生成部,26—异常判定部,41—第一转换器,42—第二转换器,51—风车,52—嵌入式永磁同步发电机(IPMSG),53-PWM转换器,54-位置/速度推定部,55-最大电能追踪控制部,56-最大效率控制部,57-电压指令制作部。
具体实施例方式
下面,参照附图对本发明的实施方式进行说明。另外,并非通过该实施方式限定本发明。
(第一实施方式)图1表示本发明第一实施方式的冷冻循环装置的系统结构。该冷冻循环装置由压缩制冷剂的压缩机1、凝缩制冷剂的凝缩器3、蒸发制冷剂的蒸发器4、设置在凝缩器3与蒸发器4之间并通过制冷剂的膨胀能量而被驱动的膨胀机2构成,膨胀机2的膨胀涡轮2a经由动力轴2c与旋转机2b直接连接。
而且,来自交流电源11的交流电能在通过整流电路12变换成直流电能、通过平滑电容器13使电压平滑之后,该直流电能由逆变器16变换成交流电能,作为驱动压缩机1的动力源。压缩机控制装置15包括上述逆变器16、生成用于驱动逆变器16的驱动信号的逆变器控制部17。逆变器控制部17基于从后述的运转指令部14输入的压缩机1的转速指令值cr*,生成用于驱动逆变器16的驱动信号。
另一方面,由制冷剂的膨胀能量所驱动的膨胀涡轮2a,通过经由动力轴2c驱动旋转机2b而产生交流电能。所产生的交流电能,基于来自运转指令部14的旋转机2b的转速指令值ω*,由后述的旋转机控制装置18执行再生运转(regenerative running),经由电能变换器19而变换成直流电能,该直流电能在施加给平滑电容器13的两端之后,经由逆变器16被作为用于驱动压缩机1的辅助动力而使用。
这里,对旋转机控制装置18的构成以及动作进行说明。在从旋转机2b产生的交流电能的输出布线中经由电流检测器20a、20b连接有电流检测部21,用于检测旋转机2b的相电流检测值(iu、iv、iw)。旋转机控制装置18还包括运算旋转机2b的施加电压指令值(vu*、vv*、vw*)的正弦波驱动部22、推定旋转机2b的定子线圈的各相所产生的感应电压的感应电压推定部23、推定旋转机2b中的转子的磁极位置以及速度的转子位置速度检测部24、和生成用于驱动电能变换器19的驱动信号的PWM信号生成部25。这里,电能变换器19可以作为整流器以及逆变器而工作。
在旋转机控制装置18中,为了满足依照指令的转速,正弦波驱动部22,基于作为目标转速的旋转机2b的转速指令值ω*与由转子磁极位置速度检测部24所推定的推定速度ω之间的速度误差、和由电流检测器20a、20b以及电流检测部21所检测的旋转机2b的相电流检测值(iu、iv、iw)、以及由转子磁极位置速度检测机构24所推定的磁极位置θ,来运算旋转机2b的施加电压指令值(vu*、vv*、vw*)。感应电压推定部23基于电流检测值(iu、iv、iw)、和电压指令值(vu*、vv*、vw*),推定旋转机2b的定子线圈的各相所生成的感应电压。转子位置速度检测部24,使用由感应电压推定部23所推定的感应电压,来推定旋转机2b中的转子的磁极位置以及速度。PWM信号生成部25接受电压指令值(vu*、vv*、vw*),生成用于驱动电能变换器19的驱动信号。
在本发明第一实施方式中的冷冻循环装置中,当膨胀涡轮2a启动时,为了防止膨胀涡轮2a的转速急剧上升,在通过压缩机控制装置15使压缩机1启动之前,通过由旋转机控制装置18对旋转机进行牵引运转(powerrunning)来使膨胀涡轮2a启动。
这里,虽然在压缩机1处于停止状态时不产生膨胀能量,膨胀涡轮2a不被驱动,但是使处于停止状态的旋转机2b再生运转在物理上是不可能实现的。因此,需要通过由旋转机控制装置18对旋转机2b进行牵引运转来使膨胀涡轮2a启动。以下,在对旋转机2b进行牵引运转的情况说明旋转机控制装置18的具体动作之后,针对再生运转的情况仅说明与牵引运转的情况之间的不同点。
首先,在正弦波驱动部22中,按照由运转指令部14提供的旋转机2b的转速指令值ω*与由转子磁极位置速度检测部24所推定的例如当前的推定速度ω之间的速度误差为零的方式,采用速度控制增益(KPW速度控制比例增益,KIW速度控制积分增益),通过式(1)所表示的PI控制来运算电流指令值I*。
I*=KPW·(ω*-ω)+KIW·(ω*-ω) (1)
另外,在本实施方式中,虽然采用了由转子磁极位置速度检测部24所推定的当前的推定速度ω,但在特性上没有影响的范围内,也可以采用先前(过去)的推定速度。
接着,使用运算后的电流指令值I*和预先设定的电流指令相位βT,通过式(2)、式(3)的运算求出dq轴电流指令值(id*、iq*)。
id*=-I*·sin(βT) (2)iq*=I*·cos(βT) (3)这里,电流指令相位βT是0~90度之间的某个设定的角度,例如在根据预先设定的模式等进行导出时,由正弦波驱动部22决定。而且,在采用预先设定的固定值的情况下,也可以存储在正弦波驱动部22中。并且,为了预先设定模式,例如可以采用能够实现使旋转机2b的效率成为最佳的βT的模式,所述旋转机2b的效率使用与旋转机2b的电流相关的值(I*、iu~iw、id、iq等)、与旋转机2b的转速相关的值(ω*、ω等),相对这些值中的任一个通过试验等而导出,也可以通过例如与上述值相关的一次函数等表示该模式。
接着,通过使用dq轴电流指令值(id*、iq*)与由转子磁极位置速度推定机构24所推定的当前磁极位置θ,根据下述式(4)~式(6)的运算进行2相-3相变换,来求出定子线圈的相电流指令值(iu*、iv*、iw*)。另外,关于2相-3相变换,由于是公知的方法因此省略说明。
iu*={(2/3)}·{id*·cosθ}-iq*·sinθ} (4)iv*={(2/3)}·{id*·cos(θ-120°)-iq*·sin(θ-120°)} (5)iw*={(2/3)}·{id*·cos(θ+120°)-iq*·sin(θ+120°)} (6)鉴于此,按照相电流指令值(iu*、iv*、iw*)与从电流检测器20a、20b以及电流检测部21所得到的相电流检测值(iu、iv、iw)之间的电流误差为零的方式,采用电流控制增益(KPKn、KIKn、n=1、2、3(3相份)),通过由式(7)~式(9)所表示的PI控制,运算电压指令值(vu*、vv*、vw*)vu*=KPK1·(iu*-iu)+KIK1·∑(iu*-iu)(7)vv*=KPK2·(iv*-iv)+KIK2·∑(iv*-iv)(8)vw*=KPK3·(iw*-iw)+KIK3·∑(iw*-iw)(9)另外,也可以在对相电流检测值(iu、iv、iw)进行3相-2相变换求出dq轴电流检测值(id、iq),按照dq轴电流指令值(id*、iq*)与dq轴电流检测值(id、iq)之间的电流误差为零的方式,通过PI控制求出dq轴电压指令值(vd*、vq*)之后,对dq轴电压指令值(vd*、vq*)进行2相-3相变换求出相电压指令值(vu*、vv*、vw*)。这里,针对3相-2相变换,由于与2相-3相变换同样是公知的,因此也省略其说明。
具体而言,dq轴电流指令值(id、iq)是通过式(10)、式(11)的运算求出的。
id={(2)}·{iu·sin(θ+60°)+iv·sinθ}(10)iq{(2)}·{iu·cos(θ+60°)+iv·cosθ)}(11)而且,dq轴电压指令值(vd*、vq*)是采用电流控制增益(KPDd轴电流比例增益、KIDd轴电流积分增益,KPQq轴电流比例增益、KIQq轴电流积分增益),通过式(12)、式(13)的运算求出的。
vd*=KPD·(id*-id)+KID·∑(id*-id) (12)vq*=KPQ·(iq*-iq)+KIQ·∑(iq*-iq) (13)因此,通过对dq轴电压指令值(vd*、vq*)进行2相-3相变换,由式(14)~式(16)的运算求出相电压指令值(vu*、vv*、vw*)。
vu*={(2/3)}·{vd*·cosθ-vq*·sinθ}(14)vv*={(2/3)}·{vd*·cos(θ-120°)-vq*·sin(θ-120°)} (15)vw*={(2/3)}·{vd*·cos(θ+120°)-vq*·sin(θ+120°)} (16)接着,在本发明的第一实施方式中,对基于感应电压值推定部23的旋转机2b的感应电压的推定方法进行说明。在各相线圈中感应的感应电压值(eu、ev、ew),是使用相电流检测值(iu、iv、iw)和相电压指令值(vu*、vv*、vw*),根据式(17)~(19)的运算求出的。
eu=vu*-R·iu-L·d(iu)/dt (17)ev=vv*-R·iv-L·d(iv)/dt (18)ew=vw*-R·iw-L·d(iw)/dt (19)这里,R为旋转机2b的线圈每一相的电阻,L为线圈的电感。并且,d(iu)/dt、d(iv)/dt、d(iw)/dt分别为iu、iv、iw的时间微分,若展开式(17)~(19)则得到下式。
eu=vu*-R·iu-(la+La)·d(iu)/dt-Las·cos(2θ)·d(iu)/dt-Las·iu·d{cos(2θ)}/dt+0.5·La·d(iv)/dt-Las·cos(2θ-120°)·d(iv)/dt-Las·iv·d{cos(2θ-120°)}/dt+0.5·La·d(iw)/dt-Las·cos(2θ+120°)·d(iw)/dt-Las·iw·d{cos(2θ+120°)}/dt(20)
ev=vv*-R·iv-(la+La)·d(iv)/dt-Las·cos(2θ+120°)·d(iv)/dt-Las·iv·d{cos(2θ+120°)}/dt+0.5·La·d(iw)/dt-Las·cos(2θ)·d(iw)/dt-Las·iw·d{cos(2θ)}/dt+0.5·La·d(iu)/dt-Las·cos(2θ-120°)·d(iu)/dt-Las·iu·d{cos(2θ-120°)}/dt (21)ew=vw*-R·iw-(la+La)·d(iw)/dt-Las·cos(2θ-120°)·d(iw)/dt-Las·iw·d{cos(2θ-120°)}/dt+0.5·La·d(iu)/dt-Las·cos(2θ+120°)·d(iu)/dt-Las·iu·d{cos(2θ+120°)}/dt+0.5·La·d(iv)/dt-Las·cos(2θ)·d(iv)/dt-Las·iv·d{cos(2θ)}/dt (22)这里,R为线圈每一相的电阻,la为线圈每一相的漏电感,La为线圈每一相的有效电感的平均值,Las为线圈每一相的有效电感的振幅。而且,d(iu)/dt、d(iv)/dt、d(iw)/dt由1次欧拉近似求出。另外,u相电流iu是改变了v相电流iv与w相电流iw之和的符号的值。并且,若将式(20)~式(22)简化,则得到以下所示的式(23)~式(25)。这里,假定相电流检测值(iu、iv、iw)为正弦波,根据电流指令振幅I*与电流指令相位βT制作相电流检测值(iu、iv、iw)并简略化。本实施方式中,在感应电压推定部23中,根据式(23)~式(25)求出感应电压推定值(eu、ev、ew)。
eu=vu*+R·I*·sin(θ+βT)+1.5·(la+La)·cos(θ+βT)-1.5·Las·cos(θ-βT)(23)ev=vv*+R·I*·sin(θ+βT-120°)+1.5·(la+La)·cos(θ+βT-120°)-1.5·Las·cos(θ-βT-120°) (24)ew=vw*+R·I*·sin(θ+βT+120°)+1.5·(la+La)·cos(θ+βT+120°)-1.5·Las·cos(θ-βT+120°) (25)接着,在转子位置速度推定部24中,采用感应电压推定值(eu、ev、ew)推定旋转机2b中的转子的磁极位置以及速度。转子位置速度推定部24,通过采用感应电压的误差对旋转机控制装置18所识别的推定位置θ进行补正,使推定位置θ收敛成真值并求出其值。而且,此后将生成推定速度ω。因此,通过下式求出各相的感应电压基准值(eum、evm、ewm)。其中,通过与eu、ev、ew的振幅值一致来求出感应电压振幅值em。
eum=em·sin(θ+βT) (26)evm=em·sin(θ+βT-120°)(27)ewm=em·sin(θ+βT+120°)(28)求出按照这样求出的感应电压基准值esm(s表示相u、v、w)与感应电压推定值es之间的偏差ε,由于如果该偏差ε为0则推定位置θ变成真值,所以,按照使偏差ε收敛成0的方式进行采用了偏差ε的PI运算等求出推定位置θ。并且,通过运算推定位置θ的变动值,求出推定速度ω。
ε=es-esm(s=u、v、w)(29)最后,在PWM信号生成部25中,基于由正弦波驱动部22所导出的相电压指令值(vu*、w*、vw*)生成用于驱动电能变换器19的驱动信号。电能变换器19根据该驱动信号而工作。
这里,对从旋转机控制装置18的牵引运转向再生运转切换的方法进行说明。其能够通过改变向旋转机2b所施加的电压指令值(vu*、vv*、vw*)的相位,实现从牵引运转向再生运转的切换。例如,通过代替牵引运转时的电流指令相位βT而采用(-βT),即使在再生运转时也可以推定旋转机2b的磁极位置以及速度。但是,在通过压缩机控制装置15驱动压缩机1之后,如果由膨胀能量开始驱动膨胀涡轮2a,则由于推定速度ω变大,所以,电流指令值I*减少,在其符号逆转的时刻,需要根据该时刻改变电流指令相位βT的符号,以执行从牵引运转向再生运转的切换。
具体说明,则本发明中由于通过在压缩机之前对膨胀机进行牵引运转使之启动,所以,只要压缩机未启动则膨胀能量看作几乎为零。这里,电流指令值I*如式(1)所示,对转速指令值ω*与推定转速ω之间的速度误差进行比例积分运算(PI控制),在进行牵引运转的情况下(使旋转机作为电动机工作时),虽然I*的大小因转速指令值ω*与推定转速ω之间的速度误差的大小而改变,但由于在启动~稳定状态(ω*≈ω)之间ω*>ω,因此I*为正值。
另外,在稳定状态之后ω*≠ω的情况下,因I*增减而使ω反复增减,以ω*≈ω的方式进行控制。
ω*>ω→I*增加→转矩增加→ω增加→ω*≈ωω*<ω→I*减少→转矩减少→ω减少→ω*≈ω在膨胀机进行牵引运转而启动之后,如果压缩机运转,则因膨胀能量增大,会对膨胀机作用由膨胀能量所加速的力。
I*>0→产生正的转矩→辅助旋转机I*<0→产生负的转矩→制止旋转机因此,在例如膨胀机处于稳定状态(ω*≈ω)时,如果运转压缩机,使膨胀能量增大,则只要没有对旋转机施以制止,由于持续ω*<ω的状态,所以根据式(1)I*减少,通过变成I*<0开始施以制止使得ω减少。之后,如果因膨胀能量而被加速的力与基于I*<0的制止量(I*的大小)平衡,则变成ω*≈ω。
检测电流指令值I*的符号发生了逆转的时刻的具体方法为,通过式(1),时刻计算根据膨胀能量的大小满足ω*≈ω的I*的符号或大小,例如,如果输出再生运转的信号等,则可以检测I*由正变负的时刻。
改变βT的符号的具体方法,基本上是在导出id*、iq*的牵引时(I*>0)的式(2)、式(3)中,代替“βT”仅置换成符号逆转的“-βT”,便得到再生时(I*<0)时的式(2)’和(3)’。
id*=-I*·sin(-βT) 式(2)’iq*=I*·cos(-βT)式(3)’即,在牵引时采用式(2)、式(3)导出id*、iq*的情况下,在再生时,替“βT”代置换成符号逆转的“-βT”,根据上述式(2)’、式(3)’导出id*、iq*。
根据以上结构,在膨胀机2(膨胀涡轮2a)启动时,一旦压缩机1被驱动而产生的膨胀能量超过膨胀机2的静止摩擦力,可以防止膨胀机2的转速急剧上升,从而,可以实现稳定的膨胀机2的启动。
而且,旋转机控制装置18,使用由基于相电压方程式的模型而导出的感应电压推定值与感应电压基准值之间的偏差ε,生成推定位置θ,通过流过正弦波状的相电流,实现可以牵引运转以及再生运转的无位置传感器的正弦波驱动。由此,由于不需要安装编码器或解析器这样的检测转子的磁极位置的位置传感器,所以,可以实现成本降低与可靠性的提高。
并且,在由压缩机控制装置15启动压缩机1之后,通过由旋转机控制装置18使旋转机2b再生旋转,从膨胀机2回收动力,并将所回收的动力作为用于驱动压缩机1的辅助动力而利用,由此,可以大幅度降低压缩机1的动力,由此,可实现节省能源化。
另外,在图1中具备检测旋转机2b的电流的2个电流检测器20a、20b,虽然用于转子的磁极位置以及速度的推定,但当然也可以采用从在联结电能变换器19与平滑电容器13的布线中流过的直流电流,检测旋转机2b的电流等的机构。
而且,虽然图1中对于从运转指令部14提供的旋转机2b的转速指令值ω*,按照追踪旋转机2b的转速的方式执行转速控制,但当然也可以采用控制旋转机2b的转矩等方式。
(第二实施方式)
图2表示本发明第二实施方式中的冷冻循环装置的系统结构。与图1所示的冷冻循环装置相同的结构要素由同一符号表示,并省略重复说明,这里仅针对不同的部分进行描述。
本发明第二实施方式的冷冻循环装置,其特征在于,具备异常判定部26,其基于由感应电压推定部23所推定的感应电压值,判定旋转机2b的运转状态是否异常。即,在通过旋转机控制装置18对旋转机2b进行牵引运转之后,当由异常判定部26判定旋转机2b的运转状态为异常时,基于来自运转指令部14的停止信号立即使旋转机2b的运转停止,仅在由异常判定部26判定旋转机2b的运转状态没有异常时,才由压缩机控制装置15使压缩机1启动。
以下,对异常判定部26的具体动作进行说明。如图3所示,由感应电压推定部23所推定的感应电压振幅值em,原本应该是由旋转机固有的感应电压常数Kem与旋转机的实际速度ωe(如果进行良好的推定则与推定速度ω相等)所决定的Kem×ωe而赋予的。然而,在感应电压的推定所使用的信息中叠加了大的噪音时、或推定偏离较大时等,无法良好地进行感应电压的推定。尤其在旋转机2b脱钩的情况下,由于实际速度ωe为零,所以,感应电压振幅值em成为微小的值。这种情况下,需要迅速判定运转状态为异常,使正弦波驱动部22的驱动输出动作停止。
为了判定这样的异常,本发明的异常判定部26,在以规定的转速(例如15rps)使旋转机2b牵引运转的情况下,持续一定时间(tm),当所推定的感应电压值处于规定值(el)以下时,则判定旋转机2b的运转状态为异常,并将异常信号向运转指令部14输出。运转指令部14接收异常信号并向正弦波驱动部22输出停止信号。正弦波驱动部22接收停止信号,并停止其输出。
而且,优选异常判定部26,在由旋转机控制装置18对旋转机2b进行牵引运转之后的规定时间不判定异常。由此,可以防止因旋转机2b启动之后瞬间的不稳定感应电压而导致异常判定的误检测。
并且,也可以使异常判定部26如下动作。即,在相对旋转机2b的转速而推定的感应电压,持续一定时间(tm)后,低于相对预先设定的转速,由图3的转速余量a以及感应电压余量b所决定的1次直线所表示的感应电压下限值ek(ω)的值时,判定旋转机2b的运转状态为异常,并向运转指令部14输出异常信号。运转指令部14接收异常信号,并向正弦波驱动部22输出停止信号。正弦波驱动部22接收停止信号后停止其输出。由此,可以在所有的转速区域检测脱钩现象。
根据以上结构,由于可以使膨胀机2(膨胀涡轮2a)确切地启动,所以,可实现在膨胀机2启动之际提高可靠性。
并且,在本发明第二实施方式的冷冻循环装置中,异常判定部26,在由压缩机控制装置15启动压缩机1之后,在由旋转机控制装置18使旋转机2b再生旋转之际,若判定旋转机2b的运转状态为异常,则立即使旋转机2b的运转停止,且使压缩机1也与旋转机2b同时停止运转。即使当正在再生旋转的旋转机2b的运转状态产生异常时,由于在该判定之后迅速执行异常处理,并且压缩机也同时停止运转,所以,可以防止膨胀能量增大导致膨胀机的转速增大,由此,可实现可靠性高的膨胀机的驱动。
工业上的可利用性如上所述,本发明的冷冻循环装置,由于通过推定膨胀机所具备的旋转机的转子的磁极位置来控制旋转机的转速,且可以实现包含启动在内的可靠性高的膨胀机的驱动,所以,还可以应用于碳酸气体制冷剂的热泵式热水器等产品中。
权利要求
1.一种冷冻循环装置,具备压缩制冷剂的压缩机;凝缩制冷剂的凝缩器;蒸发制冷剂的蒸发器;膨胀机,其设置在所述凝缩器与所述蒸发器之间,由制冷剂的膨胀能量而被驱动;和旋转机控制机构,其包含可以作为整流器以及逆变器而工作的电能变换器,经由动力轴对与所述膨胀机直接连接的旋转机的转速进行控制,通过在使所述压缩机启动之前,由所述旋转机控制机构对所述旋转机进行牵引运转,使所述膨胀机启动。
2.根据权利要求1所述的冷冻循环装置,其特征在于,所述旋转机控制机构,具备电流检测机构,其检测在所述旋转机的定子线圈中流过的电流;感应电压推定机构,其根据向所述旋转机施加的施加电压的值与由所述电流检测机构所检测的电流值,推定在所述旋转机中产生的感应电压;和转子位置速度检测机构,其基于由所述感应电压推定机构所推定的感应电压值,推定所述旋转机的转子磁极位置与速度。
3.根据权利要求2所述的冷冻循环装置,其特征在于,所述旋转机控制机构具备正弦波驱动机构,该正弦波驱动机构基于旋转机的转速指令值与由所述转子位置速度检测机构所推定的推定速度之间的速度误差、由所述电流检测机构所检测的旋转机的相电流检测值、以及由所述转子位置速度检测机构所推定的磁极位置,运算向所述旋转机施加的施加电压的值。
4.根据权利要求2所述的冷冻循环装置,其特征在于,具备异常判定机构,其基于由所述感应电压推定机构所推定的感应电压值,判定所述旋转机的运转状态是否为异常,在由所述旋转机控制机构对旋转机进行牵引运转之后,当由所述异常判定机构判定所述旋转机的运转状态为异常时,立即使所述旋转机的运转停止,仅在由所述异常判定机构判定所述旋转机的运转状态没有异常时,使所述压缩机启动。
5.根据权利要求4所述的冷冻循环装置,其特征在于,所述异常判定机构,在持续规定时间,而规定转速的所述感应电压值成为规定值以下时,判定所述旋转机的运转状态为异常。
6.根据权利要求4所述的冷冻循环装置,其特征在于,所述异常判定机构,在持续规定时间,而所述感应电压值超过相对转速使用一次函数而设定的感应电压范围时,判定所述旋转机的运转状态为异常。
7.根据权利要求4~6中任意一项所述的冷冻循环装置,其特征在于,所述异常判定机构,在由所述旋转机控制机构对所述旋转机进行牵引运转之后的规定时间,不判定所述旋转机的运转状态的异常。
8.根据权利要求1~6中任意一项所述的冷冻循环装置,其特征在于,在所述压缩机启动之后,通过由所述旋转机控制机构使所述旋转机再生旋转,从所述膨胀机回收动力,将所回收的动力作为用于驱动所述压缩机的辅助动力而使用。
9.根据权利要求4~6中任意一项所述的冷冻循环装置,其特征在于,所述异常判定机构,在所述压缩机被启动之后,在由所述旋转机控制机构使所述旋转机再生运转之际,当判定所述旋转机的运转状态为异常时,立即使所述旋转机的运转停止,且使所述压缩机也与所述旋转机同时停止运转。
全文摘要
提供一种冷冻循环装置,通过推定膨胀机所具备的旋转机的转子磁极位置,控制旋转机的转速,并实现包含启动在内的可靠性高的膨胀机的驱动。包括感应电压推定部(24),其推定膨胀机(2)所具备的旋转机(2b)的定子线圈的各相所产生的感应电压;转子位置速度检测部(25),其使用由感应电压推定部所推定的感应电压,推定旋转机的转子的磁极位置以及速度;和旋转机控制装置(18),其包含可作为整流器以及逆变器工作的电能变换器(19),在使压缩机(1)启动之前,通过由旋转机控制装置使旋转机牵引运转,使膨胀机启动。由此,在膨胀机启动时,可防止一旦压缩机被驱动而产生的膨胀能量超过膨胀机的静止摩擦力,膨胀机的转速急剧上升。
文档编号H02P6/16GK1932411SQ200610129150
公开日2007年3月21日 申请日期2006年9月11日 优先权日2005年9月12日
发明者河地光夫, 土山吉朗 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1