旋转电机、定子的制作方法

文档序号:22259948发布日期:2020-09-18 14:23阅读:125来源:国知局
旋转电机、定子的制作方法

本发明涉及一种旋转电机及定子。



背景技术:

以往,已知有分割铁心结构的旋转电机,其通过热压配合、压入将分割成多个的定子铁心固定在圆筒状的壳体上而形成定子。在这种结构的旋转电机中,为了应对高转矩化,优选提高将定子铁心固定在壳体上的固定力。但是,若固定力过高,则有定子铁心受到的应力使定子铁心变形,产生磁特性的降低、压曲现象的担忧。因此,提出了抑制定子铁心的变形并且提高定子铁心的固定力的方法。

在下述的专利文献1中,记载了如下的压入固定结构。定子铁心12的径向端面12a具有在圆周方向上断续地形成的多个铁心凸部25,定子保持架13的内周面13a具有在多个钢板18的层叠方向(轴向)上断续地形成的多个保持架凸部27,在定子铁心12的径向端面12a被压入定子保持架13的内周面13a时,铁心凸部25使保持架凸部27塑性变形而进入定子保持架13的内周面13a的表面的内侧,定子保持架13的内周面13a的轴向端部29在层叠方向上平坦地形成。

现有技术文献

专利文献

专利文献1:日本专利特开2014-103716号公报



技术实现要素:

发明要解决的问题

在上述专利文献1所记载的压入固定结构中,为了在定子铁心的径向端面和定子保持架的内周面两者上形成凹凸形状,需要进行复杂的加工,加工成本上升。因此,要求能够以成本提高低定子铁心的固定力的结构。

用于解决问题的技术手段

本发明的旋转电机具备:定子,其环状地配置有多个定子铁心;转子,其配置在所述定子的内周侧;以及圆筒状的壳体,其分别固定所述多个定子铁心,所述定子铁心具有与所述壳体的内周面相对配置的外周面,所述定子铁心的所述外周面相对于所述壳体的内周面倾斜。

本发明的定子用于旋转电机,其具备多个定子铁心,该多个定子铁心配置成环状并分别固定在圆筒状的壳体上,所述定子铁心具有与所述壳体的内周面相对配置的外周面,所述定子铁心的所述外周面相对于所述壳体的内周面倾斜。

发明的效果

根据本发明,能够以低成本提高定子铁心的固定力。

附图说明

图1是本发明的一实施方式的旋转电机的局部剖面图。

图2是剖面a-a处的旋转电机的剖面图。

图3是表示将多个齿铁心排列成环状并固定在壳体上的状态的图。

图4是表示定子铁心的形状的图。

图5是表示绕线作业的状态的图。

图6是表示多个定子铁心排列成环状的状态的图。

图7是表示定子的剖面形状的测定结果的图。

具体实施方式

以下,参照附图对本发明的一实施方式进行说明。

图1是本发明的一实施方式的旋转电机100的局部剖面图。在图1的局部剖面图中,示出了沿着旋转轴250切断的旋转电机100的剖面形状。旋转电机100是将电能转换为旋转能的装置,具有转子200、旋转轴250以及定子300。

定子300通过流过导体的电流而产生磁场,如下文所述,多个定子铁心环状地配置而构成。另外,由于旋转电机100例如搭载在汽车上而用于汽车的行驶驱动,因此为了能够输出大的旋转能,一般在径向上形成得较大。因此,在旋转电机100旋转驱动时,会在周向上对各定子铁心施加大的载荷。

转子200具有沿外周面配置的多个磁铁,通过从该磁铁产生的磁场受到从定子300产生的磁场的影响而被旋转驱动。在转子200的中心部连接有旋转轴250,转子200的旋转能被传递到旋转轴250。转子200配置在定子300的内周侧,在径向上隔着规定的空隙与定子300相对。

图2是图1所示的剖面a-a处的旋转电机100的剖面图。如图2所示,转子200具有转子铁心210和多个永磁铁220。转子铁心210形成磁路,并且收纳永磁铁220。永磁铁220产生磁通,通过与定子300中产生的旋转磁场的吸引力使转子200旋转。

定子300通过将多个齿铁心350排列成环状并固定在壳体500上而形成。另外,在图2中,用虚线框包围示出了一个齿铁心350。各齿铁心350是通过将线圈310隔着绝缘用的树脂线轴320卷绕在定子铁心400上而构成的。各齿铁心350的定子铁心400通过过盈配合固定在壳体500的内周侧。即,将分别卷绕有线圈310的多个定子铁心400排列配置成环状,通过热压配合、压入将其嵌入壳体500的内侧,由此形成定子300。

三相交流电流从未示出的三相电路流向各齿铁心350的线圈310。由此,在定子铁心400中形成磁路,从各齿铁心350产生磁通,在定子300中产生旋转磁场。壳体500使用软磁性材料构成,用以能够遮断各齿铁心350产生的磁通向外部漏出。

定子铁心400和转子铁心210例如通过层叠多个硅钢板并用铆接、粘接剂紧固而构成。由此,能够提高导磁率,实现低铁损的旋转电机100。

图3是表示将多个齿铁心350排列成环状并固定在壳体500上的状态的图。如图3所示,在将多个齿铁心350排列成环状的状态下,通过插入并固定在圆筒状的壳体500的内侧,从而构成定子300。如上所述,在该定子300的内周侧配置有转子200,但在图3中省略了图示。

在图3中,符号450所示的点表示旋转电机100的中心、即转子200、旋转轴250及定子300的中心即旋转电机中心。通过以该旋转电机中心450为中心旋转驱动转子200,从而以旋转电机中心450为中心轴配置的旋转轴250旋转。

如图3所示,呈环状排列并分别构成齿铁心350的多个定子铁心400分别具有外周面410及420。外周面410是与壳体500的内周面相对配置的定子铁心400的外周面中的配置有与线圈310连接的未图示的连接端子的一侧、即图3中图示上侧的部分。另一方面,外周面420是与壳体500的内周面相对配置的定子铁心400的外周面中的、与配置有上述连接端子的一侧在轴向上相反的一侧、即图3中图示下侧的部分。另外,在此为了便于说明,区分外周面410和外周面420,但实际上,它们作为一体的部件而形成定子铁心400的外周面。总外周面480是综合各定子铁心400的外周面410和外周面420而形成的定子300的外周面。

壳体500在内侧具有内周面510。通过该内周面510与定子300的总外周面480接触,从而呈环状排列的多个定子铁心400(齿铁心350)通过摩擦力固定在壳体500上。此时的壳体500与定子铁心400的接合强度、即定子铁心400固定在壳体500上的固定力,根据径向上的内周面510与总外周面480的大小的差来确定。

图4是表示定子铁心400的形状的图。图4的(a)是从旋转电机100的周向观察定子铁心400的侧视图。图4的(b)是图4的(a)所示的剖面b-b处的定子铁心400的剖面图。图4的(c)是图4的(a)所示的剖面c-c处的定子铁心400的剖面图。

如图4的(b)所示,定子铁心400在外周面410的左右具有作为与相邻的其他定子铁心400的密接面的s紧固部411及t紧固部412。在s紧固部411和t紧固部412上分别形成有凸部411a和凹部412a,该凸部411a和凹部412a作为将多个定子铁心400排列成环状而配置时的对位引导件而分别发挥作用。即,通过凸部411a与相邻的定子铁心400的凹部412a嵌合,并且凹部412a与相邻的定子铁心400的凸部411a嵌合,从而进行将各定子铁心400排列成环状时的定位。

另外,如图4的(b)所示,将s紧固部411和外周面410的边界线与剖面b-b交叉的点定义为s顶点413,将从上述旋转电机中心450到s顶点413的距离定义为r1。同样,将t紧固部412和外周面410的边界线与剖面b-b交叉的点定义为t顶点414,将从旋转电机中心450到t顶点414的距离定义为r2。在该情况下,通过使距离r1和距离r2为不同的值,能够将外周面410的形状设定为左右非对称。

如图4的(c)所示,定子铁心400在外周面420的左右具有作为与相邻的其他定子铁心400的密接面的v紧固部421及w紧固部422。在v紧固部421和w紧固部422上分别形成有凸部421a和凹部422a,该凸部421a和凹部422a作为将多个定子铁心400排列成环状而配置时的对位引导件而分别发挥作用。即,通过凸部421a与相邻的定子铁心400的凹部422a嵌合,并且凹部422a与相邻的定子铁心400的凸部421a嵌合,从而进行将各定子铁心400排列成环状时的定位。

另外,如图4的(c)所示,将v紧固部421和外周面420的边界线与剖面c-c交叉的点定义为v顶点423,将从上述旋转电机中心450到v顶点423的距离定义为r3。同样,将w紧固部422和外周面420的边界线与剖面c-c交叉的点定义为w顶点424,将从旋转电机中心450到w顶点424的距离定义为r4。在该情况下,通过使距离r3和距离r4为不同的值,能够将外周面420的形状设定为左右非对称。

另外,在上述距离r1~r4的设定中,优选设定为r1>r2且r3<r4,或者相反地设定为r1<r2且r3>r4。这样,使旋转电机100的轴向的一个端部的定子铁心400的外周面410和轴向的另一个端部的定子铁心400的外周面420相对于壳体500的内周面510彼此向相反方向倾斜,能够实现扭转形状的定子铁心400。由此,如后所述,能够相对于再生转矩和驱动转矩双方以高的固定力将定子铁心400保持在壳体500上。

下面,参照图5对实现上述定子铁心400的扭转形状的一个方法进行说明。图5是表示在定子铁心400上卷绕线圈310来制作齿铁心350的绕线作业的情况的图。图5的(a)表示第一段的绕线作业的情况,图5的(b)表示第二段的绕线作业的情况。另外,线圈310通过由未图示的绕线机构牵拉而被施加适当的张力。在该状态下,通过在安装于定子铁心400上的树脂线轴320上从第一段开始依次卷绕线圈310,从而制作出齿铁心350。

如图5的(a)所示,在第一段的绕线作业时,例如将线圈310从规定的卷绕开始位置沿着树脂线轴320在轴向上延伸后,从相对于卷绕开始位置位于对角线上的点朝向卷绕开始位置,将线圈310向轴向的相反侧延伸。由此,隔着树脂线轴320将线圈310卷绕在定子铁心400上。在图5的(b)所示的第二段的绕线作业中,在将线圈310的卷绕位置错开1段后,进行与第一段同样的作业。通过反复进行这样的绕线作业,线圈310被卷绕在定子铁心400上。

在上述卷线作业中,通过以适当的张力牵拉线圈310,能够使线圈310一段一段地排列在规定的卷线位置上。另外,如图5的(a)、(b)所示,通过线圈310的张力,定子铁心400受到左右不同方向的压缩力,由此,定子铁心400向规定方向扭转。其结果,如图4所说明的那样,能够制作外周面410和外周面420相对于壳体500的内周面510彼此向相反方向倾斜的扭转形状的定子铁心400。即,能够使定子铁心400的外周面410、420沿着通过线圈310的卷绕开始位置的定子铁心400的对角线倾斜。

另外,以上说明的定子铁心400的扭转形状的实现方法只是一例,也可以采用其他方法。如图4所说明的那样,只要能够使外周面410和外周面420相对于壳体500的内周面510彼此向相反方向倾斜,就能够使用任意的方法制作定子铁心400。

图6是表示在定子300中多个定子铁心400排列成环状的状态的图。图6的(a)是从旋转电机100的径向观察定子300的侧视图。图6的(b)是图6的(a)所示的剖面d-d处的定子300的局部放大图。图6的(c)是图6的(a)所示的剖面e-e处的定子300的局部放大图。另外,为了易于理解地表示定子铁心400的配置,在图6中省略了壳体500、线圈310以及树脂线轴320的图示。

如图6的(b)所示,在将多个定子铁心400排列成环状而配置的定子300中,各定子铁心400的s紧固部411与相邻的定子铁心400的t紧固部412接触。此时,如上文所述,通过s紧固部411的凸部411a与t紧固部412的凹部412a嵌合,来进行各定子铁心400的对位。

在此,若上述的s顶点413和t顶点414的关系为r1>r2,则在相邻的两个定子铁心400的外周面410上形成台阶415。另外,各定子铁心400的外周面410相对于壳体500的内周面510分别向相同方向倾斜。因此,定子300的外周面410的各台阶415呈右旋凸出的形状,即,在周向上右旋观察上述总外周面480时呈连续凸出的形状。另外,也可以与图6的(b)相反,为r1<r2。在该情况下,定子300的外周面410的各台阶415成为左旋凸出的形状。

如图6的(c)所示,在将多个定子铁心400排列成环状而配置的定子300中,各定子铁心400的v紧固部421与相邻的定子铁心400的w紧固部422接触。此时,如上文所述,通过v紧固部421的凸部421a与w紧固部422的凹部422a嵌合,来进行各定子铁心400的对位。

在此,若上述的v顶点423和w顶点424的关系为r3<r4,则在相邻的两个定子铁心400的外周面420上形成台阶425。另外,各定子铁心400的外周面420相对于壳体500的内周面510分别向相同方向倾斜。因此,定子300的外周面420的各台阶425呈左旋凸出的形状,即,在周向上向左旋转观察上述总外周面480时呈连续凸出的形状。

如以上说明的那样,在为了构成定子300而排列成环状配置的多个定子铁心400中,外周面410上的各台阶415成为右旋凸出的形状。另一方面,在轴向上的相反侧的外周面420上的各台阶425具有向相反方向的左旋凸出的形状。这样,当将多个定子铁心400排列成环状地配置时,定子铁心400具有在外周面410和外周面420上产生彼此朝向相反的台阶的形状。

另外,也可以与图6的(b)、图6的(c)相反,为r1<r2且r3>r4。在该情况下,定子300的外周面410的各台阶415成为左旋凸出的形状,外周面420的各台阶425成为相反方向的右旋凸出的形状。

图7是表示定子300的剖面形状的测定结果的图。图7的(a)是图6的(a)所示的剖面d-d处的定子300的剖面形状的测定结果。图7的(b)是图6的(a)所示的剖面e-e处的定子300的剖面形状的测定结果。另外,在图7的剖面形状的测定结果中,如上所述,满足r1>r2且r3<r4的条件。

从图7的(a)所示的剖面形状的测定结果可知,在剖面d-d中,外周面410上的各台阶415成为右旋凸出的形状,与旋转电机100的旋转方向的一个方向一致。另外,从图7的(b)所示的剖面形状的测定结果可知,在剖面e-e中,外周面420上的各台阶425成为左旋凸出的形状,在与剖面d-d相反的方向上,与旋转电机100的旋转方向的一个方向一致。因此,能够相对于再生转矩和驱动转矩双方以高的固定力将定子铁心400保持在壳体500上。另外,也可以与图7的(a)、图7的(b)相反,为r1<r2且r3>r4。在该情况下,也能够相对于再生转矩和驱动转矩双方以高的固定力将定子铁心400保持在壳体500上。

根据以上说明的本发明的一实施方式,起到以下的作用效果。

(1)旋转电机100具有:定子300,其环状地配置有多个定子铁心400;转子200,其配置在定子300的内周侧;以及圆筒状的壳体500,其分别固定多个定子铁心400。定子铁心400具有与壳体500的内周面510相对配置的外周面410、420,该定子铁心400的外周面410、420相对于壳体500的内周面510倾斜。因此,能够以低成本提高定子铁心400的固定力。

(2)旋转电机100的轴向的一个端部的定子铁心400的外周面410和轴向的另一个端部的定子铁心400的外周面420,如图4中说明的那样,相对于壳体500的内周面510彼此向相反方向倾斜。这样,能够相对于再生转矩和驱动转矩双方以较高的固定力将定子铁心400保持在壳体500上。

(3)旋转电机100具备分别卷绕在多个定子铁心400的周围的多个线圈310。如图5所说明的那样,定子铁心400受到线圈310的张力而扭转,由此,能够使定子铁心400的外周面410、420相对于壳体500的内周面510倾斜。即,定子铁心400的外周面410、420能够沿着通过线圈310的卷绕开始位置的定子铁心400的对角线倾斜。这样,无需使用特别形状的模具,就能够以简易的制法制作外周面410、420倾斜的定子铁心400。

(4)如图6、图7所说明的那样,多个定子铁心400的外周面410相对于壳体500的内周面510分别向相同方向倾斜。同样地,多个定子铁心400的外周面420也相对于壳体500的内周面510分别向相同方向倾斜。因此,在旋转电机100旋转驱动的各个方向上,能够以较高的固定力将多个定子铁心400配置成环状而构成的定子300保持在壳体500上。

(5)多个定子铁心400通过过盈配合固定在壳体500的内周侧。因此,能够将各定子铁心400可靠且牢固地固定在壳体500上。

另外,在以上说明的本发明的一实施方式中,如图4所说明的那样,说明了通过使用外周面410和外周面420相对于壳体500的内周面510彼此向相反方向倾斜的扭转形状的定子铁心400,来实现能够以高的固定力固定在壳体500上的定子300的例子。然而,也可以使用其他形状的定子铁心来实现。例如,也可以在定子铁心的外周面410、420中分别定义沿着旋转电机100的轴向的中心线,使用以该中心线为边界将外周面的倾斜在周向上切换为不连续的形状的定子铁心。此时,通过在外周面410和外周面420上使倾斜方向为彼此相反的方向,能够起到与图4中说明的具有扭转形状的定子铁心400同样的作用效果。或者,也可以使用在外周面410和外周面420上分别设置有突起部的定子铁心。此时,通过在外周面410和外周面420上使突起部的位置在周向上彼此相反,能够起到与图4中说明的具有扭转形状的定子铁心400同样的作用效果。除此之外,可以使用各种形状的定子铁心来实现本发明。

以上说明的实施方式、各种变形例仅仅是一例,只要不损害发明的特征,本发明不限于这些内容。另外,以上说明了各种实施方式、变形例,但本发明并不限定于这些内容。在本发明的技术思想的范围内可以考虑的其他方式也包含在本发明的范围内。

符号说明

100…旋转电机,200转子,210…转子铁心,220…永磁铁,250旋转轴,300…定子,310…线圈,320…树脂线轴,350…齿铁心,400…定子铁心,410、420…外周面,450…旋转电机中心,500…壳体,510…内周面。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1