频带校正设备的制作方法

文档序号:7605123阅读:353来源:国知局
专利名称:频带校正设备的制作方法
技术领域
本发明涉及一种频带校正设备,尤其涉及一种用于校正限带信号的频率特性的信号校正设备。
背景技术
近年来开始广泛使用的用于VoIP(基于网际协议的语音)技术的频带校正设备将语音信号分组成IP(网际协议)分组以集成语音与数据。这种集成有利于降低网络或通信成本。这一优点已经导致该技术的广泛使用。
传统公用交换电话网(PSTN)的重点在于如何发送语音信号。语音通信使用不高于3.4kHz的频带,因此,设计网络以建立3.4kHz的每信道带宽。数字传输网络基于使用8kHz抽样频率的64Kb/s的通信单元。
另一方面,随着近年来宽带技术和服务的广泛使用,现在设计在网络侧的传输装置以支持宽带通信。而且,甚至用户线路通过不对称数字用户线路(ADSL)或光传输线路支持宽带网络,从而能够进行端到端宽带语音信号传输。当前,需要更高质量的语音通信。
然而,使用现有的普通用户电话机,而不是适合于IP网络的IP专用电话机,带宽由诸如衰减器等限制到4kHz或更低以设置电话发送器和接收器特性。使用这种现有的普通用户电话机,达到的语音质量不超过基本上与公用交换电话网通常允许的语音质量相同的质量,即使传输线路如在IP网络内一样允许高于4kHz的频带信号。
为了解决这一问题以实现更高的语音质量,即使现有的电话机使用传输信道例如使用公共宽带信号的IP网络,当前正在研究这样一种方法,它包括校正电话发送和接收信号的频率特性以扩展语音频带。
同时,日本专利公报JP 2002-82685公开了语音频带扩展设备和方法,其中如果使用低频范围信号生成本来并不存在的高频范围信号,与原始的语音相比,生成的语音听起来非常不自然。而且,在低于通常范围的频率范围内和在高于通常范围的频率范围内,仅留下语音信号的较小量。因而,主叫方不能感觉到这些语音信号分量,因此,主叫方听到的语音仅是较差的声音质量。为了改善声音质量,作为简单的方法,可以放大在各个频带内留下的较小信号。然而,这种简单的频带扩展通过重新放大较低和较高范围的分量以将这些分量提高到可听到的电平来实现。因此,在音频信号内频带分量的放大直接导致幅度的放大,从而幅度将超过在数字信号处理中最大和最小值的限制。
现在将描述在扩展频带中常规的操作顺序。作为输入信号将限制在300Hz至3.4kHz的带宽范围内的信号提供给校正滤波器。负责扩展频带的校正滤波器具有这样的特性,以便并不放大300Hz到3.4kHz的频带即滤波器的放大因数为1,同时通过相应的放大特性放大0Hz到300Hz和3.4kHz到8kHz的频带。通过这一校正,校正滤波器输出在0KHz到8kHz频带上具有平坦特性的信号。
然而,代表总体滤波器特性的脉冲响应具有+30dB的放大程度。具体而言,放大程度仅在涉及高频的范围内是+40dB。现在,假设使用i-low。如果提供幅度不超过-27dBm0的信号,则限幅输出信号,因为它的瞬时值很容易达到最大值。如果输入信号是理想的带宽限制信号,则不出现严重的问题。然而,如果存在300Hz至3.4kHz范围之外的电噪声,则这个噪声也被放大+30dB至+40dB。例如,假设-50dBm0的基层噪声电平,则所放大的基层噪声达到-20dBm0至-10dBm0。

发明内容
本发明的目的是提供一种频带校正设备,由此可以将窄带信号校正到宽带信号,而在数字放大的过程中没有过度放大。
为了实现上述目的,本发明提供一种频带校正设备,包括校正器,接收在频带中限制的输入信号,用于相对于每个限制频带的信号电平校正输入信号,开输出已校正的信号;监视器,用于监视已校正信号的信号电平是否达到预置电平;和电平调整器,用于响应于来自所述监视器电路的电平信息调整信号电平。
根据本发明的频带校正设备,通过校正器放大限制频带的信号电平,比较从监视器提供的校正信号的信号电平与预置电平,并将判决结果作为电平信息提供给用于调整信号电平的电平调整器。可以将输入信号校正成宽带信号,而不因为过度放大而降低通信信号的质量,从而保证了高质量的传输。
本发明还提供一种频带校正设备,包括频带分割器,用于将输入信号的频谱分割成多个限制频带;校正器,用于校正通过分割获得的频带的信号电平以输出校正信号;和模拟转换器,用于将每个校正信号转换成模拟信号。
根据本发明的频带校正设备,通过频带分割器将输入信号分割成相应的信号频带,和将所获得的信号频带发送给校正器。由校正器在信号电平方面校正在分割时获得的相应频带信号。通过模拟转换器校正所获得的信号并组合。以这种方式,可以扩展语音频带,因为维持自然产生的声音质量,而没有数字表示的边界的限制,即使由校正器将信号放大到接近比特表示的边界并组合。


结合附图,根据下面的详细描述,本发明的目的和特征将变得更加显而易见,在附图中图1是图示根据本发明的语音频带校正设备的结构的示意方框图;图2A、2B和2C是有助于理解图1所示的语音频带校正设备的频带校正的频率特性曲线图;图3A、3B和3C是有助于理解图1所示的语音频带校正设备的频带校正中通过系数抑制的频带校正的频率特性曲线图;图4A和4B是原始语音和限制在电话机带宽内的语音的频率特性曲线;图5是有助于理解相对于本发明使用比较例获得的带宽校正的频率特性曲线;图6和图7是分别图示从图1的语音频带校正设备修改获得的第一和第二实施例的结构的示意方框图;图8A至8D是有助于理解图7所示的语音频带校正设备的频带校正的频率特性曲线图;图9是图示从图7的第二实施例修改获得的结构的示意方框图;图10是图示从图1的语音频带校正设备修改获得的第三实施例的结构的示意方框图;图11是从图10的第三实施例修改获得的结构的示意方框图;图12是从图1的语音频带校正设备修改获得的第四实施例的结构的示意方框图;图13是从图1的语音频带校正设备修改获得的第五实施例的结构的示意方框图;图14是从图1的语音频带校正设备修改获得的第六实施例的结构的示意方框图。
具体实施例方式
参考附图,将详细描述本发明的某些优选实施例。
在这些实施例中,将本发明的频带校正设备应用于语音频带校正设备10。在附图中未图示与理解本发明并不直接相关的部件或组件。语音频带校正设备10适合于监视校正滤波器的输出和降低滤波器系数以控制频带扩展的程度,使得不超过在数字信号处理范围内最大和最小值上的限制。
参见图1,语音频带校正设备10包括校正滤波器12、系数控制器14和电平检测器16,如所图示相互连接。校正滤波器12是模拟或数字滤波器,具有在整个语音频带上平坦化从未图示的用户电话机输入的语音信号18的频率特性的校正功能。应当指出语音信号18可以包括除了语音之外的信号,例如传真或图像信号。校正滤波器12适合于校正语音信号18以将校正后的语音信号20输出给电平检测器16。
系数控制器14具有控制功能以便当校正滤波器12的输出超过极限值时,将控制信号24发送给校正滤波器12,用于根据从电平检测器16提供的检测信号22改变校正滤波器12的系数。系数控制器14还具有当校正滤波器12的输出已经变得低于极限值时将系数重置成原始或初始系数值的功能。系数控制器14还适合于根据接近于极限值的程度逐渐改变系数。具体而言,根据电平检测器16输出的检测信号22,系数控制器14将校正滤波器的放大因数提高到预置值,同时将放大因数降低1dB的减量。选择预置值以便通过例如30dB的放大因数总体上放大输入语音信号18。然而,应当指出预先确定的放大因数和在放大因数上降低的减量并不限制于上述的具体数值。
电平检测器16具有接收和监视校正滤波器12的已校正语音信号20以将表示已校正输出电平的变化状态的检测信号22送给系数控制器14的功能。电平检测器16输出已校正的语音信号20作为语音频带校正设备10的输出信号26。
具体而言,监视已校正语音信号20的电平检测器16验证数字信号形式的校正滤波器12输出值是否取16比特的数字表示的极限值,即+32768或-32767。电平检测器16将判决结果作为检测信号22发送给系数控制器14。
应当指出当前描述的实施例和下述实施例在判决中使用的边界或阈值并不限制于上面给出的具体数值,例如可以是+16384或-16384。可以应用任一适当的方法以确定是否超过这些预置值,假设通过所使用的这些方法可以给出正确的判决。
现在将描述语音频带校正设备10的操作。语音信号18限制在300Hz到3.4kHz的带宽范围内,如图2A所示,并因为位于这个频率范围之外的电噪声而恶化。将输入的语音信号18提供给校正滤波器12,并由具有图2B所示的增益的频率特性的校正滤波器12初始放大。将所放大的校正语音信号20从校正滤波器12提供给如图2C所示的电平检测器16。
电平检测器16监视所放大的已校正语音信号20的电平,一旦检测出该信号电平接近或已经超过最大值,则将检测信号22输出给系数控制器14。例如16比特的最大值是32768。系数控制器14从电平检测器16接收检测信号22。在本实施例中,系数控制器14控制在0Hz至0.3kHz、0.3kHz至3.4kHz和高于3.4kHz的相应频率范围A、B和C内降低校正滤波器12的系数值。通过这一控制,校正滤波器12放大输入信号,同时抑制在输入信号内的噪声电平时,如图3B所示。
校正滤波器12也可以适合于预测混合到输入信号18内的噪声的状态以使用相应改变的系数值。具体而言,校正滤波器12的放大因数可以具有预置的图2B所示的初始特性,以1dB的减量降低在图3B中图示的用于频率范围A、B和C的放大因数。应当指出初始频率增益特性和在降低放大因数中的减量并不限制于上述情况。具体而言,如果如图3C所示对高频范围降低放大因数,则可能导致原始声音的频率特性接近于原始声音的频率特性。
作为比较例,常规的语音频带校正设备被提供有语音信号18作为原始声音,具有如图4A所示的频率特性。这个输入信号18由电话机限制带宽,以便获得具有朝向高频范围截止的频率特性,如图4B所示。如果现在应用在日本专利公报JP2002-82685中公开的语音频带扩展设备,则过分地放大低频和高频范围,从而获得具有图5所示的频率特性的语音。
然而,使用本实施例,语音频带校正设备10以如上所述的方式操作以允许校正输入信号18的频率分量电平,从而扩展输入信号的带宽,而不在放大例如数字信号的过程中过分地放大窄带输入信号,从而提供在语音信号中的高质量输出信号26。
现在将描述从语音频带校正设备10修改获得的第一实施例的结构。在本说明书中,使用相同的参考数字表示相同的部件或组件,为了简化将省略相应的描述。参见图6,语音频带校正设备10与前一实施例相同,除了将幅度控制器30连接到放大器28以提供幅度控制信号32,从而控制从开始输入给校正滤波器12的信号34的幅度,而不控制校正滤波器12的系数。
放大器28适合于改变输入信号18的幅度,并具有根据从幅度控制器30提供的放大因数的数值来增加或降低输入信号18的幅度的功能。为了防止在数字信号处理中超过最大和最小极限值,响应于电平检测器16输出的检测信号22,幅度控制器30控制放大器28的幅度改变。放大器28还具有下述功能当校正滤波器12的输出已经变得低于极限值时将幅度重置到其原始值,和根据该幅度接近于极限值的程度逐渐地改变幅度值。具体而言,如在前一实施例中,根据校正滤波器12的输出是否取16比特数字表示的极限值(+32768和-32767)来提供判决。电平检测器16将判决结果作为检测信号22发送给幅度控制器30。
现在,将描述第一实施例的语音频带校正设备10的操作。该语音信号18限制在300Hz到3.4kHz的带宽范围内,如图2A所示,并因为在这个频率范围之外的噪声而降低质量。输入的语音信号18首先由具有图2B所示的频率增益特性的校正滤波器12放大。将所放大的校正语音信号20从校正滤波器12提供给电平检测器16。电平检测器16监视所放大的校正语音信号20的电平,一旦检测出该信号电平接近或已经超过最大值,则将检测信号22输出给幅度控制器30。例如16比特输入信号的最大值是32768。幅度控制器30从电平检测器16接收该检测信号22。
幅度控制器30控制降低通过放大器28的信号的幅度。在初始状态中,放大器28实际上是无用的,并不改变信号幅度。在本实施例中,校正滤波器12具有图2B所示的频率增益特性和在整个频率上30dB的脉冲响应增益。然而,这并不解释为限制方式。可以配置该幅度控制器30以响应于检测信号22将增益降低1dB的减量,这也是非限制的方式。在此控制下,在抑制噪声电平的同时放大输入信号18。
通过这一操作,可以更自然地将窄带信号扩展成宽带信号,同时可以暂时地固定滤波器特性。对于随着时间流逝出现的变化,使用具有简单放大功能的幅度控制器30,以便可以解决软件的复杂性,进一步降低其规模。
在上述两个实施例中,监视校正滤波器12的输出以控制校正滤波器12的系数或放大器28,从而防止语音频带校正设备的输出信号26达到其最大值。然而,如果简单地降低校正滤波器12的增益,则也降低在输入信号18内的300Hz到3.4kHz的频带的电平。因此,将通过校正滤波器12的声音信号降低到这样的程度只要信号电平达到其最大值,真实感的快速变化就趋于重复地出现。另一方面,公知的事实在于上述电噪声的频率例如在从50Hz到60Hz的范围内。
现在将描述第二实施例的配置,其中修改了语音频带校正设备10。在本实施例中,将滤波器划分成滤波器子部分以调整从一个频带到另一个频带的放大程度。为此,语音频带校正设备10包括校正滤波器12、系数控制器14、电平检测器16和加法器34,如图7所示相互连接。
校正滤波器12包括分别与频带A、B和C相关的分段滤波器36、38和40。一个滤波器36是适合于通过0Hz至300Hz并截除更高频率分量而放大较低频率范围信号的低通滤波器。另一个滤波器38适合于通过300Hz至3.4kHz的中间频带以限制输入信号的频带,同时相对于中间频带信号的延迟调整较低和较高范围信号的延迟。例如通过在这些滤波器的设计时仿真,可以调整每个延迟的量值。剩下的滤波器40是适合于通过3.4kHz至8kHz范围和截除较低频率分量同时放大较高频率范围信号的高通滤波器。滤波器36、38和40分别将滤波后的输出信号42、44和46输出给加法器34,同时将输出信号42和46提供给幅度测量电路48和50。
电平检测器16包括幅度测量电路48和50。这些幅度测量电路48和50具有监视滤波器36和40的输出、输出所测量的幅度信号52和54和将已校正输出幅度的变化状态分别指示给系数更新电路56和58的功能。在本实施例中,电平检测器16验证以数字信号形式的滤波器输出值是否取16比特数字表示的极限值,即+32768或-32767。然而,所使用的极限值并不限制于上面给出的具体值,而例如可以是+16384或-16384。可以应用任何合适的方法以确定是否超过这些预置值,假设所使用的方法允许进行是否已经达到期望电平的判决。
系数控制器14包括系数更新电路56和58和乘法器60和62。系数更新电路56和58根据所测量的幅度信号52和54改变系数,并将系数64和66分别发送给乘法器60和62。乘法器60和62在其一端68和70上被提供有输入信号18,在其另一端72和74上被提供有系数64和66,从而相乘输入信号18与系数64和66以将相乘结果76和78输出给校正滤波器12。
系数更新电路56和58并不更新在其初始状态下的信号,因为乘法器60和62基本上不在初始状态下操作。系数更新电路56和58响应于所测量的幅度信号52和54以改变分别送到乘法器60和62的系数64和66。一旦测量出过度放大,则系数更新电路56和58将幅度衰减系数分别输出给乘法器60和62。此系数并不大于1和小于0。系数更新电路56和58可以更新该系数以分别对于乘法器60和62以1dB的减量降低增益,只要在从例如幅度测量电路48和50输出的测量幅度信号52和54内确认过度放大。然而,该系数更新或增益调整并不限制于上述方式。
加法器34具有将滤波器36、38和40的输出相互相加以组合由分割获得的频带(0Hz至300Hz、300Hz至3.4kHz和3.4kHz至8kHz)的功能。
现在,将描述语音频带校正设备10的第二实施例的操作。参见图8A,当语音频带校正设备被提供有带宽限制到300Hz到3.4kHz的范围内的输入信号18时,滤波器36、38和40将输入信号18分别划分成0Hz到300Hz、300Hz到3.4kHz和3.4kHz到8kHz的频带,如图8A所示。
滤波器36将没有高频分量的低范围信号或较低子频带信号(0Hz到300Hz)发送给幅度测量电路48。幅度测量电路48监视滤波后的输出信号42以将测量的幅度信号52输出给系数更新电路56。所测量的幅度信号52表示幅度变化的状态。当滤波器36的输出信号42超过极限值时,系数更新电路56响应于测量幅度信号52控制提供给乘法器60的系数。因此,通过由增益表示系数64改变的信号控制这个频带的信号。
适合于调整向其提供和限制在300Hz到3.4kHz带宽范围内的频带信号延迟的滤波器38相对于低范围和高范围信号延迟该频带信号。延迟通过该滤波器38的信号的目的在于防止降低通过滤波器38的信号电平,而并不降低所发出的可听声音的真实感。
滤波器40形成如图8D所示的没有低范围信号的高范围信号或更高子频带信号46(3.4kHz至8kHz)以将如此滤波后的信号发送给幅度测量电路50。幅度测量电路50监视滤波后的输出信号46以将测量出的幅度信号54发送给系数更新电路58。测量幅度信号54指示幅度变化的状态。如果滤波器40的输出超过极限值,则系数更新电路58响应于测量幅度信号54控制将要提供给乘法器62的系数66。
校正滤波器12将滤波器输出42、44和46发送给加法器34以组合由分割获得的频带(0Hz到300Hz、300Hz到3.4kHz和3.4kHz到8kHz)。如果上述处理仅校正低范围以使输出信号26具有过大的幅度,则可以降低增益。对于高频范围也是如此。因为中间范围本身并非带宽限制的,所以这个范围的信号简单地通过,而不改变信号电平。因而,该增益固定在1.0。
当如图2A所示噪声降低输入信号18的质量时,降低滤波器36和40的增益是足够的。因为将中间范围的增益设置为1.0,在音量上并未明显影响该声音。使用仅在有限程度上受噪声影响的普通声音,滤波器36和40的输入非常小,所以,即使将输入乘以相关的增益值,也不超过具有增益1.0的信号电平。还可以根据滤波器36和40的输出的幅度将增益(<1.0)提供给原始信号的幅度。
通过这一操作,自动地为每个频率范围确定频率放大因数。与第一实施例不同,如果背景噪声遭受频率特性中的偏移,例如噪声仅定位在低频范围内,则可以在不受噪声影响的情况下扩展高范围,因此,可以以自然的声音质量扩展语音范围。也可以从高范围获得相同的效果。
在本实施例中,电平检测器16设置在加法器34的输入侧上,并包括幅度测量电路48和50。然而,幅度测量电路48也可以提供在加法器54的输出侧上,如图9所示。幅度测量电路48可以适合于将来自加法器34的校正输出信号26的测量结果提供给两个系数更新电路56和58,并将输出信号26传送给语音频带校正设备10的输出26。这可以将相应的电路从图7中的电平检测器16简化成单独幅度测量电路48。
现在将描述从语音频带校正设备10修改获得的第三实施例的结构。在第二实施例中,滤波器36和40的增益值将广泛地分布在从其负值到正值的范围内,因此产生设计上的困难。根据第三实施例描述可能克服这种困难的配置。语音频带校正设备10通过FIR(有限脉冲响应)滤波器将频带划分成低范围和高范围,并如同在第二实施例中使用该滤波器处理信号以克服否则在设计中将遇到的困难。
现在,参见图10,除了第二实施例的组件之外,语音频带校正设备10还包括频带分割器80。频带分割器80包括低通滤波器82、中间滤波器84和高通滤波器86,如图所示互连。
低通滤波器82例如是用于截除从3.4kHz到8kHz范围内高频分量的FIR滤波器。中间滤波器84适合于通过300Hz至3.4kHz的中间频率以限制输入信号的频带,同时相对于中间频率信号调整低频和高频信号的延迟。可以相对于低频和高频信号考虑滤波器38的延迟,例如通过在设计这些滤波器的过程中执行的仿真,调整中间滤波器84。高通滤波器86例如是FIR滤波器,并截除0Hz至300Hz的低频分量。低通滤波器82和高通滤波器86分别将滤波后的信号88和90提供给乘法器60和62,同时中间滤波器84将滤波后的信号92输出给滤波器38。
在本实施例中的滤波器36放大从0Hz到300Hz范围内的低频信号。滤波器38适合于通过300Hz到3.4kHz的中间频率以限制输入信号的频带,同时相对于中间频率信号的延迟调整低频和高频信号的延迟。可以考虑滤波器38的延迟调整中间滤波器84。滤波器40放大3.4kHz到8kHz范围的高频信号。
在本实施例中,放大器60相乘来自低通滤波器82的输出88与来自系数更新电路56的系数64以将相乘结果76输出给滤波器36。乘法器62相乘高通滤波器86的输出90与来自系数更新电路58的系数66以将相乘结果78输出给滤波器40。
现在,将描述语音频带校正设备10的第三实施例的操作。当语音频带校正设备10被提供有限制在300Hz到3.4kHz带宽范围内的输入信号18时,低通滤波器82、中间滤波器84和高通滤波器86将输入信号划分成0Hz到300Hz、300Hz到3.4kHz和3.4kHz至8kHz的频带。由滤波器36放大没有高频信号的低频信号(0Hz到300Hz)88。由幅度测量电路48监视如此放大后的输出信号42。如果滤波器36的输出超过极限值,则系数更新电路56响应于测量幅度信号52控制提供给乘法器60的系数64。
延迟由中间滤波器84带宽限制到300Hz到3.4kHz范围的输入信号92以相对于中间输出信号92的延迟调整低通滤波器82的输出信号88的延迟和高通滤波器86的输出信号90的延迟。延迟通过滤波器38的信号的目的在于防止降低通过滤波器38的信号电平,而不降低所发出的可听声音的真实感觉。
由滤波器40放大通过滤波器86滤除了低频的高频信号(3.4kHz到8kHz)90。由幅度测量电路50监视所放大的输出信号46。如果滤波器40的输出超过极限值,则系数更新电路58响应于测量幅度信号54控制提供给乘法器62的系数66。校正滤波器12将滤波器输出42、44和46发送给加法器34用于求和,从而组合通过分割获得的频带(0Hz到300Hz、300Hz到3.4kHz和3.4kHz到8kHz)。
使用这一实施例,划分频带的三个滤波器82、84和86与适合于分别校正滤波器输出88、90和92的校正滤波器12分离地设置,并如上所述地操作。因此,对于校正滤波器12来说仅考虑正侧增益通常是足够的,以便可以更灵活地设计正和负量化步骤的限制数量以保证并不降低声音感觉的自然信号校正。
在本实施例中,将电平检测器16设置在加法器34的输入侧上,并包括幅度测量电路48和50。然而,如图11所示的幅度测量电路48包括在加法器34的输出侧上。幅度测量电路48可以将来自加法器34的校正输出信号26的测量结果提供给两个系数更新电路56和58,和作为语音频带校正设备10的输出26传送输出信号26。这可以将相应电路从图10中的电平检测器16简化成单独幅度测量电路48。
在下文中,将参考图12描述第四实施例的语音频带校正设备10,它通过使用在ITU-T(国际电信联盟电信标准化部门)建议书G.722中使用的正交镜像滤波器(QMF)将输入信号18划分成两个部分。
ITU-T建议书G.722提供音频编码系统(50Hz至7kHz),用于各种高质量语音信号。该规定的编码系统使用在64kb/s的比特率下的SB-ADPCM(子带自适应差分脉冲编码调制)。使用该SB-ADPCM技术,使用正交镜像滤波器将频带划分成两个子频带,即高范围和低范围。通过ADPCM编码在相应频带内的信号。
图12所示的语音频带校正设备10基本上模仿图8所示的第三实施例的配置,在该配置中还包括正交镜像滤波器(QMF)单元94。具体而言,除了频带分割器80、校正滤波器12、系数控制器14和电平检测器16之外,语音频带校正设备10还包括正交镜像滤波器单元94。
频带分割器80包括如图所示相互连接的正交镜像滤波器96和98。这些正交镜像滤波器96和98是适合于将0Hz到8kHz的子频带划分成两个子频带即0Hz到4kHz的低子频带和4kHz到8kHz的高子频带的线性相位非递归数字滤波器。以16kHz的频率抽样滤波器的输入信号18。正交镜像滤波器96和98以8kHz的抽样频率抽样低范围输出信号100和高范围输出信号102以将抽样后的输出信号输出给校正滤波器12。
校正滤波器12包括如图所示互连的低范围校正器104和高范围校正器106。低范围校正器104例如是FIR滤波器,并具有放大0kHz到4kHz的低范围信号的功能。低范围校正器104最好是组合校正例如图2B所示的频带A和B的滤波器特性的滤波器。具体而言,这可以通过组合图8B和8C所示的特性来实现,这仅是一个例子。
高范围校正器106还是适合于放大4kHz到8kHz的高范围信号的FIR滤波器。优选地,具有图8D所示特性的滤波器可应用于高范围校正器106,这仅是一个例子。然而,高范围校正器106并不限制于这种特定的校正器。在校正滤波器12内包括的低范围校正器104和高范围校正器106分别向电平检测器16和QMF单元94两者提供对应于图7的输出信号42和44的组合的输出信号108和对应于图7的输出信号46的输出信号110。
电平检测器16包括低范围幅度测量电路112和高范围幅度测量电路114。低范围幅度测量电路112具有监视低范围校正器104的输出信号108以输出表示已校正输出信号108的幅度变化状态的测量幅度信号52的功能。高范围幅度测量电路114包括监视高范围校正器106的输出信号110以输出表示已校正输出信号110的幅度变化状态的测量幅度信号54的功能。
在本实施例中,检查以数字信号形式的低范围校正器104或高范围校正器106的输出值是否取16比特数字表示的极限值,即+32768或-32767。然而,所使用的极限值并不限制于上面给出的具体值,还可以例如是+16384或-16384,在这种情况下,验证是否超过阈值之一。可以使用任一合适的方法来确定是否超过这些预置值,假设所使用的方法允许进行是否已经达到期望电平的判决。
系数控制器14包括低范围增益控制器116和高范围增益控制器118。无论低范围增益控制器116还是高范围增益控制器118都不执行在初始状态下的控制。低范围增益控制器116具有其中相互组合图8B和图8C的特性的滤波器特性。如果低范围校正器104的输出信号108超过极限值,则低范围增益控制器116响应于测量幅度信号52控制将幅度校正量值120降低1dB,从而输出结果信号。该系统可以适合于仅将图8B所示的分量降低1dB。滤波器特性并不限制子图8B和图8C所示的组合特性。
高范围校正器106具有图8D所示的滤波器特性。如果高范围校正器106的输出信号超过极限值,则高范围增益控制器118响应于测量幅度信号54控制以把将要提供给高范围校正器106的幅度校正量值122降低1dB,从而输出结果信号。这仅是用于解释的一个例子。
QMF单元94包括正交镜像滤波器124和126。这些正交镜像滤波器124和126是线性相位非递归数字滤波器,内插未图示的低频范围和高频范围的SB-ADPCM解码器的输出,用于将8kHz抽样信号108和110转换成16kHz抽样信号128和130。语音频带校正设备10最终相互组合QMF单元94的输出信号128和130以生成16kHz频率抽样的输出信号26。
尽管未图示,但是可以在求和的下游提供幅度测量电路48。该幅度测量电路48可以适合于向两个系数更新单元56和58提供测量结果,并作为设备输出26传送输出信号26。这可以将相应电路从图10中的电平检测器16简化成单独幅度测量电路48。
现在将描述语音频带校正设备10的第四实施例的操作。将16kHz频率抽样的0Hz到8kHz频带的输入信号18提供给频带分割器80。这个频带分割器80通过正交镜像滤波器96限制输入信号18的高频范围以将8kHz频率抽样的0Hz到4kHz的频带的信号提供给低范围校正器104。通过低范围校正器104放大抽样信号100。
通过低范围幅度测量电路112监视放大信号108。这个低范围幅度测量电路112将测量幅度信号52输出给低范围增益控制器116。具体而言,如果低范围校正器104的输出信号108超过极限值,则低范围增益控制器116响应于所提供的测量幅度信号52控制幅度校正量值120,输出给低范围校正器104。低范围校正器104的输出信号108通过正交镜像滤波器124内插未图示的低范围SB-ADPCM解码器的输出以将8kHz抽样信号转换成16kHz抽样信号。正交镜像滤波器124发出16kHz频率抽样的输出信号128。
将同样的操作应用于高频频带。更具体地说,将16kHz频率抽样的0Hz到8kHz频带的输入信号16提供给正交镜像滤波器98。正交镜像滤波器98限制输入信号18的低频带以将8kHz频率抽样的4Hz到8kHz范围的信号102输出给高范围校正单元106。由高范围校正器106放大该输出信号102。
由高范围幅度测量电路114监视放大信号110。这个高范围幅度测量电路114将测量幅度信号54输出给高范围增益控制器118。具体而言,如果高范围校正器106的输出信号110超过极限值,则高范围增益控制器118响应于测量幅度信号54控制将要输出给高范围校正器106的幅度校正量值122。高范围校正器106的输出信号110通过正交镜像滤波器126内插未图示的高范围SB-ADPCM解码器的输出以将8kHz抽样信号转换成16kHz抽样信号。该正交镜像滤波器126发出16kHz频率抽样的输出信号130。
此外,可以在正交镜像滤波器96和低范围校正器104之间提供滤波器以通过低范围校正器104校正滤波器96输出的0Hz到340Hz范围的子频带,而340Hz至4kHz范围在不校正该子频带的情况下输出。在这种情况下的具体操作与第二实施例的操作相同。
通过这个操作,可以通过使用正交镜像滤波器而不是具有频率划分滤波器的频带分割器扩展语音频带。具体而言,在发送信道发送专用于宽带应用的信号的应用中,可以改善由常规电话机处理的输出信号的声音质量。而且,因为分别为低范围和高范围分量进行频率校正,通过将常规电话机的声音质量扩展成自然语音频带,即使在必需使用例如ITU-T建议书G.722的正交镜像滤波器以符合该标准的情况下,也可以实现高质量语音信号传输。
现在将描述语音频带校正设备10的第五实施例的配置。本实施例与图10所示的第三实施例的配置基本上相同,特征在于没有系数控制器14和电平检测器16。该语音频带校正设备10包括频带分割器80、校正滤波器12和D/A转换单元132,如图13所示互连。
以类似于第三修改实施例的方式,频带分割器80包括低通滤波器(LPF)82、中间滤波器(BPF)84和高通滤波器(HPF)86,同时校正滤波器12包括三个滤波器36、38和40。校正滤波器12根据在数字信号处理中提供的数值调整放大增益,放大幅度到例如数字信号最大值。D/A转换单元132由用于将从校正滤波器12接收到的三个输出信号(数字信号)42、44和46转换成相应的模拟信号的D/A转换器134、136和138组成。
现在,将描述语音频带校正设备10的第五实施例的操作。当提供频带限制到300Hz至3.4kHz的输入信号18时,通过低通滤波器82、中间滤波器84和高通滤波器86将输入信号18分割成0Hz到300Hz、300Hz到3.4kHz和3.4kHz到8kHz的子频带。低通滤波器82的输出信号88(0Hz到300Hz)由滤波器36放大。由D/A转换器134将这个放大信号42转换成相应的模拟信号140。由滤波器38延迟中间滤波器84的输出信号92,以相对于输出信号92的延迟调整低通滤波器82和高通滤波器86的延迟。由D/A转换器136将输出信号44转换成相应的模拟信号142。由滤波器40放大高通滤波器86的输出信号90(3.4kHz到8kHz)。由D/A转换器138将放大信号46转换成模拟信号144。
求和D/A转换器134、136和138的输出140、142和144,将分割得到的频带(0Hz到300Hz、300Hz到3.4kHz和3.4kHz到8kHz)组合在一起。通过该组合,语音频带校正设备10执行校正以将频带限制输入信号18的频带扩展成宽带以作为输出信号26输出结果信号。
因而,根据已经由频带分割器80将输入信号预先划分成低频带、中频带和高频带和在每个分割频带内校正幅度的假定,本实施例将分割频带之后的信号88、92和90的幅度放大到在校正滤波器12的数字信号处理范围内的数字信号最大值,随后,将数字信号转换成模拟信号,并将相应频带的信号相加在一起。通过利用在模拟信号处理域中不存在求和值的限制的事实,这种方法变成可能。因为在没有求和上限的模拟信号域中进行求和,可以放大语音频带,即使在因为求和导致幅度变得非常大的情况下,同时维持了没有数字求和限制的声音质量。
现在,将描述第六实施例的配置,它将第五实施例应用于语音频带校正设备10,使用结合第四实施例描述的ITU-T建议书G.722。参见图14,语音频带校正设备10包括频带分割器80、校正滤波器12、正交镜像滤波器124、相位补偿器146、D/A转换单元132和频率偏移器148。
频带分割器80包括如图所示互连的正交镜像滤波器96和98。这些正交镜像滤波器96和98是线性相位非递归数字滤波器,适合于将输入信号18的0Hz到8kHz的频带划分成两个部分即0Hz到4kHz的低子频带和4kHz到8kHz的高子频带。以16kHz频率抽样滤波器的输入信号18。正交镜像滤波器96和98使用8kHz的频率抽样低范围输出信号100和高范围输出信号102以输出抽样信号。
校正滤波器12包括如图所示互连的低范围校正器104和高范围校正器106。低范围校正器104具有相互组合图8B和图8C的频率特性的特定频率特性。高范围校正器106可以具有图8D所示的滤波器特性。低范围校正器104和高范围校正器106将根据输入值放大的相应输出信号108和110输出给正交镜像滤波器124和D/A转换器138。
正交镜像滤波器124可以适合于将所提供输出信号108的例如0Hz到340kHz的频率分量发送给相位补偿器146,同时在没有校正的情况下输出340Hz到4kHz的频率分量。这便于设计校正滤波器12,与第二实施例相同。正交镜像滤波器124将输出信号128发送给相位补偿器146。因为已经获得具体为0Hz至4kHz信号的低范围信号,为了降低设备规模,可以省去正交镜像滤波器124,假设达到了在高范围校正信道上仅相位或延迟的一致性。原因在于正交镜像滤波器124负责从0Hz到4kHz信号到0Hz到4kHz信号的转换,因而不执行实质上的频率转换。
相位补偿器146补偿例如相位,如果由于频率偏移由频率偏移器148导致在高范围信号152上的相位延迟等。随后将描述这个频率偏移。如果并未导致由于频率偏移产生的延迟或相位改变,则可以省去频率偏移。作为相位补偿器146,最好使用延迟寄存器。如果因而可以补偿延迟和相位改变,则对相位补偿器146不存在限制。相位补偿器146将相位管理的输出信号150输出给D/A转换器134。
D/A转换单元132包括分别用于低频范围和高频范围的D/A转换器134,如图所示互连。D/A转换器138将来自高范围校正器106的输出信号110转换成模拟信号144,随后,将其发送给频率偏移器148。这个频率偏移器148频率偏移模拟信号144。因为通过正交镜像滤波器的信号处理等价于在16kHz频率抽样的信号内的4kHz到8kHz信号分量到较低频率侧的频率偏移,执行处理以最终将信号恢复到4kHz到8kHz的更高频率侧。语音频段校正设备10相互组合来自D/A转换器134和频率偏移单元148的输出信号140和152以输出组合输出信号26。
现在将描述语音频段校正设备10的第六实施例的操作。将以16kHz的频率抽样的0Hz到8kHz的频段的输入信号18提供给正交镜像滤波器96和98。输入信号18具有由正交镜像滤波器96限制的高频范围。正交镜像滤波器96使用8kHz的频率抽样0Hz到4kHz频段的信号,从而将输出信号100发送给低范围校正器104。由低范围校正器104放大输出信号100。
将在本实施例中放大的信号108提供给正交镜像滤波器124。滤波器124将0Hz到340Hz和340Hz至4kHz的频带的信号128发送给相位补偿器146,同时由相位补偿器146在未校正的情况下输出340Hz到4kHz的频段的信号。然而,提供未图示的延迟调整器,用于调整0Hz到340Hz和340Hz到4kHz的频段的信号内的延迟。
如果通过更高子频带信号的频率偏移已经产生相位延迟等,则由相位补偿器146相位补偿如此放大和频带限制的信号128。应当指出已经给出了用于在例如设计阶段仿真导致的相位延迟的条件。相位补偿器146最好以这种方式响应于条件的符合而操作。由D/A转换器134将组合相位补偿信号和340Hz到4kHz频带的信号获得的较低子频带信号150转换成相应的模拟信号。
对于较高子频带的信号来说,16kHz频率抽样的0Hz到8kHz频率范围的输入信号18具有通过QMF 98限制的较低子频带信号。正交镜像滤波器98使用8kHz的频率抽样在4kHz到8kHz频率范围内的信号以将抽样信号102发送给高范围校正器106。在这个高范围校正单元106中,根据输入值放大输出信号102的数字值。
由D/A转换器138将这个放大信号110转换成模拟信号144,它由频率偏移器148执行频率偏移。求和重置到原始频带的高范围输出信号152与低范围输出信号140,并作为语音频带校正设备10的输出信号26予以发送。
通过这一操作,即使在每个频率范围内以数字信号的形式将输入信号放大成最大值,随后在模拟信号域内执行求和,在该模拟信号域内不存在求和的上限,因此可以放大该语音频带,同时维持没有数字求和限制的自然声音质量,即使因为相加组合导致幅度变得非常大。
使用语音频带校正设备10的上述配置,通过校正滤波器12放大所关注的频带的信号电平,由电平检测器16比较提供给电平检测器16的来自校正滤波器12的输出信号的电平与相应的预定电平,将检测获得的检测信号提供给系数控制器14,由系数控制器14以控制方式调整信号电平,并将控制信号24提供给校正滤波器12。如此将输入信号18校正成宽带信号,而不执行导致通信信号质量降低的输入信号18的过度放大,因而保证了高质量传输。
通过提供放大器28和幅度控制器30作为电平调整器来调整将要提供给校正滤波器12的输入信号18的电平,可以作为高质量信号提供如此校正的宽带信号。而且,通过提供低范围滤波器36、仅延迟的中间滤波器38和高范围滤波器40作为校正滤波器12,通过在电平检测器16内提供幅度测量电路48和50,与排除频带限制输入信号18的频带信号的滤波器相关的系数更新电路56和58和乘法器60和62,即低范围滤波器36和高范围滤波器40,进一步通过提供加法器34,可以在不影响其它频带的情况下扩展语音频带,因此具有自然的声音质量,即使噪声位于特定频带内。而且,使用包括在下游的幅度测量单元48的配置,在加法器34下游的单个幅度测量单元48的提供足以有助于降低组件部件的数量。
在系数控制器14的输入侧上提供频带分割器80允许三个正交镜像滤波器82、84和86将输入信号划分成相应的频段,并与校正滤波器输出88、92和90的校正滤波器12分离。这使仅考虑在校正滤波器12内的相应滤波器的正增益是足够的,从而便于设计。可以使量化步骤的数量更加精细以支持自然信号校正,并不降低声音的真实感觉。在正交镜像滤波器82、84和86的组合之中,滤波器84被提供有通过与校正滤波器12的延迟相等的延迟值延迟除了带限输入信号18的限制频带之外的频带的信号的功能,从而保证在系统配置中的灵活性。
通过提供用于以不同于应用于校正滤波器12的输出的抽样频率的抽样频率抽样输出信号108和110的正交镜像滤波器单元94,可以输出符合ITU-T建议书G.722的规定的信号。
而且,使用所图示的本发明的语音频带校正设备,其中通过频带分割器80将输入信号划分成相应的频带以将结果信号发送给校正滤波器12,为在分割获得的每个频带通过校正滤波器12校正信号电平,并由D/A转换单元132将已校正信号转换成模拟信号,随后将其组合在一起。可以在维持自然声音质量的同时扩展语音频带,而不受到限制,例如数字表示边界所施加的限制,即使通过校正滤波器12放大信号到接近于在数字信号技术中的比特表示边界。
具体而言,通过提供等效于带限输入信号的除了限制频带之外的信号频带的滤波导致的延迟的延迟给频带分割器80的低通滤波器82和高通滤波器86,和通过提供等效于滤波器38导致的处理延迟的延迟给中间滤波器84,可以划分校正滤波器12的功能,同时足以在设计校正滤波器12时仅考虑正增益,从而便于设计。可以使量化步骤的数量更加细化以允许自然信号校正,而并不降低声音的真实感觉。
即使在每个频率范围内将输入信号放大成数字信号形式的最大值,随后以模拟信号的形式执行求和,其中不存在求和的上限,从而扩展语音频带,即使在因为相加组合导致幅度变得非常大的情况下,同时维持了没有数字求和限制的自然语音质量。
在校正滤波器12中,通过滤波器36和40放大输入频带信号,同时由滤波器38提供等价于排除输入信号限制频带的频带的信号延迟的延迟,以便即使在每个频率范围内将输入信号放大成数字信号形式的最大值,随后以模拟信号的形式执行求和,其中对求和没有上限。因此,可以扩展语音频带,即使在因为相加组合导致幅度变得非常大的情况下,也同时维持了没有数字求和限制的自然声音质量。
通过在频带分割器80内提供正交镜像滤波器96和98用于划分成低范围和高范围,符合ITU-T建议书G.722,通过在校正滤波器12提供低范围校正器104和高范围校正器106,通过利用频率偏移器148将D/A转换器138的输出信号144的频率偏移到原始频带即朝向更高子频带,可以将较低和较高子频带信号组合在一起以将符合标准的输出信号提供为高质量信号。
在这一方面,在低范围校正器104的下游提供正交镜像滤波器124以允许进一步频带分割的处理。而且,通过正交镜像滤波器124的输出信号128的频率偏移以在相位补偿器146内相应地调整相位或延迟,可以在不降低通信信号质量的情况下提供符合标准的高质量语音。
于2003年2月27日提交的日本专利申请JP2003-50832的整个公开内容,包括公开的说明书、权利要求书、附图和摘要,在此全部引用作为参考。
虽然已经参考具体实施例描述了本发明,但是并不受这些实施例的限制。将理解在不脱离本发明的范围和精神的情况下,本领域的技术人员可以改变或修改这些实施例。
权利要求
1.一种频带校正设备,包括校正器,接收在频带中限制的输入信号,用于相对于每个限制频带的信号电平来校正该输入信号,并输出已校正的信号;监视器,用于监视已校正信号的信号电平是否达到预置电平;和电平调整器,用于响应于来自所述监视器的电平信息调整所述信号电平。
2.根据权利要求1的设备,其中所述电平调整器包括系数控制器,用于控制校正信号电平的系数。
3.根据权利要求1的设备,其中所述电平调整器包括电平放大器,用于控制用于放大输入电平的系数;和系数控制器,用于根据所述电平信息输出所述用于放大输入信号电平的系数。
4.根据权利要求1的设备,其中所述校正器包括第一滤波器,用于放大限制在频带内排除输入信号的频带信号;和第二滤波器,用于将延迟应用于排除频带限制输入信号的限制频带的频带信号,该延迟基本上等价于频带限制输入信号的延迟;在数量上与第一滤波器的频带信号相应地提供所述监视器和所述电平调整器;所述电平调整器包括系数控制器和用于相乘来自所述系数控制器的系数和输入信号的乘法器;所述设备还包括加法器,用于求和所述第一和第二滤波器的输出。
5.根据权利要求4的设备,其中所述监视器设置在所述加法器的下游,并将所测量的电平信息发送给所述电平调整器。
6.根据权利要求4的设备,还包括设置在所述电平调整器上游的频带分割器,用于进一步划分和频带限制该频带限制输入信号。
7.根据权利要求6的设备,其中所述监视器设置在所述加法器的下游,并将所测量的电平信息发送给所述电平调整器。
8.根据权利要求6的设备,其中所述频带分割器包括第三滤波器,用于将所提供的输入信号分割成多个频带;所述第三滤波器之一将带限输入信号的除了限制频带之外的频带的信号延迟基本上等于所述第二滤波器的延迟的量。
9.根据权利要求6的设备,还包括第四滤波器,用于使用与应用于所述校正器输出的抽样频率不同的抽样频率抽样所述校正器的输出,用于所述频带分割器的处理。
10.根据权利要求8的设备,还包括第四滤波器,用于使用与应用于所述校正器输出的抽样频率不同的抽样频率抽样所述校正器的输出,用于所述频带分割器的处理。
11.根据权利要求9的设备,其中所述设备符合ITU-T建议书G.722的标准。
12.根据权利要求10的设备,其中所述设备符合ITU-T建议书G.722的标准。
13.一种频带校正设备,包括频带分割器,用于将输入信号的频带分割成多个限制频带;校正器,用于校正通过分割获得的各频带的信号电平以输出校正信号;和模拟转换器,用于将每个校正信号转换成模拟信号。
14.根据权利要求13的设备,其中所述频带分割器包括第一延迟电路,用于将延迟应用于频带限制输入信号的除了限制频带之外的信号,该延迟基本上等价于在频带限制输入信号的滤波时出现的延迟;和第二延迟电路,用于应用基本上等价于在所述校正器处理时出现的延迟的延迟。
15.根据权利要求14的设备,其中所述校正器包括第一滤波器,用于放大从所述第一延迟电路输出的频带信号;和第二滤波器,用于放大从所述第二延迟电路输出的频带信号。
16.根据权利要求13的设备,其中所述设备符合ITU-T建议书G.722的标准。
17.根据权利要求16的设备,其中所述频带分割器包括正交镜像滤波器,用于符合所述标准,和将输入信号的频带划分成低子频带和高子频带;所述校正器包括低范围校正器,用于校正低子频带的电平;和高范围校正器,用于校正高子频带的电平;所述设备还包括偏移器,用于偏移由所述模拟转换器输出的高子频带的输出信号的频率。
18.根据权利要求17的设备,还包括在所述低范围校正器的下游提供的用于分割频带的第三滤波器。
19.根据权利要求18的设备,其中所述第五滤波器包括正交镜像滤波器。
20.根据权利要求17的设备,还包括相位调整器,用于调整来自所述低范围校正器的输出信号的相位或延迟。
21.根据权利要求18的设备,还包括相位调整器,用于调整来自所述第三滤波器的输出信号的相位或延迟。
全文摘要
提供一种语音频带校正设备,其中由校正滤波器放大限制频带的信号电平,通过电平检测器比较所提供的校正信号的信号电平与预置电平,将判决结果作为电平信息发送给系数控制器,在此以受控方式调整信号电平。在不因为过度放大降低通信信号质量的情况下,可以通过校正获得高质量的宽带信号。
文档编号H04M3/00GK1754205SQ200480005360
公开日2006年3月29日 申请日期2004年2月26日 优先权日2003年2月27日
发明者高田真资, 村上好也 申请人:冲电气工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1