无源升压网络和应用其的DC‑DC升压变换器的制作方法

文档序号:11928748阅读:330来源:国知局
无源升压网络和应用其的DC‑DC升压变换器的制作方法与工艺

本发明涉及电力电子技术,具体涉及一种无源升压网络和应用其的DC-DC升压变换器。



背景技术:

DC-DC变换器是从电源(举例来说,未经调节的直流输入电压)产生经调节的直流(DC)输出电压的电路。

在电源中,在某些应用场景下需要将电压升压后输出,在不使用开关变换器的前提下对交流电进行升压这对于变换器的设计提出了更大的挑战。同时,为了保证安全,在某些应用场景下需要将DC-DC变换器的输入端口和输出端口隔离。现有的隔离型变换器通常使用变压器以磁隔离的方式进行隔离。但是,变压器的磁芯体积大,不利于电源的小型化。



技术实现要素:

有鉴于此,本发明提供一种无源升压网络和应用其的DC-DC升压变换器,在不使用变压器的前提下,提供隔离的DC-DC升压变换操作。

第一方面,提供一种无源升压网络,用于将具有预定频率的交流电升压后输出,所述无源升压网络包括:

输入端口;

输出端口;

第一无源元件和第二无源元件,串联在所述输入端口的两端之间;以及,

第三无源元件,与所述第二无源元件串联在所述输出端口的两端之间;

其中,所述第一无源元件为电容,所述第二无源元件和第三无源元件为电感;或者,所述第一无源元件为电感,所述第二无源元件和第三无源元件为电容。

优选地,所述第一无源元件连接在所述输入端口的第一端和中间端之间,所述第二无源元件连接在所述中间端和输出端口的第二端之间,所述第三无源元件连接在所述中间端和输出端口的第一端之间,所述输出端口的第二端和所述输入端口的第二端连接。

优选地,所述第一无源元件、第二无源元件和第三无源元件的参数被设置为使得所述无源升压网络的输出阻抗为零。

优选地,所述第一无源元件为电容,所述第二无源元件和第三无源元件为电感,且所述第一无源元件、第二无源元件以及第三无源元件的参数满足:

其中,ω为所述交流电的角频率,C为所述第一无源元件的电容值,L1为所述第三无源元件的电感值,L2为所述第二无源元件的电感值。

优选地,所述第一无源元件为电感,所述第二无源元件和第三无源元件为电容,且所述第一无源元件、第二无源元件和第三无源元件的参数满足:

其中,ω为所述交流电的角频率,L为所述第一无源元件的电感值,C1为所述第三无源元件的电容值,C2为所述第二无源元件的电容值。

优选地,所述第一无源元件为电容,所述第二无源元件和第三无源元件为电感,所述无源升压网络还包括:

第四无源元件,与所述第一无源元件和第二无源元件一同串联在所述输入端口的两端之间;

其中,所述第四无源元件为电容,所述第一无源元件连接在输入端口的第一端和中间端之间,所述第四无源元件连接在所述输入端口的第二端和所述输出端口的第二端之间,所述第二无源元件连接在所述中间端和所述输出端口的第二端之间,所述第三无源元件连接在所述中间端和输出端口的第一端之间。

优选地,所述第一无源元件、第二无源元件、第三无源元件和第四无源元件被设置为使得所述无源升压网络的输出阻抗为零。

优选地,第一无源元件、第二无源元件、第三无源元件和第四无源元件的参数满足:

其中,ω为所述交流电的角频率,Cx为第一无源元件和第四无源元件的电容值,L1为所述第三无源元件的电感值,L2为所述第二无源元件的电感值。

优选地,所述第一无源元件为电感,所述第二无源元件和所述第三无源元件为电容,所述无源升压网络还包括:

第四无源元件,与所述第三无源元件以及第二无源元件一同串联在所述输出端口的两端之间;

其中,所述第四无源元件为电容,所述第一无源元件连接在输入端口的第一端和中间端之间,所述第二无源元件连接在所述中间端和所述输入端口的第二端之间,所述第三无源元件连接在所述中间端和输出端口的第一端之间,所述第四无源元件连接在所述输入端口的第二端和所述输出端口的第二端之间。

优选地,所述第一无源元件、第二无源元件、第三无源元件和第四无源元件被设置为使得所述无源升压网络的输出阻抗为零。

优选地,第一无源元件、第二无源元件、第三无源元件和第四无源元件的参数满足:

其中,ω为所述交流电的角频率,L为所述第一无源元件的电感值,Cx为所述第三无源元件和所述第四无源元件的电容值,C2为所述第二无源元件的电容值。

第二方面,提供一种DC-DC升压变换器,包括:

逆变器,用于生成具有预定频率的交流电;

无源升压网络,与所述逆变器连接,用于将所述具有预定频率的交流电升压后输出;以及,

整流电路,用于将升压后的交流电转换为直流电;

其中,所述无源升压网络为如上所述的无源升压网络。

通过将直流输入电压变换为具有预定频率的交流电,通过电感和电容构成的无源升压网络对交流电进行升压,并通过整流将升压后的交流电变换为直流电输出,可以实现升压变换。同时,本发明实施例的无源升压网络通过在输入或输出支路上设置电容器件,使得无源升压网络的输出端口和输入端口被电容有效隔离,从而可以不使用变压器提供隔离的DC-DC升压变换操作,使得电源体积可以大幅缩小,同时保证电源的安全性。

附图说明

通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:

图1是本发明实施例的DC-DC升压变换器的系统示意图;

图2是本发明一个可选实施方式的逆变器的电路图;

图3是本发明另一个可选实施方式的逆变器的电路图;

图4是本发明一个可选实施方式的整流电路的电路图;

图5是本发明另一个可选实施方式的整流电路的电路图;

图6是本发明一个优选实施方式的DC-DC升压变换器的系统示意图;

图7是本发明实施例的无源升压网络的电路图;

图8是本发明实施例的无源升压网络的等效电路图;

图9是本发明另一个实施例的无源升压网络的电路图;

图10是本发明又一个实施例的无源升压网络的电路图;

图11是本发明又一个实施例的无源升压网络的电路图。

具体实施方式

以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、无源元件和电路并没有详细叙述。

此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。

同时,应当理解,在以下的描述中,“电路”是指由至少一个无源元件或子电路通过电气连接或电磁连接构成的导电回路。当称无源元件或电路“连接到”另一无源元件或称无源元件/电路“连接在”两个节点之间时,它可以是直接耦接或连接到另一无源元件或者可以存在中间无源元件,无源元件之间的连接可以是物理上的、逻辑上的、或者其结合。相反,当称无源元件“直接耦接到”或“直接连接到”另一无源元件时,意味着两者不存在中间无源元件。

除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。

在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。

图1是本发明实施例的DC-DC升压变换器的系统示意图。如图1所示,本发明实施例的DC-DC升压变换器包括顺序连接的逆变器1、无源升压网络2和整流电路3。其中,逆变器用于生成具有预定频率的交流电。无源升压网络2用于将预定频率的交流电升压后输出。无源升压网络2输出的升压后的交流电与输入的交流电频率相同、幅度不同。整流电路3用于将升压后的交流电转换为直流电。由此,整流电路3的输出电压高于直流输入电压,由此,通过将直流输入Vdacin转换为交流电后升压,再转换为直流电Vdcout,完成了升压变换。

其中,逆变器1可以采用各种类型的逆变器的结构,例如半桥逆变器或全桥逆变器。图2是本发明一个可选实施方式的逆变器的电路图。图2所示的E类逆变器包括电感Lf、开关Q和电容Cf。其中,电感Lf连接在输入端和输出端之间,开关Q和电容Cf并联在输出端和参考端之间。在开关Q导通时,输入端对电感Lf充电,通过电感Lf的电流线性增加,输出电压保持为电容Cf上的值,当开关Q断开后,电感Lf和电容Cf组成谐振电路振荡,从而输出交流电。图3是本发明另一个可选实施方式的逆变器的电路图。图3所示的Ф类逆变器在E类逆变器的基础上增加了由电感Lmr和电容Cmr串联组成的谐振电路。该谐振电路与开关Q以及电容Cf并联,从而可以增强开关Q断开引起的电压/电流振荡。

进一步地,整流电路也可以采用各种现有的整流电路结构,例如图4所示的半桥整流电路和如图5所示的全桥整流电路。优选地,整流电路还可以采用可控开关替代图4和图5中所示的二极管,在控制电路的控制下进行同步整流。

图6是本发明一个优选实施方式的DC-DC升压变换器的系统示意图。在图6所示的DC-DC升压变换器中,采用全桥逆变器1和全桥同步整流电路3来进行逆变和整流。全桥逆变器1根据控制电路4输出逆变控制信号G1-G4进行逆变,全桥同步整流电路3根据控制电路4输出的整流控制信号G1’-G4’进行同步整流。其中,控制电路4可以包括控制逻辑41、用于输出逆变控制信号的驱动电路42、移相电路43、光耦或隔离电路44以及用于输出整流控制信号的驱动电路45。光耦或隔离电路44可以将逆变器以及整流电路的控制信号隔离开,保证电路安全。通过移相电路43可以保持逆变控制信号和整流控制信号同步,从而保证逆变和整流操作精确进行。在某些情况下,逆变控制信号和整流控制信号同相,可以省去移相电路。

图7是本发明实施例的无源升压网络的电路图。如图7所示,所述无源升压网络包括电容C、电感L1和电感L2。三者形成一个“T”形的网络,使得电容C和电感L2串联在输入端口的两端,而电感L1和电感L2串联在输出端口的两端。具体地,电容C连接在输入端口的第一端i和中间端m之间。电感L1连接在中间端m和输出端口的第一端o之间。电感L2连接在中间端m和输入端口的第二端之间。同时,输入端口的第二端和输出端口的第二端相互连通。

在进行交流升压时,期望升压比例与负载无关。根据戴维南等效定律,可以将无源升压网络及其输入等效为电压源Voc与等效输出阻抗Req的串联电路。在等效输出阻抗Req为零时,无源升压网络及其输入被等效为一个电压源Voc,由此使得升压的比例与负载无关。对于图7所示的无源升压网络,电容C的阻抗为-jX,其中电感L1的阻抗为jY1,其中,Y1=ωL1;电感L2的阻抗为jY2,其中,Y2=ωL2。由此,为了使得等效输出阻抗Req=0,需要使得X、Y1和Y2满足:

进而,电容C、电感L1和L2的参数需要满足:

其中,ω为所述交流电的角频率,C为所述电容C的电容值,L1为电感L1的电感值,L2为电感L2的电感值。

进一步地,在X、Y1和Y2满足上述条件时,Req=0,从而,本实施例的无源升压网络的戴维南等效电路如图8所示,仅包括电压源Voc。

其中,电压源Voc的输出电压为无源升压网络的开路电压,也即,电容C和电感L2组成的串联电路在电感L2的电压降。

由此可得,

进而,

也就是说,对于本实施例的无源升压网络,可以通过设置元件参数使得输出电压和输入电压的比例,也即,升压比例,与负载无关,并可以通过Y1和Y2的参数进行调节。

进一步地,为了将输入端口和输出端口隔离,可以将电容C分为两个电容C1和C2分别设置在输入端口连接的两个支路上。图9示出了具有隔离功能的无源升压网络的实施例的电路图。如图9所示,所述无源升压网络包括电容C1和C2以及电感L1和L2。其中,电感L1和L2串联在输出端口的两端之间。电容C1、电感L2和电容C2顺序串联在输入端口的两端之间。其中,电容C1连接在输入端口的第一端i和中间端m之间,电容C2连接在输入端口的第二端和输出端口的第二端之间。由此,输入端口和输出端口的任意两端之间,都存在电容隔离。而且,由于电容C1和C2串联,其可以等效为一个电容值为C的电容,C满足:

在上式中,C1和C2分别为电容C1和C2的电容值。

如果上述等效电容的电容值满足:

则可以使得图9所示的无源升压网络的等效输出阻抗为零,进而使得无源升压网络的升压比例仅与电感的电感值L1和L2相关。因此,图9所示的无源升压网络可以在保证输入端口和输出端口隔离的前提下,通过设置电容C1、C2以及电感L1和L2的参数实现与负载参数无关的升压操作。

优选地,可以设置使得电容C1和C2的电容值相同,也即,使得电容C1和C2的电容值C1=C2=Cx满足:

该设定可以使得在设计时和进行调节时相对简单地对电容值进行调节。

图7和图9所示的无源升压网络,不但其可以实现与负载无关的升压变换,同时,由于其输入阻抗偏感性,这会使得输出电流的相位滞后于电压,从而可以使得逆变器的开关实现零电压开通(ZVS),降低损耗。

图10是本发明又一个实施例的无源升压网络的电路图。如图10所示,在本实施例中,无源升压网络包括电感L、电容C1和电容C2。其中,三者形成一个“T”形的网络,电感L和电容C2串联在输入端口的两端之间,电容C1和电容C2串联在输出端口的两端之间。具体地,电感L连接在输入端口的第一端i和中间端m之间。电容C1连接在中间端m和输出端口的第一端o之间。电容C2连接在中间端m和输入端口的第二端之间。同时,输入端口的第二端和输出端口的第二端相互连通。

在进行交流升压时,期望升压的比例与负载无关。根据戴维南等效定律,可以将无源升压网络及其输入等效为电压源Voc与等效输出阻抗Req的串联电路。在等效输出阻抗Req为零时,无源升压网络及其输入被等效为一个电压源Voc,由此使得升压的比例与负载无关。对于图10所示的无源升压网络,电感L的阻抗为jX,其中X=ωL;电容C1的阻抗为-jY1,其中电容C2的阻抗为-jY2,其中,由此,为了使得等效输出阻抗Req=0,需要使得X、Y1和Y2满足:

进而,电感L、电容C1和电容C2的参数需要满足:

其中,ω为所述交流电的角频率,L为电感L的电感值,C1为电容C1的电容值,C2为电容C2的电容值。

在电路元件参数满足上述关系时,图10所示的无源升压网络的输出电压和输入电压满足:

也就是说,对于本实施例的无源升压网络,可以通过设置元件参数使得输出电压和输入电压的比例,也即,升压比例,与负载无关,并可以通过Y1和Y2的参数进行调节。

进一步地,为了将输入端口和输出端口隔离,可以将电容C1分为两个电容C11和C12分别设置在输出端口连接的两个支路上。

图11示出了具有隔离功能的无源升压网络的实施例的电路图。如图11所示,所述无源升压网络包括电感L、电容C11、C12和电容C2。电感L和电容C2串联在输入端口的两端之间。电容C11、C2和C12顺序串联在输出端口的两端之间。其中,电容C11连接在中间端m和输出端口的第一端o之间。电容C2连接在中间端m和输入端口的第二端之间。电容C12连接在输入端口的第二端和输出端口的第二端之间。

由此,输入端口和输出端口的任意两端之间,都存在电容隔离。而且,由于电容C11和C12串联,其可以等效为一个电容值为C1的电容,C1满足:

在上式中,C11和C12分别为电容C11和电容C12的电容值。

如果上述等效电容的电容值满足:

则可以使得图11所示的无源升压网络的等效输出阻抗为零,进而使得无源升压网络的升压比例仅与电容的电容值C11、C12和C2相关。

因此,图11所示的无源升压网络可以在保证输入端口和输出端口隔离的前提下,通过设置电容C11、C12、C2以及电感L的参数实现与负载参数无关的升压操作。

优选地,可以设置使得电容C11和C12的电容值相同,也即,使得电容C11和C12的电容值C11=C12=Cx满足:

该设定可以使得在设计时和进行调节时相对简单地对电容值进行调节。

本发明实施例通过将直流输入电压变换为具有预定频率的交流电,通过电感和电容构成的无源升压网络对交流电进行升压,并通过整流将升压后的交流电变换为直流电输出,可以实现升压变换。同时,本发明实施例的无源升压网络通过在输入或输出支路上设置电容器件,使得无源升压网络的输出端口和输入端口被电容有效隔离,从而可以不使用变压器提供隔离的DC-DC升压变换操作,使得电源体积可以大幅缩小,同时保证电源的安全性。

以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1