内置式永磁减振、降噪同步电机的制作方法

文档序号:12618835阅读:364来源:国知局
内置式永磁减振、降噪同步电机的制作方法与工艺

本发明涉及电机减振、降噪领域。



背景技术:

能源问题是目前世界各国倍加关注的重点问题之一。我国相继推出了一系列政策和措施来大力提倡和推广新能源的使用。永磁电机所拥有的一些优质性能,不管从体积上、性能上,还是从成本上考虑,都凸显了一定的优越性,因此其愈加受到各行各业的青睐。近几年来,永磁电机作为一种新型能量转换装置,可控性好、调速范围宽、结构简单、功率密度高、稳定可靠,不仅仅被广泛应用到航空航天、舰艇船舶等军用设备,同时也愈加频繁地投入到汽车、家电、医疗、交通等民用设备当中。

无论是用在军事还是民用上,永磁电机同其他传统类型的电机一样,在其运行过程中都会产生振动和噪声。对于军用设备来说,这些振动和噪声会大大削减其隐蔽性和安全性,对于民用设备来说,又会影响到设备的舒适性和耐用性,同时也会影响其附近工作人员的工作效率和身体健康。

因此对永磁电机的减振降噪在电机研究方面一直具有重要的意义。对于永磁同步电机的噪声主要由电磁振动引起,而径向电磁力又是引起振动的主要原因,所以减小电磁力可以有效的抑制电机的振动和噪声。



技术实现要素:

本发明为了有效抑制现有内置永磁同步电机的振动噪声问题,提供了一种内置式永磁减振、降噪同步电机。

该种内置式永磁同步降噪电机包括如下两种方案:

方案一:

内置式永磁减振、降噪同步电机,它包括定子和转子,定子套在转子的外侧,二者同轴,且二者之间存在气隙,定子上的每个齿部所对应的齿顶圆弧,以其齿部的径向中心线为界,划分为两部分,且两部分齿顶圆弧所对应的位置分别定义为:前半齿和后半齿,前半齿、后半齿依次沿逆时针方向排布,前半齿的齿顶圆弧和后半齿的齿顶圆弧的弧度不同。

当转子的旋转方向为逆时针方向时,前半齿的齿顶圆弧的弧度大于后半齿的齿顶圆弧的弧度。

当转子的旋转方向为顺时针方向时,前半齿的齿顶圆弧的弧度小于后半齿的齿顶圆弧的弧度。

所述的转子内部沿周向设置有多个永磁体槽,永磁体槽两个端部对应的位置为隔磁桥,隔磁桥所对应的转子外侧壁开设有凹槽。

方案二:

内置式永磁减振、降噪同步电机,它包括定子和转子,定子套在转子的外侧,二者同轴,且二者之间存在气隙,定子上的每个齿部包括前半齿和后半齿,前半齿、后半齿依次沿逆时针方向排布,且前半齿和后半齿交界处的径向高度存在跳变。

所述的每个齿部的中心位置所对应气隙的宽度大于每个齿部任意一端所对应气隙的宽度。

所述的转子内部沿周向设置有多个永磁体槽,永磁体槽两个端部对应的位置为隔磁桥,隔磁桥所对应的转子外侧壁开设有凹槽。

本发明带来的有益效果是,改善了定子齿所受径向电磁力。一方面削减了径向电磁力的幅值,降低了电机的电磁振动和噪声;另一方面使定子齿受力均匀,减小了前、后半齿受力不均的几率。整体上均有效的降低了电机的振动噪声。

本发明提出的转子开槽结构设计,种开槽方式可抑制永磁体端部漏磁,提高主磁通利用率。且避免了对隔磁桥本身形状的优化过程,更加简单方便。

本发明提出的两种对定子齿部的优化设计结构,在不用对定子齿进行开槽的情况下,即可降低电机的振动噪声,与定子齿顶开槽达到了相同的优化效果,有效的降低了齿槽转矩。在实际加工过程中,更加简单可行。

本发明提出的两种对定子齿部的优化设计结构中,由于优化后的齿顶线位置偏离原定子齿顶线位置,其实际上也形成了一种非均匀气隙结构,可以改善气隙磁场波形,降低了齿谐波含量,降低了电机的转矩脉动。

附图说明

图1为现有技术中内置式永磁同步电机的三维结构示意图;

图2为图1的二维结构示意图;

图3为具体实施方式一所述的内置式永磁降噪同步电机的二维结构示意图;

图4为图3中Ⅲ的局部放大图;

图5为具体实施方式五所述的内置式永磁降噪同步电机的二维结构示意图;

图6为图3中Ⅱ的局部放大图;

图7为转子的三维结构示意图;

图8为转子的二维结构示意图。

具体实施方式

具体实施方式一:参见图3和图4说明本实施方式,本实施方式所述的内置式永磁减振、降噪同步电机,它包括定子1和转子2,定子1套在转子2的外侧,二者同轴,且二者之间存在气隙,定子1上的每个齿部1-1所对应的齿顶圆弧,以其齿部1-1的径向中心线为界,划分为两部分,且两部分齿顶圆弧所对应的位置分别定义为:前半齿1-1-1和后半齿1-1-2,前半齿1-1-1、后半齿1-1-2依次沿逆时针方向排布,前半齿1-1-1的齿顶圆弧和后半齿1-1-2的齿顶圆弧的弧度不同。

本实施方式,本发明所述内置式永磁减振、降噪同步电机主要包括定子1和转子2,其中优化的结构有定子齿部1-1,将现有技术中的内置式永磁同步电机的每个齿部1-1所对应的齿顶圆弧,划分为两部分,且两部分齿顶圆弧所对应的位置分别定义为:前半齿1-1-1和后半齿1-1-2,前半齿1-1-1的齿顶圆弧和后半齿1-1-2的齿顶圆弧的弧度不同,使其减小每个齿部1-1的受力,减小电机的受力,减轻电机振动,从而对电机进行降噪,且现有技术中的内置式永磁同步电机具体参见图1和图2。

本发明改变定子齿下的气隙大小可以改变该区域内磁阻大小,以减小定子齿所受径向电磁力大小及改善其分布状况,达到抑制振动噪声的效果

具体实施方式二:参见图3和图4说明本实施方式,本实施方式与具体实施方式一所述的内置式永磁降噪同步电机的区别在于,当转子2的旋转方向为逆时针方向时,前半齿1-1-1的齿顶圆弧的弧度大于后半齿1-1-2的齿顶圆弧的弧度。

本实施方式中,当转子2的旋转方向(即:磁场旋转的正方向)为逆时针方向时,沿该方向,定子上的每个齿部1-1中,总是前半齿1-1-1先接触磁场,因此当磁场转过定子的一个齿部1-1时,该定子的前半齿1-1-1受气隙磁场作用的时间大于后半齿1-1-2,因此将前半齿1-1-1的齿顶圆弧的弧度设计成大于后半齿1-1-2的齿顶圆弧的弧度,减少前半齿1-1-1的受力,从而对电机进行降噪、减振。

具体实施方式三:本实施方式与具体实施方式一所述的内置式永磁降噪同步电机的区别在于,当转子2的旋转方向为顺时针方向时,前半齿1-1-1的齿顶圆弧的弧度小于后半齿1-1-2的齿顶圆弧的弧度。

本实施方式中,当转子2的旋转方向(即:磁场旋转的正方向)为顺时针方向时,沿该方向,定子上的每个齿部1-1中,总是后半齿1-1-2先接触磁场,因此当磁场转过定子的一个齿部1-1时,该定子的后半齿1-1-2受气隙磁场作用的时间大于前半齿1-1-1,因此将后半齿1-1-2的齿顶圆弧的弧度设计成大于前半齿1-1-1的齿顶圆弧的弧度,减少后半齿1-1-2的受力,从而对电机进行降噪、减振。

具体实施方式四:参见图3、图4、图7和图8说明本实施方式,本实施方式与具体实施方式一、二或三所述的内置式永磁降噪同步电机的区别在于,所述的转子2内部沿周向设置有多个永磁体槽2-1,永磁体槽2-1两个端部对应的位置为隔磁桥,隔磁桥所对应的转子2外侧壁开设有凹槽2-2。

本实施方式,所对应的转子2外侧壁上,开设有凹槽2-2,凹槽2-2形状可为半圆形槽或半椭圆形槽,这种开槽方式可抑制永磁体端部漏磁,提高主磁通利用率。

由于凹槽2-2影响,气隙沿旋转正方向在定子1上的每个齿部1-1下也呈非均匀分布,定子1上的每个齿部1-1的气隙大小可以改变该区域内磁阻大小,以减小定子齿所受径向电磁力大小及改善其分布状况,达到抑制振动噪声的效果。同时对转子结构进行优化,对隔磁桥的两个端部,所对应的转子2外侧壁上,开设有凹槽2-2,减小隔磁桥宽度以增加隔磁桥的磁饱和程度,使磁桥部位磁阻增大,以此来限制永磁体端部漏磁,提高主磁通的利用率,保持电机磁性能和输出转矩不变,且降低电机的转矩波动。

具体实施方式五:参见图5和图6说明本实施方式,本实施方式所述的内置式永磁降噪同步电机的区别在于,它包括定子1和转子2,定子1套在转子2的外侧,二者同轴,且二者之间存在气隙,定子1上的每个齿部1-1包括前半齿1-1-1和后半齿1-1-2,前半齿1-1-1、后半齿1-1-2依次沿逆时针方向排布,且前半齿1-1-1和后半齿1-1-2交界处的径向高度存在跳变。

本实施方式,现有技术中,每个齿部1-1所对应的气隙都是均匀的,使得每个齿部1-1顶端的不同位置受力不同,本发明将前半齿1-1-1和后半齿1-1-2之间存在梯度,从而改变定子1上的每个齿部1-1,在前半齿1-1-1和后半齿1-1-2之间的过渡位置的受力。

前半齿1-1-1和后半齿1-1-2交界处的径向高度存在跳变,跳变高度可根据齿部1-1的大小合理设置。

具体实施方式六:参见图5和图6说明本实施方式,本实施方式与具体实施方式五所述的内置式永磁降噪同步电机的区别在于,所述的每个齿部1-1的中心位置所对应气隙的宽度大于每个齿部1-1任意一端所对应气隙的宽度。

具体实施方式七:参见图7和图8说明本实施方式,本实施方式与具体实施方式五或六所述的内置式永磁降噪同步电机的区别在于,所述的转子2内部沿周向设置有多个永磁体槽2-1,永磁体槽2-1两个端部对应的位置为隔磁桥,隔磁桥所对应的转子2外侧壁开设有凹槽2-2。

本实施方式,所对应的转子2外侧壁上,开设有凹槽2-2,凹槽2-2形状可为半圆形槽或半椭圆形槽,这种开槽方式可抑制永磁体端部漏磁,提高主磁通利用率。

由于凹槽2-2影响,气隙沿旋转正方向在定子1上的每个齿部1-1下也呈非均匀分布,定子1上的每个齿部1-1的气隙大小可以改变该区域内磁阻大小,以减小定子齿所受径向电磁力大小及改善其分布状况,达到抑制振动噪声的效果。同时对转子结构进行优化,对隔磁桥的两个端部,所对应的转子2外侧壁上,开设有凹槽2-2,减小隔磁桥宽度以增加隔磁桥的磁饱和程度,使磁桥部位磁阻增大,以此来限制永磁体端部漏磁,提高主磁通的利用率,保持电机磁性能和输出转矩不变,且降低电机的转矩波动。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1