无线通信系统中在非许可频谱中发送WI‑FI信号的方法和装置与流程

文档序号:12143946阅读:281来源:国知局
无线通信系统中在非许可频谱中发送WI‑FI信号的方法和装置与流程

本发明涉及无线通信,并且更加具体地,涉及在无线通信系统中以非许可频谱发送Wi-Fi信号的方法和装置。



背景技术:

第三代合作伙伴计划(3GPP)长期演进(LTE)是用于实现高速分组通信的技术。针对包括旨在减少用户和提供商成本、改进服务质量、以及扩大和提升覆盖和系统容量的LTE目标已经提出了许多方案。3GPP LTE要求每比特减少成本、增加服务可用性、灵活使用频带、简单结构、开放接口、以及终端的适当功率消耗作为高级别的要求。

3GPP LTE可以配置载波聚合(CA)。在CA中,两个或者多个分量载波(CC)被聚合以支持高达100MHz的更宽的传输带宽。用户设备(UE)可以根据其能力在一个或者多个CC上同时接收或者发送。

此外,随着对于数据速率的需求增长,对于新的频谱和/或更高的数据速率的利用/探索是至关重要的。作为有前景的候选之一,考虑利用非许可频谱,诸如5GHz非许可国家信息基础设施(U-NII)无线电频带。可能需要在非许可频谱中有效地操作的方法。



技术实现要素:

技术问题

本发明提供一种用于在无线通信系统中在非许可频谱中发送Wi-Fi信号的方法和装置。本发明提供一种用于发送作为Wi-Fi信号的形式的预留信号的方法和装置。本发明提供用于发送Wi-Fi信号与长期演进(LTE)信号的方法和装置。

问题的解决方案

在一个方面中,提供一种用于在无线通信系统中由支持非许可频谱中的长期演进(LTE-U)的设备发送预留信号的方法。该方法包括:将作为Wi-Fi信号的形式的预留信号发送到网络。

在另一方面中,一种支持非许可频谱中的长期演进(LTE-U)的设备包括存储器、收发器、以及处理器,该处理器被耦合到存储器和收发器,并且被配置成控收发器以发送作为Wi-Fi信号的形式的预留信号。

有益效果

非许可频谱中的LTE(LTE-U)设备能够有效地发送可由Wi-Fi站理解的Wi-Fi信号。因此,信道预留变得更加清闲且对诸如Wi-Fi的其它的无线电接入技术来说友好。

附图说明

图1示出无线通信系统。

图2示出3GPP LTE的无线电帧的结构。

图3示出一个下行链路时隙的资源网格。

图4示出下行链路子帧的结构。

图5示出上行链路子帧的结构。

图6示出LTE/Wi-Fi共存场景的示例。

图7示出LTE/Wi-Fi共存场景的另一示例。

图8示出根据本发明的实施例的硬件设计的示例。

图9示出根据本发明的实施例的用于发送预留信号的方法的示例。

图10示出根据本发明的实施例的CTS-to-self的示例。

图11和图12示出根据本发明的实施例的CTS-to-self的MAC有效载荷的示例。

图13示出根据本发明的实施例的CTS-to-self的MAC有效载荷的另一示例。

图14示出根据本发明的实施例的用于生成LTE-CTS的方法的示例。

图15示出典型的LTE调制解调器的框图。

图16示出典型的802.11ac调制解调器的框图。

图17示出根据本发明的实施例的LTE-U调制解调器的示例。

图18示出根据本发明的实施例的用于触发和发送CTS-to-self的方法的示例。

图19示出根据本发明的实施例的资源映射的示例。

图20示出根据本发明的实施例的资源映射的另一示例。

图21示出根据本发明的实施例的用于发送Wi-Fi信号的方法的示例。

具体实施方式

这里描述的技术、装置和系统可以用于各种无线接入技术,诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)等等。CDMA可以用无线电技术来实现,诸如通用陆地无线电接入(UTRA)或CDMA2000。TDMA可以用无线电技术来实现,诸如全球移动通信系统(GSM)/通用分组无线业务(GPRS)/增强型数据率GSM演进(EDGE)。OFDMA可以用无线电技术来实现,诸如电气电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802-20、演进的UTRA(E-UTRA)等等。UTRA是通用移动通信系统(UMTS)的一部分。第三代合作伙伴计划(3GPP)长期演进(LTE)是使用E-UTRA的演进UMTS(E-UMTS)的一部分。3GPP LTE在下行链路(DL)中采用OFDMA且在上行链路(UL)中采用SC-FDMA。高级LTE(LTE-A)是3GPP LTE的演进。为了表述清楚,本申请聚焦于3GPP LTE/LTE-A。但是,本发明的技术特征不限于此。

图1示出无线通信系统。无线通信系统10包括至少一个演进的节点B(eNB)11。各个eNB 11向特定地理区域15a、15b和15c(通常称为小区)提供通信服务。每个小区可以被划分为多个区域(被称为扇区)。用户设备(UE)12可以是固定或移动的并且可以被称为其他名称,诸如移动站(MS)、移动终端(MT)、用户终端(UT)、用户站(SS)、无线设备、个人数字助理(PDA)、无线调制解调器、手持设备。eNB 11通常指的是与UE 12通信的固定站,且可以被称为其他名称,诸如基站(BS)、基站收发系统(BTS)、接入点(AP)等等。

通常,UE属于一个小区,且UE属于的小区被称为服务小区。向服务小区提供通信服务的eNB被称为服务eNB。无线通信系统是蜂窝系统,所以存在邻近服务小区的不同小区。与服务小区相邻的不同小区被称为邻近小区。向邻近小区提供通信服务的eNB被称为邻近eNB。基于UE,相对地确定服务小区和邻近小区。

本技术可以用于DL或UL。通常,DL指的是从eNB 11到UE 12的通信,而UL指的是从UE 12到eNB 11的通信。在DL中,发射器可以是eNB 11的一部分而接收器可以是UE 12的一部分。在UL中,发射器可以是UE 12的一部分而接收器可以是eNB 11的一部分。

无线通信系统可以是多输入多输出(MIMO)系统、多输入单输出(MISO)系统、单输入单输出(SISO)系统和单输入多输出(SIMO)系统中的任何一个。MIMO系统使用多个发射天线和多个接收天线。MISO系统使用多个发射天线和单个接收天线。SISO系统使用单个发射天线和单个接收天线。SIMO系统使用单个发射天线和多个接收天线。下文中,发射天线指的是用于发射信号或流的物理或逻辑天线,接收天线指的是用于接收信号或流的物理或逻辑天线。

图2示出3GPP LTE的无线电帧的结构。参照图2,无线电帧包括10个子帧。子帧包括时域中的两个时隙。发送一个子帧的时间被定义为传输时间间隔(TTI)。例如,一个子帧可以具有1毫秒(ms)的长度,而一个时隙可以具有0.5ms的长度。一个时隙包括时域中的多个正交频分复用(OFDM)符号。由于3GPP LTE在DL中使用OFDMA,OFDM符号用于表示一个符号周期。根据多址方案,OFDM符号可以被称为其他名称。例如,当SC-FDMA被用作UL多址方案时,OFDM符号可以被称为SC-FDMA符号。资源块(RB)是资源分配单元,且包括一个时隙中的多个连续子载波。无线电帧的结构被示出仅用于示例的目的。因此,无线电帧中包括的子帧的数量或者子帧中包括的时隙的数量或者时隙中包括的OFDM符号的数量可以以各种方式修改。

无线通信系统可以被划分为频分双工(FDD)方案和时分双工(TDD)方案。根据FDD方案,UL传输和DL传输是在不同频带进行的。根据TDD方案,UL传输和DL传输是在相同频带的不同时间段期间进行的。TDD方案的信道响应基本上是互易的。这意味着下行链路信道响应和上行链路信道响应在给定频带中几乎是相同的。因此,基于TDD的无线通信系统的有利之处在于,DL信道响应可以从UL信道响应获得。在TDD方案中,整个频带在时间上被划分为UL和DL传输,因此BS的DL传输和UE的UL传输不能同时执行。在TDD系统中,其中UL传输和DL传输以子帧为单位来区分,UL传输和DL传输在不同的子帧中执行。

图3示出一个下行链路时隙的资源网格。参考图3,DL时隙包括时域中的多个OFDM符号。作为示例,这里描述的是一个DL时隙包括7个OFDM符号,且一个RB包括频域中的12个子载波。然而,本发明不限于此。资源网格上的每个元素被称为资源元素(RE)。一个RB包括12×7个资源元素。DL时隙中包括的RB的数量NDL取决于DL发射带宽。UL时隙的结构可以与DL时隙相同。OFDM符号的数量和子载波的数量可以根据CP的长度、频率间隔等而变化。例如,在常规循环前缀(CP)的情况下,OFDM符号的数量为7,而在扩展CP的情况下,OFDM符号的数量为6。128、256、512、1024、1536和2048中一个可以被选择用作一个OFDM符号中的子载波的数量。

图4示出下行链路子帧的结构。参照图4,位于子帧内第一时隙的前部的最多三个OFDM符号对应于待被指配控制信道的控制区域。剩余OFDM符号对应于待被指配物理下行链路共享信道(PDSCH)的数据区域。3GPP LTE中使用的DL控制信道的示例包括物理控制格式指示符信道(PCFICH)、物理下行链路控制信道(PDCCH)、物理混合自动重传请求(HARQ)指示符信道(PHICH)等等。PCFICH在子帧的第一OFDM符号发送并且承载关于用于子帧内控制信道的传输的OFDM符号的数量的信息。PHICH是UL传送的响应并且承载HARQ肯定应答(ACK)/否定应答(NACK)信号。通过PDCCH发送的控制信息被称为下行链路控制信息(DCI)。DCI包括UL或DL调度信息或包括用于任意UE群组的UL发射(Tx)功率控制命令。

PDCCH可以承载下行链路共享信道(DL-SCH)的传输格式和资源分配、上行链路共享信道(UL-SCH)的资源分配信息、关于寻呼信道(PCH)的寻呼信息、关于DL-SCH的系统信息、诸如在PDSCH上发送的随机接入响应的上层控制消息的资源分配、对任意UE群组内单个UE的Tx功率控制命令集、Tx功率控制命令、IP语音(VoIP)的激活等等。可以在控制区域内发送多个PDCCH。UE可以监视多个PDCCH。PDCCH在一个或若干连续控制信道元素(CCE)的聚合上被发送。CCE是用于基于无线电信道的状态向PDCCH提供编码速率的逻辑分配单元。CCE对应于多个资源元素组。

根据CCE的数量和CCE所提供的编码速率之间的相关而确定PDCCH的格式和可用PDCCH的位数量。eNB根据要发送到UE的DCI确定PDCCH格式,并且将循环冗余检验(CRC)附于控制信息。根据PDCCH的拥有者或用途,CRC被唯一标识符(称为无线电网络临时标识符(RNTI))加扰。如果PDCCH用于特定UE,则UE的唯一标识符(例如,小区-RNTI(C-RNTI))可以对CRC加扰。替选地,如果PDCCH用于寻呼消息,则寻呼指示标识符(例如,寻呼-RNTI(P-RNTI))可以对CRC加扰。如果PDCCH用于系统信息(更加具体地,下面要描述的系统信息块(SIB)),则系统信息标识符和系统信息RNTI(SI-RNTI)可以对CRC加扰。为了指示作为对UE的随机接入前导信号的传输的响应的随机接入响应,随机接入-RNTI(RA-RNTI)可以对CRC加扰。

图5示出上行链路子帧的结构。参照图5,UL子帧可以在频域中被划分为控制区域和数据区域。控制区域被分配有用于承载UL控制信息的物理上行链路控制信道(PUCCH)。数据区域被分配有用于承载用户数据的物理上行链路共享信道(PUSCH)。当由较高层指示时,UE可以支持PUSCH和PUCCH的同时传输。用于一个UE的PUCCH被分配给子帧中的RB对。属于RB对的RB占据分别两个时隙的不同子载波。这被称为分配给PUCCH的RB对在时隙边界跳频。就是说,分配给PUCCH的RB对在时隙边界处跳频。UE可以通过根据时间通过不同子载波发射UL控制信息而获得频率分集增益。

在PUCCH上发送的UL控制信息可以包括HARQ ACK/NACK、指示DL信道状态的信道质量指示符(CQI)、调度请求(SR)等等。PUSCH被映射到UL-SCH(传输信道)。在PUSCH上发送的UL数据可以是在TTI期间发送的UL-SCH的传输块、数据块。传输块可以是用户信息。或者,UL数据可以是复用数据。复用数据可以是通过复用UL-SCH的传输块和控制信息而获得的数据。例如,复用到数据的控制信息可以包括CQI、预编码矩阵指示符(PMI)、HARQ、秩指示符(RI)等。或者UL数据可以只包括控制信息。

在其中LTE设备可以与诸如Wi-Fi、蓝牙等的其他无线电接入技术(RAT)设备共存的非许可频谱中,有必要允许适应各种场景的UE行为。在非许可频谱中的LTE(LTE-U)中,上述3GPP LTE的各方面可能未被应用于LTE-U。例如,上述TTI可以不被用于其中可以根据调度和/或载波感测结果而使用可变或浮动TTI的LTE-U载波。针对另一示例,在LTE-U载波中,可以使用基于调度的动态DL/UL配置,而不是利用固定DL/UL配置。然而,由于UE特性,DL或UL传输可以偶尔发生。针对另一示例,还可以将不同数量的子载波用于LTE-U载波。

为了经由LTE-U载波成功地支持通信,由于其非许可,期待必要的信道获取和完成/冲突处理和避免。当基于UE能够在任何给定的时刻期待来自于网络的DL信号(即,独占使用)的假定设计LTE时,LTE协议需要被调整以非独占的方式被使用。在非独占方式的方面,可以考虑总共两个解决方案。一个是通过半静态地或者静态地在时域中分配用于LTE和LTE-U的信道。例如,在白天,可以由LTE使用信道,并且在夜晚,LTE不可以使用信道。而另一个是竞争来动态地获取信道。竞争的理由是要处理其他的RAT设备/网络并且也处理其他的运营商的LTE设备/网络。

对于上述的第二种方法,可以进一步考虑全部两种方法。一种是使用“先听后讲(LBT)”意义上的基本载波感测,其中,如果信道被感测为忙,则LTE-U设备或者AP不可以传送任何信号。为了检测信道状态,可以仅测量接收到的能量。此外,如果信道忙,则也可以应用回退机制,其中可以基于尝试次数或者LTE-U设备已经成功完成的传输次数来确定回退窗口。另一种方法是使用Wi-Fi友好信道预留/信令机制,诸如,基于准备发送(RTS)/允许发送(CTS)的握手、基于CTS-to-self或者传统信号(L_SIG)的信道预留。根据本发明的实施例,下文将主要集中于用这两种方法的第二种方法发送Wi-Fi信号以更有效的方法预留/获取信道以与Wi-Fi设备竞争。

因为3GPP LTE和Wi-Fi具有不同的子载波间隔、不同的采样率和不同的数字学,所以为了生成Wi-Fi信号和监听Wi-Fi信号,硬件改变可能是必要的。一般而言,与Wi-Fi信号的接收相比,Wi-Fi信号的传输可以要求具有不同的改变。根据本发明的实施例,下面将对支持Wi-Fi信号传输的机制进行探讨。进一步地,将对支持Wi-Fi信号接收的机制进行简略探讨。

根据本发明的实施例对发送Wi-Fi信号进行描述。一种典型的LTE-U AP与Wi-Fi AP共存场景可以是LTE-U AP和Wi-Fi AP是彼此隐藏的节点。将LTE-U的下行使用视为主要场景,在没有用于寻址隐藏节点的合适机制的情况下,这两个AP均可以影响LTE-U设备和Wi-Fi基站的数据接收质量。

图6示出LTE/Wi-Fi共存场景的示例。图6所示的场景对应3GPP LTE和Wi-Fi均具有相似覆盖范围的同构场景。对于处理需要保护Wi-Fi和3GPP LTE设备免受AP影响的隐藏节点问题而言,信道预留机制可以是必要的。

图7示出LTE/Wi-Fi共存场景的另一个示例。图7所示的场景对应异构场景,例如,室外/室内场景。即使LTE-U AP可能不会干扰Wi-Fi通信,LTE-U设备也可以具有Wi-Fi通信的隐藏节点。从而,为了保护3GPP LTE设备,有必要考虑诸如经由CTS或者CTS-to-self传输阻止Wi-Fi设备试图进行传输的机制。

对于图6所示的场景,在LTE-U AP的Wi-Fi信号传输方面上的必要功能性可以如下:

-RTS或者CTS-to-self:可能有必要清除在LTE-U AP传输范围内的Wi-Fi设备。

-CTS:如果LTE-U AP从一个设备(多个设备)接收数据,则也可以要求CTS清除Wi-Fi设备以便不干扰到数据接收。

-数据前导(包括L-SIG):因为单独的RTS可能无法满足网络分配向量(NAV)设置,所以除非使用了CTS-to-self,数据前导对正确地预留信道来说也可能是必要的。

在LTE-U设备的Wi-Fi信号传输方面上的必要功能性可以如下:

-CTS-to-self:在LTE-U设备使用了数据传输的情况下,CTS-to-self对清除信道来说可以是有用的。在没有预期数据传输的情况下,CTS-to-self也可以用于清除信道。

-CTS:在接收到来自LTE-U AP的RTS之后,可以发送CTS。基于RTS-CTS-DATA的信道预留可能是最直接的Wi-Fi友好信道预留过程。

-数据前导(包括L-SIG):和LTE-U AP的情况类似,为了清除用于数据传输的信号,可以使用数据前导。

上述信号中的一种或者组合或者全部信号都可以供LTE-U AP用于非许可载波接入的信道预留。

需要的功能性可以和图7所示的场景相似。

假设只有来自LTE-U AP的下行链路传送,则来自LTE-U AP/设备的必要信号输可以是CTS-to-self以清除其自己周围的信号。

根据本发明的实施例,下文将主要集中于利用Wi-Fi芯片的CTS-to-self传输,其中在来自网络的CTS-to-self命令/请求与CTS-to-self的实际传输之间的时延可以大于几微秒或者几毫秒。

将对根据本发明的实施例的CTS-to-self触发条件进行描述。如果LTE-U AP和Wi-Fi设备是彼此的隐藏节点(例如,图7所示的场景),则来自LTE-U AP的传输可以不被Wi-Fi设备听到。从而,Wi-Fi设备可以假设信道是空闲的,然后可以尝试发送信号。当附近的Wi-Fi设备开始发送时,有可能LTE-U设备的接收质量会因为严重干扰而变差。具体地,在图7所示的场景中,由于来自室外的信号会因为墙而退化,所以,如果存在隐藏节点,则信号干扰噪音比(SINR)会变得很差。然而,同时,可能不存在作为LTE-U AP的隐藏节点的Wi-Fi设备。在这种情况下,可以不需要进行NAV设置。从而,触发CTS-to-self可以限于UE受到来自隐藏节点的严重干扰的情况。

为了检测来自Wi-Fi设备的“隐藏节点”,可以利用某些测量。一种方法是对接收信号强度指示(RSSI)进行LTE-U设备测量。例如,RSSI可以测量分别来自LTE和Wi-Fi的干扰。另一种方法是使用现有的Wi-Fi测量,诸如,信道负载与噪音直方图。由于噪音直方图记录了非Wi-Fi设备的信道繁忙时间,使用两个值,可以由UE推算出归功于Wi-Fi设备的繁忙时间。如果相邻Wi-Fi设备的信道繁忙时间相当大(例如,超过某个阈值),则LTE-U AP可以假设UE的信道质量可能是因为来自隐藏节点的干扰而变差。在这种情况下,可以触发CTS-to-self。为了支持此点,如果UE具有Wi-Fi测量能力,则可以考虑通过网络向UE配置“Wi-Fi测量的报告”。为此,UE需要将Wi-Fi测量能力(和/或者Wi-Fi信号接收能力)发送至网络。就能力而言,UE还可以指示UE支持的一组测量,从而使网络可以利用所支持的测量。这些与Wi-Fi功能性相关的能力也可以用于LTE-U测量,诸如RSSI。来自Wi-Fi测量的信息可以随LTE-U测量一起报告,或者LTE-U测量可以利用该信息来估计更佳测量报告。

触发条件的另一个示例还可以包括“被NACK的”传输的次数或者分组错误的概率或者来自UE的CSI反馈。如果分组错误超过了初始传输的某个阈值(例如,10%),则可以假设信道状态信息(CSI)反馈不恰当,或者存在隐藏节点。在这种情况下,可以触发增强的CSI或者非周期性反馈,或者可以假设隐藏节点,从而网络可以触发CTS-to-self机制。如果无线资源管理(RRM)测量报告为良好,但是CSI反馈报告为相当差,则LTE-U AP可以考虑隐藏节点的可能性。

触发条件的另一个示例可以是UE发起的。如果信道条件变得很差,则UE可以发送“Hidden_Node_Issue”(隐藏节点问题)。就确定信道条件而言,UE可以使用Wi-Fi测量(诸如,信道负载)或者使用LTE-U CSI反馈。例如,如果宽带CQI低于阈值,但是LTE-U AP的参考信号接收功率(RSRP)相当高,则UE可以假设信道是干扰受限的。然后,可以请求初始化CTS-to-self机制。

根据本发明的实施例对CTS-to-self配置进行描述。当发起了CTS-to-self机制时,假设LTE-U设备由于处理器间/芯片间延迟而可能不会立即发送CTS-to-self。

图8示出根据本发明的一个实施例的硬件设计的示例。参照图8,eNB 100包括处理器101、存储器102、LTE/LTE-A收发器103、LTE-U收发器104和Wi-Fi收发器105。UE 110包括处理器111、存储器112、LTE/LTE-A收发器113、LTE-U收发器114和Wi-Fi收发器115。

可以有处理非许可频带中的LTE协议的LTE-U收发器104、114,执行经由芯片间/处理器间总线连接的Wi-Fi协议的Wi-Fi收发器105、115,和处理器101、111。由于芯片之间的时延和机制,假设在从LTE-U接收器104、114或者LTE/LTE-A收发器103、113发起CTS-to-self与由Wi-Fi收发器105、115执行CTS-to-self的时延是不容忽视的(例如,大约1ms)。同样,当信道空闲、UE没有在NAV设置中、或者UE没有执行接收从而不会干扰正在执行的传输时可以发送CTS-to-self。如果信道是空闲的或者UE正在接收某些数据或者设置了NAV,则需要推迟CTS-to-self传输,直到现状得以清除。因此,CTS-to-self的实际传输可能会伴随一些时延发生。从LTE-U收发器104、114或者LTE/LTE-A收发器103、113到Wi-Fi收发器105、115的发起CTS-to-self的命令可以具有包括在CTS-to-self中的持续时间信息(或者等效信息,诸如分组大小),并且可以可选地具有有效时间。如果无法在有效时间窗口中传输CTS,则可以将有效时间用于取消CTS-to-self传输。

即使UE可以确定CTS-to-self的触发条件,但是当UE基于网络调度正在接收并且发送数据时,期望网络对实际传输进行配置。如果不管信道条件如何也没有数据传输至UE,则不期望触发CTS-to-self。因此,本发明可以假设网络配置并且发起了CTS-to-self传输机制。和探测参考信号(SRS)或者CSI机制类似,可以考虑非周期性的和周期性的CTS-to-self传输两者。对于非周期性CTS-to-self,如果网络在子帧n处传输了非周期性CTS-to-self请求,则UE可以在2ms内将CTS-to-self命令发送至Wi-Fi收发器以最小化时延。假设CTS-to-self触发可以只由PDCCH发起,则可以将延迟减小到1ms。换言之,一旦接收到触发非周期性CTS-to-self的PDCCH,UE可以在1ms内发送CTS-to-self命令。为了发起非周期性CTS-to-self,可以使用新的DCI字段。或者,如果LTE-U设备没有任何上行传输,则将不会触发SRS。因此,可以重用SRS触发字段以发起CTS-to-self。

对于周期性CTS-to-self,较高层可以配置以下的至少一项:

-CTS-to-self的周期性:两次CTS-to-self传输之间的间隔;

-CTS-to-self的持续时间:包括在CTS-to-self中的持续时间;

-CTS-to-self的有效时间:CTS-to-self传输的可容许时延;

-CTS-to-self的开始时间:什么时候开始CTS-to-self传输;

-周期性CTS-to-self传送的持续时间:继续CTS-to-self的传输多长时间;

-接收器地址(RA):在CTS-to-self使用专用RA来支持操作者间共存场景的情况下,RA也可以由较高层配置。

根据本发明的实施例对临时停止周期性CTS-to-self传输进行描述。当配置了周期性CTS-to-self传输时,UE只有当存在计划好的或者正在进行的至UE的潜在数据传输时才应该发起CTS-to-self。否则,UE可能会浪费信道。一种确保仅具有潜在数据传输的CTS-to-self传输的方法可以是通过网络使用验证命令。如果网络有到UE的数据(从而网络正在打算将数据调度至UE),则网络可以在CTS-to-self传输时序之前发送CTS-to-self的验证命令。如果UE没有接受到任何验证命令,则即使已经配置了周期性CTS-to-self传输,UE也不应该触发CTS-to-self。另一种方法是只有存在来自网络的正在进行的传输时才发送CTS-to-self。另一种方法是网络可以周期性地将UE的缓冲器状态发送至UE。根据缓冲器状态,UE可以触发CTS-to-self或者不触发CTS-to-self。例如,如果缓冲器状态较低,即没有太多计划的活动,则UE可以不触发CTS-to-self。否则,可以触发CTS-to-self。另一种方法是只有在报告的CQI较高(并且由此网络可能调度高调制编码方案(MCS))并且配置周期性CTS-to-self时才触发CTS-to-self。此外,也可以考虑上述方法中的一种或者多种的组合。

根据本发明的实施例对配置有周期性CTS-to-self的测量方面进行描述。如果UE周期性地发送CTS-to-self,则在未使用CTS-to-self与使用CTS-to-self的两个子帧之间的信道质量可以完全不同。具体地,如果UE测量在发生数据传输的子帧上的CSI,则所有子帧可以不经历类似干扰。更具体地,如果UE有许多隐藏Wi-Fi节点,在清除信道的情况下的干扰和在未清除信道的情况下的干扰可以完全不同。因此,当在其它情况下使用清除信道时,需要测量单独的CSI和RRM测量。为此,一旦将CTS-to-self发送至LTE/LTE-A/LTE-U收发器,Wi-Fi收发器就可以发送CTS-to-self传输的“成功”或者“失败”。一旦接收到了“成功”,在CTS-to-self已经清除信道的持续时间内,假设信道是清空的(即,没有来自Wi-Fi的干扰),则UE可以测量CSI/RRM。如果使用了与Wi-Fi信号分开的干扰的CSI-IM或者与Wi-Fi信号分开的干扰的RRM-IM,则这可以不是必要的。

然而,如果信道是清空的,知道估计的CSI/RRM结果依然很重要。UE可以将两种CSI反馈(假设清除信道和没有清除信道)报告至网络。网络可以根据UE是否清除信道来使用不同的MCS。为了获取信道清除的信息,还可以将CTS-to-self的“成功”通知回给网络。为此,可以在UE使用半静态PUCCH资源发送CTS-to-self成功信息的位置处预留半静态PUCCH资源。这可以和调度请求(SR)PUCCH资源类似。如果CTS-to-self成功了,则可以使用正向资源。否则,可以使用负向资源。当需要发送HARQ-ACK和/或者CSI反馈时,可以使用和SR+PUCCH类似的聚合。

根据本发明的实施例对跨子帧调度进行描述。可以使用对PDSCH的跨子帧调度,其中,UE可以在接收到PDCCH(跨载波调度的)时触发CTS-to-self。与多子帧调度一起,CTS-to-self持续时间可以设置为调度了一个PDCCH的子帧的数量。这可以假设为非周期性CTS-to-self传输的隐式请求。由于在PDCCH与实际PDSCH传输之间可能存在信道感测延迟,可以早于实际信道获取时间发送CTS-to-self。因此,网络可以给UE配置平均信道感测时间,从而UE可以将CTS-to-self的传输延迟平均信道感测时间。

还应该注意的是,在不失一般性的情况下,可以将Wi-Fi信号的周期性触发应用于RTS或者CTS或者其它Wi-Fi信号。

图9示出根据本发明的实施例的用于发送预留信号的方法的示例。在步骤S200中,LTE-U设备将预留信号发送为Wi-Fi信号的形式。该设备可以是LTE-U AP或者LTE-U UE。预留信号是RTS、CTS、包括传统信号的数据前导或者CTS-to-self中的一种。

对于CTS-to-self,UE可以进一步确定CTS-to-self的触发条件。可以通过使用LTE-U CSI反馈的Wi-Fi信道测量来触发CTS-to-self。当分组错误超过某个阈值时,可以触发CTS-to-self。可以通过UE发起来触发CTS-to-self。可以非周期性地或者周期性地发送CTS-to-self。对于周期性CTS-to-self传输,UE可以进一步接收CTS-to-self的周期性、CTS-to-self的持续时间、CTS-to-self的有效时间、CTS-to-self的开始时间或者CTS-to-self的RA中的至少一种。可以临时地停止周期性CTS-to-self的传输。UE可以进一步将实际CSI反馈和估计的CSI反馈发送至网络以便执行周期性CTS-to-self。

根据本发明的实施例,下文将主要集中于允许最小Wi-Fi信号传输的机制。具体地,下面将对根据本发明的实施例的用于发送在硬件方面的Wi-Fi信号的方法进行描述。根据本发明的实施例这里可以有四种发送Wi-Fi信号的方法。

(1)新的LTE信号仿真CTS-to-self:一种方法是生成具有预定参数集的新信号以生成CTS-to-self。虽然本发明的实施例集中于CTS-to-self,但是可以将类似的方法应用于RTS或者CTS,这可以用于信道预留信号。此外,这种方法也可以应用于Wi-Fi协议中最新提出的任何预留信号(如果有的话)。

图10示出根据本发明的实施例的CTS-to-self的示例。CTS-to-self包括介质访问控制(MAC)信头(其包括帧控制字段、持续时间字段和RA字段)和帧校验序列(FCS)字段。为了生成CTS-to-self,可以将RA字段设置为发射器的MAC地址。

图11和图12示出根据本发明的实施例的CTS-to-self的MAC有效载荷的示例。图11和图12示出CTS-to-self的PHY分组格式,其中,数据包括16比特的SERVICE(服务)字段、6比特的TAIL(尾)字段和待与8比特边界对齐的必要填充比特。

图13示出根据本发明的实施例的CTS-to-self的MAC有效载荷的另一个示例。图13示出传统短训练字段(L-STF)、传统长训练字段(L-LTF)、L-SIG和数据的更详细示意图。等式1是用于L-STF的序列的示例。

<等式1>

等式2是用于L-LTF的序列的示例。

<等式2>

L-26,26={1,1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,1,1,1,0,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,1}

在图13中,GI意为与LTE信号格式中的CP对应的保护间隔。可以利用二进制相移键控(BPSK)来对(使用预留位或者数据)的信号部分进行调制,并且将其映射到52个子载波(以312.5KHz间隔开)。因此,LTE-CTS格式可以和使用具有312.5KHz子载波间隔的BPSK的Wi-Fi格式相同。

图14示出根据本发明的实施例的用于生成LTE-CTS的方法的示例。在步骤S300中,对于信号与数据部分,使用BPSK来执行预编码。在步骤S310中,对于物理资源,首先将编码符号映射至物理资源频率,然后是时间。例如,可以遵循Wi-Fi OFDM符号持续时间和子载波间隔。如果假设有64个子载波,由于Wi-Fi信号只使用了64个载波中的52个子载波,所以可以用空值(NULL)填充12个载波。具体地,可以只使用52个子载波,可以将4个子载波用于导频,也可以将一个DC不用于数据映射。例如,对于SIGNAL(信号)部分,可以用BPSK符号填充-26至26子载波索引。一旦完成了资源映射,在步骤S320中,经由信令生成过程,可以生成Wi-Fi信号,然后发送Wi-Fi信号。

为了实现对LTE硬件产生较小影响,还可以考虑,因为CTS字段不会改变,所以可以存储和使用每个子载波的预生成的映射信号,而不是每次都生成信号。

在LTE和Wi-Fi的当前设计(例如,802.11ac)中,虽然带宽可以一致(其中,LTE和Wi-Fi两者均可以支持20MHz带宽),但是LTE和Wi-Fi的采样率是不同的。例如,LTE的采样持续时间为大约32.6ns,而Wi-Fi使用大约50ns。由于两种系统使用了不同的采样率,所以可以将独立的数字到模拟转换器(DAC)分别用于生成Wi-Fi信号和LTE信号。这种方法的缺点在于需要有附加硬件并且还需要管理两个硬件部件之间的快速切换。然而,作为简单方法,可以考虑具有支持Wi-Fi与LTE之间的不同采样率的独立DAC。

替选地,可以使用对LTE和Wi-Fi两者的过采样。例如,为了使Wi-Fi和LTE信号的采样率刚好一致,LTE的过采样率可以是大约125次,而Wi-Fi可以是大约192次。这种方法可以和下面将描述的方法2类似。由于这可能会引起过多的硬件成本,大体上,在每隔16.3ns发生采样的情况下可以考虑两次LTE和三次Wi-Fi。由于这种方法不遵循LTE和Wi-Fi系统两者的准确采样率,所以可以预期到性能退化。一种方法是调整LTE采样率(例如,每16.3x ns执行采样,其是LTE采样频率的1/2倍),然后对Wi-Fi使用相同的采样率(大约为三倍过采样)。在这种情况下,只预期到Wi-Fi信号的性能退化。由于没有准确匹配的采样率,最大频率偏移可以变为大约240KHz,尤其是在离中心DC的最远的子载波中。因此,这些信号的接收质量可能不理想。

为了在不会引进过多硬件复杂性的情况下将这种方法增强一点,可以考虑具有64个分离的传输组,每个组映射至Wi-Fi系统的一个子载波。每个组可以遵循LTE采样率执行采样,而不是作为整体执行采样。然后,来自64个组(匹配64个子载波)的信号可以进行集合,然后转发至DAC,再执行传送。

例如,可以通过将64个组/子载波分开来生成RTS或者CTS信号(或者其它Wi-Fi信号)(例如,cos(f0)t、cos(f0±312.5*2p)t、...cos(f0±i*312.5*2p)……其中,将f0假设为中心频率,并且也可以生成与Wi-Fi信号结构匹配的导频信号)。可以按照LTE采样率来对每个信号进行采样,然后将在DAC处理之后传送每个信号。这可能需要改变LTE的硬件。例如,可以采用不同的快速傅里叶变换(FFT)大小或者不同的信号创建机制来与Wi-Fi子载波间隔相匹配。

为了方便起见,上述根据本发明的实施例的描述主要集中于Wi-Fi的传送。然而,本发明并不限于此,并且可以上述根据本发明的实施例描述的方法应用于Wi-Fi信号接收。

(2)嵌入式Wi-Fi处理器:进一步考虑的另一种方法是在LTE处理器内使用嵌入式Wi-Fi处理器,其中,Wi-Fi收发器由LTE基带(BB)控制。更具体地,也可以考虑在Wi-Fi与LTE之间共享收发器,其中,LTEBB包含Wi-Fi BB能力。

图15示出典型的LTE调制解调器的框图。参照图15,在LTE调制解调器中传送的数据流遵循“Turbo编码器→调制→离散傅里叶变换(DFT)→逆FFT(IFFT)→D/A”。

图16示出典型的802.11ac调制解调器的框图。参照图16,在802.11ac调制解调器中用于传输的数据流遵循“卷积编码器→交织器&映射→中频变换器(IFT)→IGI”。由于不同的协议和机制,为了结合两种功能性,使在LTE与Wi-Fi基带之间的“模拟&RF”之间设置开关是可取的。

图17示出根据本发明的实施例的LTE-U调制解调器的示例。参照图17,LTE-U设备400包括控制器401、LTE BB 402、Wi-Fi BB 403和模拟&RF 404。模拟&RF 404在具有两个不同的基带处理器(即,LTE BB 402和Wi-Fi BB 403)的两种功能性之间是共享的,以产生不同的无线接入技术(RAT)波形。

(3)(利用芯片间通信的)独立Wi-Fi处理器:另一种方法是利用Wi-Fi驱动器来生成像Wi-Fi信号之类的CTS-to-self。在这种情况下,为了处理在将Wi-Fi信号注入Wi-Fi驱动器方面的芯片间时延,可以考虑周期性CTS-to-self触发的类型。或者,也可以将跨子帧类型调度用于触发CTS-to-self。

图18示出根据本发明的实施例的用于触发和发送CTS-to-self的方法的示例。在步骤S500中,网络考虑UE信号是没有被清空的。因此,网络可以认为需要UE的CTS-to-self用来保护UE接收。在步骤S510中,在一旦网络从UE监听到CTS-to-self就可能会发生实际传送的情况下,网络通过跨子帧调度来请求CTS-to-self。假设网络可以听到Wi-Fi信号。也就是说,当网络需要清除目标UE的信号时,网络可以经由跨子帧调度从UE发起CTS-to-self,该跨子帧调度可以包括将一旦对(E)PDCCH进行解码后立即触发的CTS-to-self的发起、可以被包括在CTS-to-self中作为数据传输的持续时间的持续时间、或者如果没有使用UE的MAC地址时的RA。在步骤S520中,UE将CTS-to-self注入到Wi-Fi驱动器,而在步骤S540中,发送CTS-to-self。在步骤S540中,执行NAV设置。进一步地,在步骤S550中,当网络需要清除目标UE的信道时,网络可以经由跨子帧调度从UE发起CTS-to-self。在步骤S560中,UE信号是忙的。在步骤S570中,AP获取信道。在步骤S580中,发送CTS-to-self。

由于可以通过基站来发送CTS-to-self,将期望也将UE与Wi-Fi AP相关联。换言之,为了触发Wi-Fi信号,可以将UE与Wi-Fi AP相关联,该Wi-Fi AP将与为UE服务的LTE-U AP所用的相同信道用作一级信道(802.11n或者802.11ac)或者作为主信道。换言之,UE可以建立与Wi-Fi AP的连接,该Wi-Fi AP按照与为LTE基站(并且由此,干扰到正在执行的LTE传输)服务的频率相同的频率运行。相似地,LTE-U AP可以发送Wi-Fi信号以清空信道以接收或者发送LTE信号。在该情况下,LTE-U AP可以变成AP或者可以变成基站并且建立与相邻AP的连接。或者,其可以像在ad-hoc模式中一样运行,而不与Wi-Fi AP建立连接。

如果使用该方法,对软件/驱动器进行控制可以将Wi-Fi信号(例如,CTS-to-self)注入到Wi-Fi驱动器/模块上以用于传输,并且由此,其可能需要硬件/软件改变,虽然所需的改变可能比方法2少得多。

(4)新数字学:为了考虑更好的共存性并且更好地利用非许可频谱,还可以考虑共享Wi-Fi调制解调器的“IGI和IFT”。在这种情况下,需要改变LTE的数字学以与Wi-Fi更加对准。一个简单的示例是重用Wi-Fi协议的子载波间隔和FFT大小(诸如,312.5KHz和64)。对于FFT大小,其可以是Wi-Fi FFT大小的倍数。该方法的益处是可以在Wi-Fi与LTE系统之间共享相同的RF。由此,LTE-U的RF要求可以遵循Wi-Fi系统要求(并且由此,重用该要求),并且由此可以提供与Wi-Fi系统的更好的共存。在这种情况下,利用LTE-U的主要不同是利用LTE协议,诸如,小区间干扰协调(ICIC)、集中式控制器/调度器、鲁棒的RS设计等。通过利用该方法,可以实现更好的共存,包括载波感测、信道预留、回退等。

然而,该方法同时要求改变LTE帧结构、资源映射、RS映射等。由此,仍然期望将子帧持续时间保持为1ms,其中,标准CP可以具有多达14个OFDM符号。还可以考虑这种情况下的与Wi-Fi系统相似的非常短的CP。在该情况下,4μs可以是一个单元,并且在一个子帧中可以存在大约250个OFDM符号。为了如LTE一样允许14个OFDM符号,18*4μs可以形成一个OFDM符号,其中,第一个时隙可以占用16*4μs(或者,第一个和最后一个OFDM符号可以分别占用17*4μs)。由于LTE载波间隔为大约15KHz,而Wi-Fi具有312.5KHz,所以在Wi-Fi信号的一个子载波中存在LTE的大约20个子载波。

由于在20MHz系统中可用Wi-Fi子载波的数量可以为大约54,而LTE具有大约1200个子载波,所以,为了匹配子载波间隔,将LTE的大约20个子载波匹配到Wi-Fi的1个子载波。由此,一种具有相似数据资源元素映射的方法是使20个Wi-Fi OFDM符号(80μs)作为一个单元,在该情况下,1ms可以具有大约12个单元。在一个单元中,可以对映射至LTE中的20个RE的数据进行映射。

图19示出根据本发明的实施例的资源映射的示例。参照图19,每个RE映射至具有更大子载波的更短的OFDM符号。在这种情况下,单元的数量可以大约为12(其与扩展CP中的OFDM符号的数量相同)。由此,资源映射可以遵循扩展CP帧结构。为了将子载波RE映射到处于新数字学的一个符号,映射可以从最低频率或者中心或者最高频率开始。

图20示出根据本发明的实施例的资源映射的另一个示例。LTE的一个OFDM符号中的一个子载波映射至Wi-Fi的采用新数字学的一个单元。进一步地,映射从最低频率开始。

图21示出根据本发明的实施例的用于发送Wi-Fi信号的方法的示例。在步骤S600中,LTE-U设备发送LTE信号,并且在步骤S610中,发送Wi-Fi信号。可以在LTE信号中仿真Wi-Fi信号。Wi-Fi信号可以是CTS-to-self。可以通过二进制移相键控法(BPSK)对Wi-Fi信号进行预编码,并且将其映射至资源元素。可以分别经由不同的DAC来生成LTE信号和Wi-Fi信号。可以对LTE信号和Wi-Fi信号进行过采样。以按照比常规LTE采样率高两倍的采样率对LTE信号进行采样,并且可以按照比常规Wi-Fi采样率高三倍的采样率对Wi-Fi信号进行采样。可以通过使用嵌入在LTE处理器中的Wi-Fi处理器来发送Wi-Fi信号。可以经由Wi-Fi BB和LTE BB共享的收发器来发送Wi-Fi信号。可以通过使用与LTE处理器独立的Wi-Fi处理器来发送信号。可以将CTS-to-self注入Wi-Fi处理器。可以通过网络对CTS-to-self执行跨子帧调度。该跨子帧调度可以包括CTS-to-self的发起、CTS-to-self的持续时间、或者设备的RA中的至少一个。可以通过使用子载波间隔和Wi-Fi的FFT大小来发送LTE信号。

鉴于在此处描述的示例性系统,已经参考若干流程图描述了按照公开的主题可以实现的方法。虽然为了简化的目的,这些方法论被示出和描述为一系列的步骤或者模块,但应该明白和理解,所要求保护的主题不受步骤或者模块的顺序限制,因为一些步骤可以以与在此处描绘和描述的不同的次序或者与其他步骤同时出现。另外,本领域技术人员应该理解,在流程图中图示的步骤不是排他的,并且可以包括其他步骤,或者在示例流程图中的一个或多个步骤可以被删除,而不影响本公开的范围和精神。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1