处理视频信号的方法及装置的制作方法

文档序号:7572831阅读:219来源:国知局
专利名称:处理视频信号的方法及装置的制作方法
技术领域
本发明涉及一种信号处理方法及其一种信号处理装置,具体地说,本发明更适用于对由具有光学系统-如类似于摄像机(video camera)或静物摄像机的摄像装置提供的视频信号进行处理的信号处理方法和信号处理装置。
众所周知已经有作为摄像装置的所谓数字式摄像机(拍摄运动图片)或数字式静物摄相机(拍摄静物图片)等等。
在上述摄像装置中,尽管已经知道由于光学系统的透镜像差,被摄图像的分辨率比物体的分辨率降低许多,但被摄图像都是通过光学系统进入摄像装置中。
由于这个事实,可以通过控制孔径,为被摄图像的图像信号校正其图像分辨率。这里所用的孔径控制限定为信号处理,其中进行的校正用以改善表观分辨率,并使得被摄图像信号的亮度信号的高区成分随着被摄图像边缘部分(这里,限定为图像中亮度的交界部分)变得清晰而被增强。
众所周知,在这项技术中摄取图像分辨率的衰变程度还随拍摄条件改变-例如通过改变孔径的开启程度而使图像的分辨率显著不同。
然而,到现在为止进行的通常孔径控制的情况中,已将均匀设置的预定增益加到被摄图像的图像信号上,以放大高电平组分的幅度。由于这个事实,不能按照如上所述由可变光阑开启程度的变化或变焦距镜头变焦位置的变化而引起的分辨率变化进行校正。
由于这个事实,存在着下列问题,即由于在拍摄过程中可变光阑或变焦位置的变化,被摄图像的分辨率上产生了不规则“图样”,致使正常图像不能被看到,这与用相同摄像装置进行拍摄无关。
根据上述这些问题,本发明的目的在于对由于摄像装置中光学系统状况的变化而引起的图像信号分辨率的变化进行校正,通过用图像信号处理方法,对被摄图像的信号进行处理,使其数值大致恒定,以解决上述问题。
此外,处理被摄图像的图像信号的图像信号处理装置,包括分辨率校正部件,以校正由于摄像装置光学系统状况的变化而引起的图像信号分辨率的变化,用这种方式,可以使其数值基本保持恒定。


图1是本发明一最佳实施例的摄像机基本部分构造的方框图。
图2是本发明一最佳实施例的孔径控制电路结构的方框图。
图3A-3F是孔径控制电路基本运行情况的视图。
图4A、4B是在该最佳实施例中可变光阑机构的示意图。
图5A-5E是在该最佳实施例中可变光阑直径变化的示意图。
图6A-6C是在该最佳实施例中对应于可变光阑直径的孔径控制方法示意图。
图7A-7C是在该最佳实施例中对应于变焦位置的孔径控制方法示意图。
图8A-8G是与由透镜像差引起的空间频率对应的分辨率衰变的示意图。
图9A、9B是与亮度差异对应的调制传递函数技术概念的示意图。
下面参照图1-9描述本发明的一个最佳实施例。作为本发明的最佳实施例,假设本发明用于摄像机装置。
下面按下述顺序进行描述。
1、调制传递函数2、摄像机的构造3、孔径控制电路的构造和基本运行情况4、该最佳实施例的可变光阑机构5、该最佳实施例的分辨率校正根据可变光阑直径的变化进行校正6、该最佳实施例的分辨率校正根据变焦位置的变化进行校正1、调制传递函数例如,摄像装置光学系统的透镜分辨率的特征可用MTF(调制传递函数)表示。通过光学系统如透镜而得到的正弦波的读取精度被称为光学传递函数(OTF),OTF可以用复数来表示。OTF的绝对值被称作MTF,表示振幅的传递函数。
首先,参见图8和9描述在本发明最佳实施例中,对应于摄像机光学系统的MTF的技术概念。
图8A以示意图的方式显示了景物P与通过透镜L后得到的关于景物P的景物影像之间的关系。
例如,如图8B所示,假设设置的景物P使白色部分与黑色部分沿横向分别被划分成两半部分。关于图8B中的景物P的空间频率情况,能够看到它在水平方向的空间频率很低。然后,对于通过图8A的透镜L得到的景物影像Pa1,由于景物P的空间频率在水平方向很低,透镜L像差的影响不大,使得得到与景物P的精确分辨率相似的如图8C所示的景物影像的精确分辨率。
尽管在图8D中显示的水平方向空间频率高于图8B所示的空间频率,但透镜像差的影响已开始在通过透镜得到的景物P2的景物影像Pa2中显示出来。也就是说,如图8E所示,景物影像变为黑区部分成分融合在白区部分中,使亮度降低,反过来白区部分融合在黑区部分中,以致于亮度增加。换句话说,在看得见影像的地方,白区部分的影像和黑区部分的影像并不是完全相互分离开,所以使其亮度差异降低,使得整个影像显得模糊。即分辨率会降低。
尽管在图8F中显示的景物P3在水平方向的空间频率高于图8D所示的空间频率,但对应于景物P得到的如图8G所示的景物影像Pa3受到像差的影响大于如上述图8D中景物P2在图8E所示的景物影像Pa2,且降低了在白区部分与黑区部分之间亮度的差异,使得影像有更模糊的感觉。
例如,对应于上述图8所示景物P的空间频率的景物影像Pa的亮度差异关系如图9A所示。在该图中,尽管亮度差异在对应于景物影像Pa2的空间频率上明显降低,但像差在对应于景物影像Pa1的空间频率上的影响极小,因此可得到很好的亮度差。该亮度差异在对应于景物影像Pa3的空间频率上进一步降低。
在这种情况下,假定当亮度差异在图9A中以横坐标表示的空间频率的零点处时纵坐标则表示MTF的值。因此,景物影像Pa的MTF对应于景物P的空间频率的关系如图9B所示。
在这种情况下,如果透镜是没有像差的“理想透镜”,则无论空间频率的值是多少,MTF总是为100%。
2、摄像机的构造图1是显示本发明一最佳实施例的摄像机基本部分构造的方框图。在该图中,仅仅显示了用于对光学系统摄取的影像进行光电转换和对信号进行处理的光学系统和信号处理系统。
在该图中,透镜单元1是本发明该最佳实施例的摄像机的光学系统。透镜单元1设置有变焦距镜头2,当在预定的范围内改变其变焦位置时,它能对景物影像变焦。周可变光阑3调节通过变焦距镜头2的光量,以调节影像的亮度或景深。另外,如该图所示的可变光阑3,尽管在该实施例中,采用了一个许多叶片以象征性方式相互连接在一起以便用基本共轴方式调节孔径开启程度的机构,但也可以采用下述的带有两个相互连接叶片的可变光阑机构。
上述变焦距镜头2具有图中所示的电位计11。在变焦距镜头2上,一个称作变化器的镜头相对于焦距移动,焦距在进行变焦时可在预定的范围内沿光轴变化。上述电位计11探测有关该移动位置(变焦位置)的信息并将该信号作为变焦位置信息输送到控制部件10中。
此外,对于可变光阑3设置有孔元件12,用该孔元件12探测可变光阑3的可变光阑直径(开启程度),其中将该探测信号通过放大器13输送到控制单元10作为可变光阑的信息。
将这些变焦位置信息和可变光阑直径信息作用于在控制单元10进行的AE(自动曝光)控制或AF(自动对焦)控制。在该最佳实施例中,根据上述变焦位置信息和可变光阑直径信息将控制信号送到后文将要描述的孔径控制电路8,由该孔径控制电路8执行影像信号的孔径控制。
在这种情况下,使用了CCD4(电荷耦合器件)作为摄像元件。将根据CCD4输出电荷读取的拍摄信号送给取样保持/AGC(自动增益控制)电路5,以预定的增益进行放大并保持取样,之后将信号送给A/D转换器6。A/D转换器6把输入的模拟拍摄信号转换成数字信号,然后将它输入视频信号处理电路7。
在视频信号处理电路7,以预定的信号处理过程处理已转换成数字信号的影像信号,从而通过合成器9输出带数字信号的视频信号。将该输出的视频信号送到或储存在外部影像信号记录器或储存影像信号记录器或类似部件(图中未示)中,或输送到监视器或液晶显示器等类似部件中,用于显示所摄取的影像。视频信号处理电路7的输出信号还分出一支输送到孔径控制电路8。
孔径控制电路8将输入的视频信号在其高频组分上进行放大,以产生增强的信号组分。将孔径控制电路8的输出信号输送给合成器9。尽管被适当放大的视频信号的高频组分在合成器9中叠加在初始视频信号上,但被显示影像的边缘部分如下文所述被加强了,所以影像的表观分辨率得到改进。此外,在该图中,尽管将视频信号处理电路7输出的影像信号输入到孔径控制电路8中,但实际中用孔径控制电路8只对受高频影响很大的亮度信号组分进行孔径控制处理就可令人满意。
在数据表存储器10a中,储存着所需的数据表,以根据下文将要描述的透镜单元1的状态变化,设定孔径控制电路8输出信号的增益,该操作过程将在下文描述。
3、孔径控制电路的构造和基本运行情况图2是显示上述孔径控制电路8结构的方框图。
作为优先实施例的孔径控制电路8,尽管分别设置了沿水平方向和垂直方向校正分辨率的各孔径控制电路,但这里只描述用于校正水平方向分辨率的电路的结构。
该图所示的孔径控制电路8,包括延迟元件21,22、乘法器23、合成器24和乘法器25。在这种情况下,在延迟元件21,22中设定对应于时钟信号CLK的时钟频率的延迟时间。然而,如果要在这种情况下校正影像在水平方向的分辨率,就要设定对应于包含在1H里的像素数的时钟频率。反之,如果对时钟信号CLK设定了1H频率,则可以通过与图2相似的电路结构得到校正垂直方向分辨率的孔径控制电路。
将视频信号处理电路7输出的带有数字信号的影像信号的亮度信号分量输入延迟元件21和合成器24。延迟元件21的延迟输出被输入到延迟元件22,同时输入乘法器23,从而将输入信号乘以两倍。
在合成器24中,从经过延迟元件21后又经过乘法器23的信号成分中减去来自视频信号处理电路7的待输入的原始信号组分和来自延迟元件22的延迟输出的亮度信号组分。
对于亮度信号组分,合成器24的输出表示为(-1+2D-D2),其中原始影像信号设定为1而与原始影像信号相反延迟了一个时钟的信号定义为D。也就是说,上述延迟元件21,22、乘法器23和合成器24形成了一个高通滤波器,并且从原始亮度信号中得到所需的高频组分。
在乘法器25中,将由控制单元10提供的充当控制信号的增益控制信号提供给从上述合成器24输出的亮度信号的高频组分。也就是说,如下所述的可变的增益系数乘以亮度信号的高频组分,从而使亮度信号的高频组分被加强。
然后,相对于原始影像信号(由合成器9合成的)的亮度信号,通过叠加从乘法器25输出的具有增益的高频组分,使原始视频信号的高频组分被增强。
图3是显示在上述孔径控制电路8中通过基本操作得到的影像状态变化的示意图。
例如,假设对应于图3A所示的影像信号频率组分的景物影像Pa11如图3B所示。其后,景物影像Pa11对应于图3C所示特性曲线变成如图3D所示,其中,图3C所示特性曲线中的MTF比图3A所示的要差,所以导致影像的分辨率降低。
根据这个事实,关于具有如图3C所示特性曲线的影像信号,假设通过如图2所示的孔径控制电路8实施的孔径控制增强了其高频组分,例如,如图3E所示,高频组分的幅值升高从而进行信号处理能得到大致与图3A所示相同的特性曲线。采用上述方案,如图3F中景物影像Pa13所示,影像的边缘部分(在这种情况下是白区部分和黑区部分的交界)被增强了,从而改进了影像的表观分辨率。
4、该最佳实施例的可变光阑机构如上所述,MTF值可根据在摄像机等摄像装置的光学系统中可变光阑直径的变化而改变。换句话说,由于可变光阑直径的变化,景物影像的分辨率感觉中出现了无规则的分辨率状况。在本发明的最佳实施例中,它通过使用图2和3所示的孔径控制电路8进行孔径控制,使景物的分辨率感觉相对可变光阑直径的变化保持恒定。下面参见图4,描述本发明摄像机中采用的两叶片型可变光阑机构。
可变光阑3由两个叶片31、32结合组成,每一叶片具有图4A所示形状的端部。在这种情况下,在图中叶片31侧所示的位置安装有ND滤光片(ND中灰(Neutral Density)滤光片)33。在本技术领域众所周知,中灰滤光片33是一光学滤光片,用于衰减可见光带的入射光,其中它能在不影响色彩平衡的情况下衰减入射的可见光。如图4B所示,上述叶片31、32沿箭头所示方向相互连接,开口34的面积-即可变光阑直径可以调节。在采用如上所述带有两个叶片机构的可变光阑的情况下,制造这种光学系统比制造采用许多叶片形成基本中心开口的可变光阑机构所需的造价低。
5、最佳实施例的分辨率校正根据可变光阑直径的变化进行校正下面描述在本发明的最佳实施例中,根据可变光阑直径的变化校正分辨率。
虽然对应于摄像装置的可变光阑直径的变化的分辨率变化-如MTF的变化随摄像装置所使用的光学系统构造不同而每一种型号的设备MTF也不同,但是可以通过事先测量得到这种变化。根据这一事实,在本发明的该最佳实施例中,根据上述测量结果,通过在下面将要描述的孔径控制电路8中控制增益,可以进行分辨率校正。参见图5描述对应于图4所示最佳实施例的可变光阑3的可变光阑直径的MTF的变化。此外,在图5中,表示了可变光阑3的开口34的部分而省去了其周围部分的显示。在这种情况下,例如,使用如图3B所示的景物示意图,假设在水平方向的MTF是要测量的。
在图5A中,显示的是可变光阑3释放为“可变光阑状态1”的状况。然后假设可变光阑3从这一状态变窄,随后开口34变窄,直到其状态变到如图5B所示的“可变光阑状态2”。
通常,随着可变光阑变窄,透镜像差的影响或小,使得MTF值通常随之增加。由于这一事实,在如图5B所示的“可变光阑状态2”的状况下,可得到比图5A所示的“可变光阑状态1”高的MTF值。
然后,假设可变光阑进一步从如图5B所示的状态减小,从而得到如图5C所示的“可变光阑状态3”。该“可变光阑状态3”显示出ND滤光片33在开口34占据的面积-例如面积几乎等于ND滤光片,且不受ND滤光片33影响的区间非常小。
在如上所述的可变光阑状态下,由于已极大地降低了透镜像差的影响,所以MTF值应当很高。但是,尽管事实上不受ND滤光片33影响的区间非常小,然而在该非常小的区间会出现光的衍射,从而降低MTF值。
换句话说,在可变光阑逐渐变窄的情况下,如从图5B变到图5C的过渡状态,不受ND滤光片33影响的开口34区域的面积减少了,其结果是上述光的衍射现象不能忽略,与其相反,得到了MTF值逐渐衰小的特性曲线。
然后,可变光阑从图5C所示状态进一步变窄,在图5D所示的“可变光阑状态4”的状况下,开口34被ND滤光片33占据,ND滤光片33完全起作用,光的衍射降低,MTF值再次增加。
此外,在可变光阑从图5D所示状态进一步变窄,成为图5E所示的“可变光阑状态5”时,开口34的面积变得非常窄,其结果导致衍射光的影响再次增加,MTF值减小。
在本发明的该最佳实施例中,得到了如6A所示的测量结果,图6A为参照图5所描述的MTF随着可变光阑直径(开口34的面积)变化而变化的关系。在该图中,可变光阑直径用横坐标表示,对应于可变光阑直径的MTF值用纵坐标表示。
此外,在图6A中,图5A到5E表示的“可变光阑状态1-5”的每一位置都表示在MTF特征曲线上,尽管从上述图5所示的“可变光阑状态1”到“可变光阑状态2”MTF值根据可变光阑直径的变化而逐渐增加,但随后可变光阑直径从“可变光阑状态2”到“可变光阑状态3”的变化使MTF值减小,之后可变光阑直径从“可变光阑状态3”到“可变光阑状态4”的变化使MTF值再次增加。然后,当可变光阑直径从“可变光阑状态4”变化到“可变光阑状态5”时MTF值减小。
如上所述,本发明的最佳实施例用下述方式进行校正,该方式为根据得到的如上述图6A所示的测量结果,通过使提供给孔径控制电路8中乘法器25(参见图2)的可变增益(由控制单元10供给的控制信号)随可变光阑直径的变化而变化,则无论由可变光阑直径引起的MTF如何改变,景物影像的分辨率始终保持恒定。
图6B示出了根据如图6A所示的测量结果、相对于可变光阑直径的变化,将设定增益提供给孔径控制电路8中乘法器25的一个实例。
在这种情况下,设定从较低增益到较高增益,即从增益(a)到(e)的5级增益。然后,增益随着可变光阑直径的变化以下述方式设定,即将作为测量结果的如图6A所示的曲线图案变为将曲线中的变化部分消除的图案。
然后,将如图6B所示的随着可变光阑直径的变化而改变的增益供给孔径控制电路8中的乘法器25,以产生影像信号的亮度信号的高频组分,对该高频组分实施孔径控制,从而得到如图6C所示的与可变光阑直径无关的基本保持恒定的振幅电平。其结果为,不管可变光阑直径怎样变化,在实际显示景物影像达到大体恒定的分辨率感觉之后,可改进整个影像的分辨率。另外图6C表示亮度信号的振幅为3MHz。
为了实现这种孔径控制操作,将图6B所示的对应于可变光阑直径的设定增益的数据表储存在如图1所示的数据表储存器10a中。
然后,在摄像过程中,根据从孔元件12供给的可变光阑3的可变光阑直径信息,控制单元10识别目前的可变光阑直径,并根据储存在数据表储存器10a中的数据表,确定对应于该被识别的可变光阑直径的增益值。然后,将用这种方式确定的增益供给孔径控制电路8中的乘法器25作为控制信号。可以通过这种控制单元执行的处理操作实现根据上述可变光阑直径变化的孔径控制。
作为从控制单元10向孔径控制电路8中的乘法器25输送的控制信号,可以应用对应于设定增益的电压值,或应用预定比特数的一组数据。
尽管以上描述的是有关校正由水平方向上的MTF变化引起的分辨率,而实际上垂直方向上的分辨率校正也可采用类似处理。
为了进行这种校正,可在应用垂直方向上带一些横条(水平方向)的具有高空间频率的景物曲线图的情况下,根据垂直方向上的可变光阑直径,测量MTF值的变化。然后,以下述方式设定增益,即对应于MTF的变化,根据测量值,亮度信号高频组分振幅的变化可以被消除,用与上述相同的方式将数据储存在数据表储存器10a中。这样设置控制单元10是令人满意的,即根据储存的增益设定数据改变孔径控制电路8中乘法器25设定的增益以实现在垂直方向上进行孔径控制。
6、最佳实施例的分辨率校正和对应于变焦位置变化的校正在带有光学系统的摄像设备中,显然MTF不仅根据上述可变光阑直径变化,而且还根据变焦距镜头的变焦位置变化。由于这一事实,在该实施例中还要校正由上述变焦位置变化引起的分辨率变化。
变焦位置变化与MTF之间的关系与透镜的像差有关,所以可以通过在设计镜头过程中进行模拟来计算它,或通过在可变光阑情况下得到的测量结果来计算它。然后,在本发明的最佳实施例中,可以得到如图7所示的相对于摄像机中变焦位置的变化的MTF值。根据该图,当变焦位置从广角位置状态移动到远摄位置状态时,尽管分辨率会随着它从广角位置状态变化到远摄位置状态而降低,但得到了明显的具有MTF值降低的特征曲线。
因此,如图7B所示,设定提供给孔径控制电路8中乘法器25的增益随变焦位置的变化而变化。在这种情况下,根据变焦位置从广角位置状态到远摄位置状态的移动,设置的增益以阶梯方式从增益(a)变到增益(e)而删改了图7A所示的特征曲线。
然后,将用于根据上述图7B所示的变焦位置而设定增益的数据表采用与可变光阑一样的方式储存到数据表储存器10a中。因此,在摄像过程中,根据电位计11提供的变焦位置信息,参照储存在数据表储存器10a中的数据表,控制单元10可以确定对应于目前变焦位置的增益,并将该增益输送给孔径控制电路8。实施如上所述的这种孔径控制,可以产生可被控制的亮度信号的高频组分(在这种情况下,设定为3MHz),从而实现不管如图7C的变焦位置如何变化,振幅基本保持恒定。采用上述方案,可以克服由变焦位置变化引起的分辨率“无规则状态”。
此外,上述图7A显示的特征曲线表示的是水平方向的影像MTF值的特征,其中根据用于设置如图7B所示的增益的数据表所进行的孔径控制是对应于影像的水平方向的。因此,根据变焦位置变化校正分辨率不仅可在水平方向进行,而且还可在影像的垂直方向进行。
在本发明的最佳实施例中,以下述方式进行孔径控制,即不管光学系统中可变光阑直径或变焦位置的状态如何变化,都可以得到恒定的分辨率感觉。此外,由于该最佳实施例通常设置为孔径控制电路的增益随着MTF的变化而设定,所以其造价不会特别增加。
而且,本发明不局限于上述最佳实施例,它可以进行各种改进;且本发明可以应用到各种类型的具有光学系统的摄像设备中-如除摄像机以外的数字静物摄像机和用于处理由上述摄像设备提供的影像信号的信号处理设备。此外,尽管通过孔径控制处理亮度信号组分,以增强在上述最佳实施例中视频信号的高频组分,但有时像差信号组分也可通过孔径控制处理。
权利要求
1.一种处理被摄影像的影像信号的影像信号处理方法,其中能增强影像信号预定频带组分的孔径控制部件的输出增益根据在摄像设备光学系统的状态发生变化时产生的所述影像信号分辨率的变化而改变,并且按照使所述影像信号的分辨率基本保持恒定的方式进行校正。
2.如权利要求1所述的影像信号处理方法,其中由于透镜的像差使所述光学系统的状态发生变化。
3.如权利要求1所述的影像信号处理方法,其中所述光学系统状态的变化是由可变光阑的孔径变化而引起的。
4.如权利要求1所述的影像信号处理方法,其中所述光学系统状态的变化是由当可变光阑的孔径改变时靠近可变光阑开口的光的衍射引起的。
5.如权利要求1所述的影像信号处理方法,其中所述光学系统状态的变化是由变焦透镜的变焦位置变化而引起的。
6.一种处理被摄影像的影像信号的影像信号处理装置,其包括分辨率校正部件,所述影像信号的分辨率不是由摄像设备的光学系统状态设定,而是基本保持恒定。
7.如权利要求6所述的处理被摄影像的影像信号的影像信号处理装置,其中所述分辨率校正部件,包括能增强所述影像信号的预定频带组分的孔径控制部件;能根据所述光学系统状态变化设定所述孔径控制部件输出增益的增益可变设定部件。
8.如权利要求6所述的影像信号处理装置,其中所述影像信号校正部件被构造成可以校正由透镜像差产生的所述影像信号分辨率的变化。
9.如权利要求6所述的影像信号处理装置,其中所述影像信号校正部件被构造成可以校正由可变光阑孔径的变化而产生的所述信号分辨率的变化。
10.如权利要求6所述的影像信号处理装置,其中所述影像信号校正部件被构造成可以校正随着可变光阑的孔径变化由靠近可变光阑开口的光的衍射而产生的所述影像信号分辨率的变化。
11.如权利要求6所述的影像信号处理装置,其中所述影像信号校正部件被构造成可以校正由变焦透镜变焦位置的变化而产生的所述影像信号分辨率的变化。
12.如权利要求7所述的影像信号处理装置,其中所述增益可变设定部件包括一个存储器,用于存储对应于所述光学系统状态的所述孔径控制部件的输出增益。
13.如权利要求7所述的影像信号处理装置,其中所述孔径控制部件包括一个延迟部件,用于根据一水平线中的像素数,与时钟频率同步地延迟输入信号。
14.如权利要求7所述的影像信号处理装置,其中所述孔径控制部件包括一个延迟部件,用于根据一水平线,与时钟频率同步地延迟输入信号。
15.如权利要求9所述的影像信号处理装置,其中所述可变光阑是两个叶片的机构。
16.一种包括记录被摄影像的影像信号的影像信号记录装置的影像信号处理装置,其中设有一个分辨率校正部件,用于以下述方式进行校正,即不论摄像装置光学系统的状态发生怎样变化,所述影像信号的分辨率基本保持恒定。
全文摘要
一种处理被摄影像的影像信号的影像信号处理方法和装置,其中无论光学系统如可变光阑直径和变焦位置的状况如何变化,摄取影像的分辨率基本保持恒定。例如可变光阑直径变化时,测量对应其变化的MTF值,孔径控制电路的输出增益消除对应于该MTF的影像信号高频组分的降低量。然后,测量在摄像过程中可变光阑直径的变化,给孔径控制电路提供对应的增益值,从而无论可变光阑如何变化可以控制使亮度信号高频组分的振幅基本保持恒定。
文档编号H04N5/14GK1168046SQ97113098
公开日1997年12月17日 申请日期1997年4月26日 优先权日1996年4月26日
发明者川口直树, 清水秀二, 中村真备 申请人:索尼公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1