一种基于微波设备的快速转发系统的制作方法

文档序号:7818179阅读:270来源:国知局
一种基于微波设备的快速转发系统的制作方法
【专利摘要】本发明的基于微波设备的快速转发系统环境适应能力强,可以针对不同的数据传输率进行实时适配,转发速度高,智能化高,同时通过设置自适应干扰消除单元,避免了系统自振荡干扰以及信号恶化现象的发生,并且实现了与基站的同步,提高了同步稳定性,具有有益的现实效果。
【专利说明】一种基于微波设备的快速转发系统

【技术领域】
[0001]本发明涉及微波通信领域,尤其涉及一种基于微波设备的快速转发系统。

【背景技术】
[0002]在传统的微波中继转发通信技术中,通常采用点对多点的TDMA技术,数据传输率比较固定,一般根据通信距离以及通信环境的变化设置固定的数据传输率通信,这种通信方式比较稳定但随环境的变化能力差,并且数据传输率固定,数据转发速度不高,不能满足更高通信质量,传输率变换复杂,对突发传输适应性差。
[0003]另外,现有的微波转发系统存在较为严重的自干扰问题和失步问题。


【发明内容】

[0004]本发明的目的是通过以下技术方案实现的。
[0005]根据本发明的实施方式,提出一种基于微波设备的快速转发系统,所述系统包括依次耦接的双向耦合组分电路(I),扩展载波合成电路(2),非扩展载波合成电路(3),载波适配电路(4),第一中频变频电路(5),第二中频变频电路(6),中变适配电路(7),数模转换电路(8),自动增益调节电路(9),增益滤波电路(10),模数转换电路(11),基带变换电路
(12),扩展去载波合成电路(13),非扩展去载波合成电路(14),第二传输率适配电路(15)和供电单元(17);
[0006]所述双向耦合组分电路(I)对外部输入的数据以及时钟信号进行帧串并转换并加入辅助冗余形成串行中继信息,双向耦合组分电路(I)输出串行中继信息到扩展载波合成电路⑵和非扩展载波合成电路⑶;
[0007]所述扩展载波合成电路(2)对串行中继信息进行载波合成并输出两路带宽相同,扩展倍数不同的扩展载波合成信号;
[0008]所述非扩展载波合成电路(3)将串行中继信息进行TURBO前向纠错编码载波合成,输出两路非扩展载波合成信号;
[0009]所述载波适配电路(4)根据当前的数据传输率对扩展载波合成信号和非扩展载波合成信号进行适配并输出同相正交两路基带信号;
[0010]所述同相正交两路基带信号通过第一中频变频电路(5)进行20M的LIF频谱迁移,同相正交两路基带信号经过第二中频变频电路(6)进行50M的LIF信号频谱迁移;
[0011]两路频谱偏移后的信号通过中变适配电路(7)的适配分别输出LIF信号到数模转换电路⑶和自动增益调节电路(9);
[0012]所述数模转换电路(8)对中变适配电路(7)输出的LIF信号进行数模变换后输出到RF单元;
[0013]所述自动增益调节电路(9)将中变适配电路(7)输入的LIF信号和RF单元输入的50MLIF信号进行增益调节后输入到增益滤波电路(10);
[0014]所述增益滤波电路(10)对增益放大的信号进行频带选通增益滤波后送入到模数转换电路(11);
[0015]所述模数转换电路(11)将频带选通增益滤波后的信号进行数据采样变为数字信号,并将数字信号送入到基带变换电路(12);
[0016]所述基带变换电路(12)将上述数字信号转换为两路零中频信号分别输出到扩展去载波合成电路(13)和非扩展去载波合成电路(14)进行去载波合成;
[0017]所述扩展去载波合成电路(13)和非扩展去载波合成电路(14)将去载波合成后的信号输出到第二传输率适配电路(15),所述第二传输率适配电路(15)根据当前反向数据传输率对上述扩展去载波合成电路(13)和非扩展去载波合成电路(14)输出的去载波合成后的信号进行传输率适配;
[0018]所述第二传输率适配电路(15)输出去载波合成时钟信息和去载波合成数据码到双向耦合组分电路(I)进行帧并串转换恢复出串行中继信息以及时钟信息;
[0019]所述第二传输率适配电路(15)还将去载波合成信息输出至载波适配电路。
[0020]根据本发明的优选实施方式,所述载波适配电路包括:信道状态信息反馈电路、第一传输率适配电路、以及相位变换电路,所述信道状态信息反馈电路用于根据第二传输率适配电路(15)发送的去载波合成LLR信息进行信道状态信息的估计,并将估计出的信道状态信息发送给第一传输率适配电路,所述第一传输率适配电路根据实时估计的信道状态信息和预先存储的信道状态信息、传输率、以及载波合成方式的映射关系执行当前传输率的适配,并输出适配后的信号至相位变换电路,所述相位变换电路将适配后的信号进行相位转换,输出同相和正交两路信号。
[0021]根据本发明的优选实施方式,所述信道状态信息反馈电路具体包括:
[0022]最小二乘LS估计单元,被配置成根据所接收的去载波合成信息来计算信道的LS估计值;
[0023]信噪比估计单元,被配置成估计所述信道的信噪比;
[0024]信道参数估计单元,被配置成估计与所述信道的时延扩展相关的信道参数;
[0025]过渡矩阵选择单元,被配置成根据所估计的信噪比和所估计的信道参数而选择线性最小均方误差过渡矩阵;
[0026]线性最小均方误差过渡单元,被配置成使用所选择的线性最小均方误差过渡矩阵对所述LS估计值进行线性最小均方误差滤波;以及
[0027]输出单元,被配置成将滤波结果作为信道估计信息输出。
[0028]根据本发明的优选实施方式,所述中变适配电路包括:频带干扰探测单元以及LIF适配单元,所述频带干扰探测单元对运行的20M和50MLIF频带进行实时监测,确定当前存在干扰或可用LIF频带,所述LIF适配单元根据频带干扰探测单元的探测结果,对传输的LIF信号进行适配。
[0029]根据本发明的优选实施方式,所述基于微波设备的数据转发系统还包括自适应干扰消除单元,所述自适应干扰消除单元包括依次连接的相减器模块、去相关时延模块、延迟单元模块、时延估计模块、增益估计模块、以及累加器模块。
[0030]根据本发明的实施方式,所述基于微波设备的数据转发系统还包括自适应解调同步单元,用于确保转发系统与基站的实时完全同步,所述自适应解调同步单元具体包括:依次连接的幅度信息获取与波形调整电路以及数字信号处理与同步控制单元,其中幅度信息获取与波形调整电路与第二传输率适配电路连接,数字信号处理与同步控制单元连接到转发系统的上下行链路。
[0031]本发明的基于微波设备的快速转发系统环境适应能力强,可以针对不同的数据传输率进行实时适配,转发速度高,智能化高,同时通过设置自适应干扰消除单元,避免了系统自振荡干扰以及信号恶化现象的发生,并且实现了与基站的同步,提高了同步稳定性,具有有益的现实效果。

【专利附图】

【附图说明】
[0032]通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
[0033]附图1示出了根据本发明实施方式的基于微波设备的快速转发系统结构示意图;
[0034]附图2示出了根据本发明实施方式的载波适配电路结构示意图;
[0035]附图3示出了根据本发明实施方式的中变适配电路结构示意图;
[0036]附图4示出了根据本发明实施方式的扩展去载波合成电路结构示意图;
[0037]附图5示出了根据本发明实施方式的自适应干扰消除单元结构示意图;
[0038]附图6示出了根据本发明实施方式的自适应解调同步单元结构示意图;
[0039]附图7示出了根据本发明实施方式的自动增益调节电路结构示意图。

【具体实施方式】
[0040]下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
[0041]根据本发明的实施方式,提出一种基于微波设备的快速转发系统,如附图1所示,所述系统包括依次耦接的双向耦合组分电路(I),扩展载波合成电路(2),非扩展载波合成电路(3),载波适配电路(4),第一中频变频电路(5),第二中频变频电路(6),中变适配电路
(7),数模转换电路(8),自动增益调节电路(9),增益滤波电路(10),模数转换电路(11),基带变换电路(12),扩展去载波合成电路(13),非扩展去载波合成电路(14),传输率适配电路15和供电单元(17);
[0042]所述双向耦合组分电路(I)对外部输入的数据以及时钟信号进行帧串并转换并加入辅助冗余形成串行中继信息,双向耦合组分电路(I)输出串行中继信息到扩展载波合成电路⑵和非扩展载波合成电路⑶;
[0043]所述扩展载波合成电路(2)对串行中继信息进行载波合成并输出两路带宽相同,扩展倍数不同的扩展载波合成信号;优选的,所述扩展载波合成电路采用直接序列频谱扩展;
[0044]所述非扩展载波合成电路(3)将串行中继信息进行TURBO前向纠错编码载波合成,输出两路非扩展载波合成信号;优选的,所述非扩展载波合成信号为单波道信号;
[0045]所述载波适配电路(4)根据当前的数据传输率对扩展载波合成信号和非扩展载波合成信号进行适配并输出同相正交两路基带信号;
[0046]所述同相正交两路基带信号通过第一中频变频电路(5)进行20M的LIF(中频)频谱迁移,同相正交两路基带信号经过第二中频变频电路(6)进行50M的LIF信号频谱迁移;
[0047]两路频谱偏移后的信号通过中变适配电路(7)的适配分别输出LIF信号到数模转换电路⑶和自动增益调节电路(9);
[0048]所述数模转换电路(8)对中变适配电路(7)输出的LIF信号进行数模变换后输出到RF单元;
[0049]所述自动增益调节电路(9)将中变适配电路(7)输入的LIF信号和RF单元输入的50MLIF信号进行增益调节后输入到增益滤波电路(10);
[0050]所述增益滤波电路(10)对增益放大的信号进行频带选通增益滤波后送入到模数转换电路(11);
[0051]所述模数转换电路(11)将频带选通增益滤波后的信号进行数据采样变为数字信号,并将数字信号送入到基带变换电路(12);
[0052]所述基带变换电路(12)将上述数字信号转换为两路零中频信号分别输出到扩展去载波合成电路(13)和非扩展去载波合成电路(14)进行去载波合成;
[0053]所述扩展去载波合成电路(13)和非扩展去载波合成电路(14)将去载波合成后的信号输出到第二传输率适配电路(15),所述第二传输率适配电路(15)根据当前反向数据传输率对上述扩展去载波合成电路(13)和非扩展去载波合成电路(14)输出的去载波合成后的信号进行传输率适配;所述扩展去载波合成电路(13)和非扩展去载波合成电路(14)的去载波合成方式为前述载波合成过程的反过程;
[0054]所述第二传输率适配电路(15)输出去载波合成时钟信息和去载波合成数据码到双向耦合组分电路(I)进行帧并串转换恢复出串行中继信息以及时钟信息;
[0055]所述第二传输率适配电路(15)还将去载波合成信息输出至载波适配电路。
[0056]根据本发明的优选实施方式,所述载波适配电路包括,如附图2所示:信道状态信息反馈电路、第一传输率适配电路、以及相位变换电路,所述信道状态信息反馈电路用于根据第二传输率适配电路(15)发送的去载波合成LLR信息进行信道状态信息的估计,并将估计出的信道状态信息发送给第一传输率适配电路,所述第一传输率适配电路根据实时估计的信道状态信息和预先存储的信道状态信息、传输率、以及载波合成方式的映射关系执行当前传输率的适配,例如决定适配扩展载波合成电路(2)还是非扩展载波合成电路(3)的输出信号,并输出适配后的信号至相位变换电路,所述相位变换电路将适配后的信号进行相位转换,输出同相和正交两路信号。
[0057]根据本发明的优选实施方式,所述信道状态信息反馈电路具体包括:
[0058]最小二乘LS估计单元,被配置成根据所接收的去载波合成信息来计算信道的LS估计值;
[0059]信噪比估计单元,被配置成估计所述信道的信噪比;
[0060]信道参数估计单元,被配置成估计与所述信道的时延扩展相关的信道参数;
[0061]过渡矩阵选择单元,被配置成根据所估计的信噪比和所估计的信道参数而选择线性最小均方误差过渡矩阵;
[0062]线性最小均方误差过渡单元,被配置成使用所选择的线性最小均方误差过渡矩阵对所述LS估计值进行线性最小均方误差滤波;以及
[0063]输出单元,被配置成将滤波结果作为信道估计信息输出。
[0064]所述信道状态信息反馈电路的作用是在不需要加入额外冗余的情况下,对信道的实时状况进行估计从而确定不同的数据传输率,从而使信道容量得到更加充分的利用,最终提高通信效率。
[0065]根据本发明的优选实施方式,所述中变适配电路包括,如附图3所示:频带干扰探测单元以及LIF适配单元,所述频带干扰探测单元对运行的20M和50MLIF频带进行实时监测,确定当前存在干扰或可用LIF频带,所述LIF适配单元根据频带干扰探测单元的探测结果,对传输的LIF信号进行适配。
[0066]根据本发明的优选实施方式,所述的扩展去载波合成电路包括,如附图4所示:第一低通滤波电路、第二低通滤波电路、4K直接序列扩频去载波合成电路、90K线性调频去载波合成电路和650K线性调频去载波合成电路;基带变换电路将同相信号输出到第一低通滤波电路,基带变换电路将正交信号输出到第二低通滤波电路,第一低通滤波电路和第二低通滤波电路根据扩展带宽对同相正交两路信号分别进行低通滤波得到同相正交两路基带信号,将同相正交两路基带信号送入直接序列扩频去载波合成电路、90k线性调频去载波合成电路和650K线性调频去载波合成电路进行去载波合成处理得到对应的去载波合成数据码、去载波合成时钟信息,并送入第二传输率适配电路(15)进行适配。
[0067]根据本发明的实施方式,所述基于微波设备的数据转发系统还包括自适应干扰消除单元,如附图5所示,所述自适应干扰消除单元具体包括:
[0068]相减器模块,其作用在于将一路设定为叠加有回馈信号的有用信号的输入信号减去另一路设定为估计的回馈信号的输入信号后输出设定为削除回馈后信号的差值信号;
[0069]去相关时延模块,其作用在于对输入信号进行时延处理;
[0070]延迟单元模块,其作用在于产生时延不同个CHIP的期望信号;
[0071]时延估计模块,其作用在于利用互相关技术并根据延迟单元模块所输出的时延不同个CHIP的期望信号以及相减器模块输出的削除回馈后信号来产生对应的自适应滤波器系数输出;
[0072]增益估计模块,其作用在于根据时延不同个CHIP的期望信号和对应的自适应滤波器系数并利用LMS算法产生出对应的估计的回馈信号;
[0073]累加器模块,其作用在于对多个输入信号进行累加处理并输出累加结果;
[0074]所述相减器模块的一设定为叠加有回馈信号的有用信号的输入端接至变频单元的输出,相减器模块的另一设定为估计的回馈信号的输入端接累加器模块的输出,相减器模块的设定为削除回馈后信号的输出分别接至去相关时延模块和时延估计模块;去相关时延模块的一输出接变频单元的输入,去相关时延模块的另一输出分别接延迟单元模块和时延估计模块;延迟单元模块内设有有限个小延迟单元模块分别产生时延有限个CHIP的期望信号,延迟单元模块的输出接至时延估计模块的输入;时延估计模块的输出接至增益估计模块的输入,增益估计模块内设有有限个小增益估计模块分别根据时延对应个CHIP的期望信号和对应的自适应滤波器系数并利用LMS算法产生出对应的估计的回馈信号;增益估计模块的输出接至累加器模块的输入。
[0075]根据本发明的实施方式,所述基于微波设备的数据转发系统还包括自适应解调同步单元,用于确保转发系统与基站的实时完全同步,如附图6所示,所述自适应解调同步单元具体包括:
[0076]依次连接的幅度信息获取与波形调整电路以及数字信号处理与同步控制单元,其中幅度信息获取与波形调整电路与第二传输率适配电路连接,数字信号处理与同步控制单元连接到转发系统的上下行链路;
[0077]所述幅度信息获取与波形调整电路包括采样保持电路和实时比较器电路,所述采样保持电路接收第二传输率适配电路输出的信号,处理后输送给所述实时比较器电路。
[0078]所述数字信号处理与同步控制单元包括依次连接的特征值运算单元、帧同步头捕捉与产生单元、本地帧同步头产生及校正单元、同步控制信号产生单元以及微处理器单元,所述特征值运算单元将前级实时比较器电路输出的数字信号进行特征值运算后输出至帧同步头捕捉与产生单元。
[0079]所述采样保持电路将第二传输率适配电路输出的模拟电压幅度信号经过采样保持处理,当采样保持电路内的数字信号处理单元捕捉到同步头时,产生一个同步控制信号使采样保持电路在下行时隙处于采样状态,在上行时隙处于保持状态;
[0080]所述实时比较器电路将采样保持电路输出信号接入一个实时比较器,使其转换成TTL数字信号,该处理过程的核心是实现实时比较器的比较门限的自适应调整,具体是将采样保持电路输出的幅度信号经过一个积分电路,并调节积分电路的充放电周期,使其输出信号的交流电压分量很小,即得到幅度信号的平均值,并将此平均值作为实时比较器电路的比较门限。
[0081]所述特征值运算单元将前级实时比较器电路输出的数字信号进行特征值运算,找出每个5ms子帧的下行导频时隙所在的时刻,并在该时刻产生一个标记信号,将此标记信号输出至帧同步头捕捉与产生单元;
[0082]帧同步头捕捉与产生单元将经过特征值运算单元产生的标记信号进行判断处理,当相邻产生的3个标记信号的时间间隔都为5ms时,可以判定所产生的标记信号有效,并由此标记信号产生帧同步头信号,并输出至本地帧同步头产生及校正单元;否则,前级产生的标记信号无效,不产生帧同步头信号;
[0083]本地帧同步头产生及校正单元先通过内部计数器定时产生一个标准的5ms周期帧同步头信号,当前级经过特征值运算捕捉到帧同步头时,即对本地帧同步头产生及校正单元的计数器进行清零操作,并以此时刻作为本地帧同步头的起始时刻重新输出,以实现校正本地帧同步头的目的,使得本地帧同步头信号与接收到的帧格式信号保持完全同步,然后将经过校正的帧同步头信号输出至同步控制信号产生单元;
[0084]同步控制信号产生单元是以前级输出的帧同步头信号为基准,并结合微处理器单元提供的第二时隙切换点信息,产生并输出直放站系统的各个模块单元所需的同步控制信号;
[0085]微处理器单元将第二时隙切换点信息输送至同步控制信号产生单元;同时,帧同步头捕捉与产生单元将同步头的捕捉情况输送给微处理器单元,并以此判断幅度解调同步模块是否处于失步状态,并将此信息上报。
[0086]本发明时分同步码分多址直放站系统的幅度解调同步模块的优点在于:与现有的解调同步技术相比,本发明实现了实时比较器门限自适应调整,大大提高了同步的输入功率动态范围;在数字信号处理与同步控制单元中采用了校正方案,进一步提高了同步稳定性。
[0087]根据本发明的优选实施方式,所述自动增益调节电路的具体设计结构为,如附图7所示:包括可变增益放大电路微处理电路Ul和运算放大电路微处理电路U2,所述可变增益放大电路微处理电路Ul的输出端连接到所述运算放大电路微处理电路U2的输入端,所述运算放大电路微处理电路U2的输出端连接到所述可变增益放大电路微处理电路Ul的增益控制端VC ;还包括二极管D1、电阻R1-R4、电容CC和CH,其中,所述可变增益放大电路微处理电路Ul的信号输入正端接地,信号输入负端接输入音频信号,所述可变增益放大电路微处理电路Ul的输出端连接到所述运算放大电路微处理电路U2的信号输入正端,电阻R4 —端接直流参考电压端VR,另一端接所述运算放大电路微处理电路U2的信号输入负端,所述电容CC接于所述运算放大电路微处理电路U2的信号输入负端及其输出端之间,所述运算放大电路微处理电路U2的输出端接二极管Dl正端,所述可变增益放大电路微处理电路Ul的增益控制端VC分别与所述电阻R1-R3、电容CH —端相连,电阻Rl另一端与偏置电压端V-相连,电阻R2与电容CH另一端接地,电阻R3另一端与二极管Dl负端连接。
[0088]以上所述,仅为本发明较佳的【具体实施方式】,但本发明的保护范围并不局限于此,任何熟悉本【技术领域】的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。
【权利要求】
1.一种基于微波设备的快速转发系统,所述系统包括依次耦接的双向耦合组分电路(1),扩展载波合成电路(2),非扩展载波合成电路(3),载波适配电路(4),第一中频变频电路(5),第二中频变频电路(6),中变适配电路(7),数模转换电路(8),自动增益调节电路(9),增益滤波电路(10),模数转换电路(11),基带变换电路(12),扩展去载波合成电路(13),非扩展去载波合成电路(14),第二传输率适配电路(15)和供电单元(17); 所述双向耦合组分电路(1)对外部输入的数据以及时钟信号进行帧串并转换并加入辅助冗余形成串行中继信息,双向耦合组分电路(1)输出串行中继信息到扩展载波合成电路(2)和非扩展载波合成电路(3); 所述扩展载波合成电路(2)对串行中继信息进行载波合成并输出两路带宽相同,扩展倍数不同的扩展载波合成信号; 所述非扩展载波合成电路(3)将串行中继信息进行TURBO前向纠错编码载波合成,输出两路非扩展载波合成信号; 所述载波适配电路(4)根据当前的数据传输率对扩展载波合成信号和非扩展载波合成信号进行适配并输出同相正交两路基带信号; 所述同相正交两路基带信号通过第一中频变频电路(5)进行20M的LIF频谱迁移,同相正交两路基带信号经过第二中频变频电路(6)进行50M的LIF信号频谱迁移; 两路频谱偏移后的信号通过中变适配电路(7)的适配分别输出LIF信号到数模转换电路⑶和自动增益调节电路(9); 所述数模转换电路(8)对中变适配电路(7)输出的LIF信号进行数模变换后输出到RF单元; 所述自动增益调节电路(9)将中变适配电路(7)输入的LIF信号和RF单元输入的50MLIF信号进行增益调节后输入到增益滤波电路(10); 所述增益滤波电路(10)对增益放大的信号进行频带选通增益滤波后送入到模数转换电路(11); 所述模数转换电路(11)将频带选通增益滤波后的信号进行数据采样变为数字信号,并将数字信号送入到基带变换电路(12); 所述基带变换电路(12)将上述数字信号转换为两路零中频信号分别输出到扩展去载波合成电路(13)和非扩展去载波合成电路(14)进行去载波合成; 所述扩展去载波合成电路(13)和非扩展去载波合成电路(14)将去载波合成后的信号输出到第二传输率适配电路(15),所述第二传输率适配电路(15)根据当前反向数据传输率对上述扩展去载波合成电路(13)和非扩展去载波合成电路(14)输出的去载波合成后的信号进行传输率适配; 所述第二传输率适配电路(15)输出去载波合成时钟信息和去载波合成数据码到双向耦合组分电路(1)进行帧并串转换恢复出串行中继信息以及时钟信息; 所述第二传输率适配电路(15)还将去载波合成信息输出至载波适配电路。
2.一种如权利要求1所述的系统,所述载波适配电路包括:信道状态信息反馈电路、第一传输率适配电路、以及相位变换电路,所述信道状态信息反馈电路用于根据第二传输率适配电路(15)发送的去载波合成LLR信息进行信道状态信息的估计,并将估计出的信道状态信息发送给第一传输率适配电路,所述第一传输率适配电路根据实时估计的信道状态信息和预先存储的信道状态信息、传输率、以及载波合成方式的映射关系执行当前传输率的适配,并输出适配后的信号至相位变换电路,所述相位变换电路将适配后的信号进行相位转换,输出同相和正交两路信号。
3.—种如权利要求2所述的系统,所述信道状态信息反馈电路具体包括: 最小二乘LS估计单元,被配置成根据所接收的去载波合成信息来计算信道的LS估计值; 信噪比估计单元,被配置成估计所述信道的信噪比; 信道参数估计单元,被配置成估计与所述信道的时延扩展相关的信道参数; 过渡矩阵选择单元,被配置成根据所估计的信噪比和所估计的信道参数而选择线性最小均方误差过渡矩阵; 线性最小均方误差过渡单元,被配置成使用所选择的线性最小均方误差过渡矩阵对所述LS估计值进行线性最小均方误差滤波;以及 输出单元,被配置成将滤波结果作为信道估计信息输出。
4.一种如权利要求1所述的系统,所述中变适配电路包括:频带干扰探测单元以及LIF适配单元,所述频带干扰探测单元对运行的20M和50MLIF频带进行实时监测,确定当前存在干扰或可用LIF频带,所述LIF适配单元根据频带干扰探测单元的探测结果,对传输的LIF信号进行适配。
5.一种如权利要求1所述的系统,所述基于微波设备的数据转发系统还包括自适应干扰消除单元,所述自适应干扰消除单元包括依次连接的相减器模块、去相关时延模块、延迟单元模块、时延估计模块、增益估计模块、以及累加器模块。
6.一种如权利要求1所述的系统,所述基于微波设备的数据转发系统还包括自适应解调同步单元,用于确保转发系统与基站的实时完全同步,所述自适应解调同步单元具体包括:依次连接的幅度信息获取与波形调整电路以及数字信号处理与同步控制单元,其中幅度信息获取与波形调整电路与第二传输率适配电路连接,数字信号处理与同步控制单元连接到转发系统的上下行链路。
【文档编号】H04L25/02GK104348537SQ201410593712
【公开日】2015年2月11日 申请日期:2014年10月29日 优先权日:2014年10月29日
【发明者】王京京, 周德能 申请人:成都锐新科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1