用于发送/接收信号的方法及其装置的制造方法

文档序号:10675485阅读:431来源:国知局
用于发送/接收信号的方法及其装置的制造方法
【专利摘要】本发明涉及用于发送/接收信号的方法及其装置。一种在无线通信系统中发送上行链路信号的方法,包括步骤:设定具有第一TDD UL?DL配置的第一小区和具有第二TDD UL?DL配置的第二小区;在第一小区的子帧#(n?L)中接收PHICH信号,或者在第一小区的子帧#(n?K)中接收PDCCH信号;并且与PHICH信号或者PDCCH信号相对应地,在第二小区的子帧#n中发送PUSCH信号,其中考虑到在TDD UL?DL配置集内的特定TDD UL?DL配置中设定的参数值来确定子帧#(n?L)、#(n?K)和#n之间的关系,并且该特定TDD UL?DL配置是一个或者更多个TDD UL?DL配置当中的、具有最小数目的UL子帧的TDD UL?DL配置,在该一个或者更多个TDD UL?DL配置中,在第一小区或者第二小区中被设定为UL的子帧都被设定为UL。
【专利说明】
用于发送/接收信号的方法及其装置
[0001 ]本申请是20 13年9月24日提交的国际申请日为20 12年3月26日、申请号为 201280014898.7 (PCT/KR2012/002181 )、发明名称为"用于发送/接收信号的方法及其装置" 专利申请的分案申请。
技术领域
[0002] 本发明设及一种无线通信系统,并且更加具体地,设及一种用于在支持TDD(时分 双工)的多载波系统中发送/接收信号的方法及其装置。
【背景技术】
[0003] 已经广泛部署无线通信系统,W提供包括语音或数据服务的各种类型的通信服 务。通常,无线通信系统是多址系统,其通过在多个用户之间共享可用的系统资源(例如,带 宽、发送功率等)来支持多个用户之间的通信。多址系统可W采用诸如码分多址(CDMA)、频 分多址(FDMA)、时分多址(TDMA)、正交频分多址(0FDMA)、W及单载波频分多址(SC-FDMA)的 多址方案。

【发明内容】

[0004] 技术问题
[0005] 本发明的目的被设计为解决在用于在无线通信系统中有效地发送/接收信号的方 法及其装置中存在的问题。本发明的另一目的是提供一种用于在支持TDD的多载波系统中 有效地发送/接收信号的方法和用于该方法的装置。本发明的另一目的是为了提供一种用 于当在支持TDD的多载波系统中配置信号发送和接收定时时重新使用现有的信号发送/接 收定时的方法和用于该方法的装置。
[0006] 通过本发明解决的技术问题不限于上述技术问题,并且本领域的技术人员可W从 下面的描述中理解其它的技术问题。
[0007] 技术解决方案
[000引能够通过提供一种在支持载波聚合的无线通信系统中发送上行链路信号的方法 来实现本发明的目的,该方法包括:配置具有第一TDD(时分双工)UL-DL(上行链路-下行链 路)配置的第一小区和具有第二TDD化-DL配置的第二小区;在第一小区的子帖#(n-y中接 收PHICH(物理HARQ指示符信道)信号,或者在第一小区的子帖#(η-Κ)中接收PDCCH(物理下 行链路控制信道)信号;并且与PHICH信号或者PDCCH信号相对应地,在第二小区的子帖航中 发送PUSCH(物理上行链路共享信道)信号,其中,考虑到在特定T孤化-DL配置中设定的参 数值来确定在子帖#(n-y、#(n-KWP#n之间的关系,该特定TOD化-化配置被包括在TOD 化-化配置集中,其中,特定TDD化-化配置对应于在一个或者更多个TDD化-化配置当中 的、具有最小数目的化子帖的T孤化-DL配置,在该一个或者更多个T孤化-DL配置中,在第 一小区或者第二小区中被配置成UL的一个或者更多个子帖都被配置成UL,其中,当根据特 定化-DL配置,在位于子帖#n前面的化子帖(UU)中,第二小区被配置成化时,根据对化子帖 (UU)设定的参数来确定子帖#(n-L),其中,当在化子帖(UU)中,第二小区没有被设定为化 时,根据被应用于第二小区中的子帖#n前面的化子帖的参数值来确定子帖#(n-y,n是大于 0的整数,并且?α化分别是等于或者大于1的整数。
[0009] 根据本;?明的另一方面,在此提供一种通信装置,该通信装置被配置成在支持载 波聚合的无线通信系统中发送上行链路信号,该通信装置包括射频(RF)单元和处理器,其 中处理器被配置成,配置具有第一TOD化-DL配置的第一小区和具有第二TDD化-化配置的 第二小区,在第一小区的子帖#(n-y中接收PHICH信号,或者在第一小区的子帖#(η-Κ)中接 收PDCCH信号,并且与PHI畑信号或者PDCCH信号相对应地,在第二小区的子帖#η中发送 PUSCH信号,其中,考虑到在特定TOD化-化配置中设定的参数值来确定在子帖#(n-y、#(η- 1〇和#11之间的关系,该特定TOD化-化配置被包括在TOD化-化配置集中,其中,特定TOD 化-化配置对应于在一个或者更多个TDD化-化配置当中的、具有最小数目的化子帖的TDD 化-化配置,在该一个或者更多个TOD化-化配置中,在第一小区或者第二小区中被配置成 化的一个或者更多个子帖都被配置成化,其中,当根据特定化-DL配置,在位于子帖#n前面 的化子帖(UU)中,第二小区被配置成化时,根据对化子帖化U)设定的参数来确定子帖#(n- L),其中,当在化子帖(UU)中,第二小区没有被设定为化时,根据被应用于第二小区中的子 前面的化子帖的参数值来确定子帖#(n-y,n是大于0的整数,并且K和心分别是等于或 者大于1的整数。
[0010] PHI CH信号、PDCCH信号W及PUSCH信号可W对应于相同的HARQ过程。
[00川子帖#(n-U,#(η-κ)和#0可^被分配给相同的HARQ过程。
[0012]当第二小区在UU中被配置成化时,口TW与村目同,并且当第二小区在化子帖UU中 没有被配置成化时,可W大于Κ。
[0013] 当第二小区在UU中没有被配置成化时,根据对特定TOD化-DL配置设定的参数值, 在与UU有关的化子帖中可W省略接收PHICH信号和化许可PDCCH信号的过程。
[0014] 第一小区可W是调度小区并且第二小区可W是被调度小区。
[001引有益效果
[0016] 根据本发明,能够在无线通信系统中有效地发送/接收信号。此外,能够在支持TDD 的多载波系统中有效地发送/接收信号。另外,当在支持TDD的多载波系统中配置信号发送/ 接收定时时,能够重新使用现有的信号发送/接收定时。
[0017] 本发明的效果不受前述效果的限制,并且根据下面的描述对本领域的技术人员来 说在此没有描述的其它效果将会变得明显。
【附图说明】
[0018] 被包括W提供本发明的进一步理解的附图图示了本发明的实施例,并且连同描述 一起用于解释本发明的原理。在附图中:
[0019] 图1图示无线电帖结构;
[0020] 图2图示下行链路时隙的资源网格;
[0021 ]图3图示下行链路子帖结构;
[0022] 图4图示上行链路子帖结构;
[0023] 图5和图6图示单个小区情况下的TDD UL ACK/NACK(上行链路肯定应答/否定应 答)传输定时;
[0024] 图7和图8图示单个小区情况下的TDD PUSCH(物理上行链路共享信道)传输定时;
[0025] 图9和图10图示单个小区情况下的TDD DL ACK/NACK传输定时;
[0026] 图11图示在单个小区情形下的TDD HARQ(混合自动重复请求)过程;
[0027] 图12图示载波聚合(CA)通信系统;
[0028] 图13图示在聚合多个载波的情况下的调度;
[0029] 图14至图16图示根据实施例1的ACK/NACK定时设定和传输方法;
[0030] 图17和图18图示根据实施例1的化许可/PHICH定时设定方法;
[0031] 图19图示应用实施例1和2的ACK/NACK定时的CA组合;
[0032] 图20图示在配置化HARQ定时中引起问题的CA组合;
[0033] 图21至图25图示根据实施例3的用于配置用于SCC U的UG或者PHICH定时的方法;
[0034] 图26至图29图示根据实施例4的用于配置用于SCC U的UG或者PHICH定时的方法; W及
[0035] 图30图示可应用于本发明的实施例的基站(BS)和用户设备(UE)。
【具体实施方式】
[0036] 本发明的实施例可应用于诸如码分多址(C D Μ A)、频分多址(F D Μ A)、时分多址 (TDMA)、正交频分多址((FDMA)、W及单载波频分多址(SC-抑MA)的各种无线接入技术。CDMA 能够被实施为诸如通用陆地无线电接入化TRA)或CDMA2000的无线电技术。TDMA能够被实施 为诸如全球移动通信系统(GSM)/通用分组无线电服务(GPRS)/用于GSM演进的增强数据率 化DGE)的无线电技术。0FDMA能够被实施为诸如电气与电子工程师学会(IEEE)802.11(无线 保真(Wi-Fi))、IE邸802.16(全球微波接入互操作性(WiMAX))、I邸E 802.20、演进UTRA巧- UTRA)的无线电技术。UTRA是通用移动电信系统(UMTS)的一部分。第Ξ代合作伙伴计划 (3GPP)长期演进化TE)是使用E-UTRA的演进UMTS化-UMTS)的一部分,对于下行链路采用 0FDMA且对于上行链路采用SC-FDMA。LTE高级(LET-A)是3GPP LTE的演进。
[0037] 虽然为了阐明描述给出下面集中于3GPP LTE/LTE-A的描述,运仅是示例性并且因 此不应被解释为限制本发明。
[003引图1图示无线电帖结构。
[0039] 参考图1,在3GPP LTE(-A)中使用的无线电帖具有10ms(327200Ts)的长度,并且包 括在大小上相等的10个子帖。无线电帖中的10个子帖可W被编号。在此,Ts表示采样时间, 并且被表示为Ts = l/(2048*15kHz)。各个子帖具有1ms的长度并且包括2个时隙。无线电帖 中的20个时隙能够从0至19顺序地编号。各个时隙具有0.5ms的长度。用于发送子帖的时间 被定义为传输时间间隔(TTI)。能够通过无线电帖号(或者无线电帖索引)、子帖号(或者子 帖索引)、W及时隙号(或者时隙索引)来区分时间资源。
[0040] 能够根据双工模式不同地配置无线电帖。在FDD(频分双工)模式下通过频率区分 下行链路传输和上行链路传输,并且因此无线电帖仅包括特定频带中的上行链路子帖和下 行链路子帖中的一个。
[0041] 特别地,图1示出在3GPP-LTE(-A)中使用的用于TDD的无线电帖结构。表1示出在 TDD模式下在无线电帖中的子帖的化-DL(上行链路-下行链路)配置。
[0042] [表1]
[0043]
[0044] 在表1中,D表示下行链路子帖,U表示上行链路子帖并且S表示特殊子帖。特殊子帖 包括DwPTS(下行链路导频时隙)、GP(保护时段)、W及化PTS(上行链路导频时隙)dDwPTS是 为下行链路传输保留的时段,并且化PTS是为上行链路传输保留的时段。表2示出特殊子帖 配置。
[0045] [表2]
[0046]
[0047] 图2图示下行链路时隙的资源网格。
[004引参考图2,下行链路时隙在时域中包括多个OFDM符号。一个下行链路时隙可W包括 7(6)个OFDM符号,并且一个资源块(RB)可W在频域中包括12个子载波。在资源网格上的各 个元素被称为资源元素(RE)。一个RB包括12X7(6)个RE。被包括在下行链路时隙中的RB的 数目Nrb取决于下行链路传输带宽。上行链路时隙的结构可W与下行链路时隙的结构相同, 不同之处在于OFDM符号被SC-FDMA符号取代。
[0049] 图3图示下行链路子帖结构。
[0050] 参考图3,位于子帖内的第一时隙的前部中的最多Ξ(四)个OFDM符号对应于控制 信道所分配到的控制区域。剩余的0抑Μ符号对应于物理下行链路共享信道(PDSCH)所分配 到的数据区域。PDSCH被用于承载传输块(ΤΒ)或者与ΤΒ相对应的码字(CW)"TB意指通过传送 信道从MAC层发送到PHY层的数据块。码字对应于TB的编译版本。TB和CW之间的对应关系取 决于交换。在本说明书中,PDSCH、TBW及CW被可互换地使用。在LTE(-A)中使用的下行链路 控制信道的示例包括物理控制格式指示符信道(PCFICH)、物理下行链路控制信道(PDCCH)、 物理混合ARQ指示符信道(PHICH)等等。PCFICH在子帖的第一 (FDM符号被发送并且承载关于 在子帖内被用于传输控制信道的0抑Μ符号的数目的信息。PHICH是上行链路传输的响应并 且承载HARQ肯定应答(ACK)/否定应答(NACK)信号。HARQ-ACK响应包括肯定ACK(简单地, ACK)、否定ACK(否定ACK)、DTX(非连续传输)或者NACK/DTX。在此,HARQ-ACK与HARQ ACK/ NACK和ACK/NACK可互换地使用。
[0051 ]通过PDCCH发送的控制信息被称为下行链路控制信息(DCI)dDCI包括用于UE或者 肥组的资源分配信息或其它控制信息。例如,DCI包括上行链路/下行链路调度信息、上行链 路发送(Τχ)功率控制命令等等。用于配置多天线技术的传输模式和DCI格式的信息内容如 下。 陶]传输模式
[0053] .传输模式1:从单个基站天线端口的传输
[0054] ?传输模式2:发送分集
[0055] ?传输模式3:开环空间复用
[0056] ?传输模式4:闭环空间复用
[0化7] ?传输模式5:多用户ΜΙΜΟ
[005引 ?传输模式6:闭环秩-1预编码
[0059] .传输模式7:使用肥专用参考信号的传输
[0060] DCI 格式
[0061] ?格式0:用于PUSCH传输的资源许可(上行链路)
[0062] ?格式1:用于单一码字PDSCH传输的资源指配(传输模式1、2W及7)
[0063] ?格式1A:用于单一码字PDS01的资源指配的紧凑信令(所有模式)
[0064] ?格式1B:使用秩-1闭环预编译的用于PDS01的紧凑资源指配(模式6)
[0065] ?格式1C:用于PDS01的非常紧凑的资源指配(例如,寻呼/广播系统信息)
[0066] ?格式1D:使用多用户ΜΙΜΟ的用于PDS01的紧凑资源指配(模式5)
[0067] ?格式2:对于闭环ΜΙΜΟ操作的用于PDS01的资源指配(模式4)
[006引 ?格式2Α:对于开环ΜΙΜΟ操作的用于PDS01的资源指配(模式3)
[0069] ?格式3/3Α:利用2比特/1比特功率调整的用于PUCCH和PUSCH的功率控制命令
[0070] 如上所述,PDCCH可W承载下行链路共享信道(DkSCH)的传送格式和资源分配信 息、上行链路共享信道WkSCH)的资源分配信息、关于寻呼信道(PCH)的寻呼信息、关于化- SCH的系统信息、关于诸如在PDSCH上发送的随机接入响应的更高层控制消息的资源分配信 息、用于在任意的肥组内的单独肥上的Τχ功率控制命令的集合、Τχ功率控制命令、关于IP语 音(VoI P)的启动的信息等。能够在控制区域中发送多个PDCCH。UE能够监视该多个PDCCH。 PDCCH在一个或若干个连续控制信道元素(CCE)的聚合上被发送。CCE是逻辑分配单位,其用 于基于无线电信道的状态为PDCC田是供码率。CCE对应于多个资源元素组(REG)。通过CCE的 数目来确定可用的PDCCH的比特的数目和PDCCH的格式。基站根据要被发送到UE的DCI来确 定PDCCH格式,并将循环冗余校验(CRC)附接到控制信息。根据PDCCH的拥有者或用途,利用 独特的标识符(被称为无线电网络临时标识(RNTI)掩码(mask) CRC。如果PDCCH用于特定UE, 则可W将肥的独特标识符(例如,小区RNTI (C-RNTI)掩码到CRC。替代地,如果PDCCH用于寻 呼信息,则可W将寻呼标识符(例如,寻呼RNTI (P-RNTI))掩码到CRC。如果PDCCH用于系统信 息(更具体地,系统信息块(SIB)),则可W将系统信息RNTI(SI-RNTI)掩码到CRC。当PDCCH用 于随机接入响应时,则可W将随机接入RNTKRA-RNTI)掩码到CRC。
[0071] 图4是示出上行链路子帖结构。
[0072] 参考图4,上行链路子帖包括多个(例如,2个)时隙。根据CP长度,时隙可W包括不 同数目的SC-FDMA符号。上行链路子帖在频域中可W被划分为控制区域和数据区域。数据区 域被分配有PUSCH并且被用于承载诸如音频数据的数据信号。控制区域被分配有PUCCH并且 被用于承载上行链路控制信息化CI) dPUCCH包括位于频域中的数据区域的两端处并且在时 隙边界中跳频的RB对。
[0073] PUCCH能够被用于发送下述控制信息。
[0074] -调度请求(SR):运是被用于请求化-SCH资源的信息并且使用开关键控(00K)方案 来发送。
[00巧]-HARQ ACK/NACK:运是对PDSCH上的下线链路数据分组(例如,码字)的响应,并且 指示下行链路数据分组是否已经被成功地接收。发送1比特ACK/NACK信号作为对单个下行 链路码字的响应,并且发送2比特ACK/NACK信号作为对两个下行链路码字的响应。HARQ响应 包括肯定ACK (简单地,ACK)、否定ACK (NACK)、W及DTX (非连续传输)或者NACK/DTX。在此,术 语HARQ-ACK可与HARQ ACK/NACK和ACK/NACK互换地使用。
[0076] -信道质量指示符(CQI):运是关于下行链路信道的反馈信息。关于ΜΙΜΟ(多输入多 输出)的反馈信息包括秩指示符(RI)和预编码矩阵指示符(ΡΜΙ)。使用每个子帖20个比特。
[0077] UE能够通过子帖发送的控制信息(UCI)的量取决于可用于控制信息传输的SC- FDMA符号的数目。可用于控制信息传输的SC-FDMA符号对应于除了被用于参考信号传输的 子帖的SC-抑ΜΑ符号之外的SC-抑ΜΑ符号。在配置探测参考信号(SRS)的子帖的情况下,从可 用于控制信息传输的SC-抑ΜΑ符号中排除子帖的最后的SC-抑ΜΑ符号。参考信号被用于检测 PUCCH的相干。PUCCH根据在其上发送的信息支持各种格式。
[0078] 表3示出在LTE(-A)中在PUCCH格式和UCI之间的映射关系。
[0079] [表 3]
[0080]
[0081] 将参考图5至图10描述在单载波(或者小区)情形下的TDD信号传输定时。
[0082] 图5和图6图示PDSCH-UL ACK/NACK定时。在此,UL ACK/NACK意指在上行链路上发 送的ACK/NACK,作为对DL数据(例如,PDSCH)的响应。
[0083] 参考图5,UE能够在Μ个化子帖(SF)(S502_0至S502_M-1)中接收一个或者更多个 PDSCH信号。各个PDSCH信号被用于根据传输模式发送一个或者更多个(例如,2个)传输块 (TB)。也可W在步骤S502_0至S502_M-1中接收指示SPS(半永久调度)的PDCCH信号,运没有 被示出。当在Μ个化子帖中存在PDSCH信号和/或SPS释放PDCCH信号时,肥经由用于发送ACK/ NACK(例如,ACK/NACK(有效载荷)产生、ACK/NACK资源分配等等)的过程,通过与Μ个DL子帖 相对应的UL子帖来发送ACK/NACK(S504)dACK/NACK包括关于在步骤S502_0至S502_M-1中接 收到的PDSCH信号和/或SPS释放PDCCH的应答信息。虽然基本上通过PUCCH发送ACK/NACK,但 是当在ACK/NACK传输时间发送PUSCH时,通过PUSCH发送ACK/NACK。在表3中示出的PUCCH格 式能够被用于ACK/NACK传输。为了减少通过PUCCH格式发送的ACK/NACK比特的数目,能够使 用各种方法,诸如ACK/NACK捆绑和ACK/NACK信道选择。
[0084] 如上所述,在TDD中,通过一个化子帖(即,Μ个化SF:1个化SF)发送与在Μ个化子 帖中接收到的数据有关的ACK/NACK,并且通过DASI(下行链路联合集索引)确定其间的关 系。
[0085] 表4示出在LTE(-A)中定义的DASKK:化0,kl,….,k-l})。表4示出发送ACK/NACK的 化子帖和与化子帖有关的化子帖之间的间隔。具体地,当在子帖n-k(keK)中存在指示 PDSCH传输和/或SPS释放的PDCCH时,肥在子帖η中发送ACK/NACK。
[0086] [表 4]
[0087]
[008引图6图示当配置化-化配置#1时的化ACK/NACK传输定时。在附图中,SF#0至#9和 SF#10至#19分别对应于无线电帖,并且块中的每个数字表示与化子帖有关的化子帖。例如, 在SF#5巧(=SF#12)中发送用于SF#5的PDSCH的ACK/NACK,并且在SF#6+6( = SF#12)中发送 用于SF#6的PDSCH的ACK/NACK。因此,在SF#12中发送用于SF#5/#6的DL信号的ACK/NACK两 者。类似地,在SF# 14+4 ( = SF# 18)中发送用于SF# 14的PDSCH的ACK/NACK。
[0089] 图7和图8图示PHICH许可-PUSCH定时。能够对应于PDCCH(化许可)和/或PHICH (NACK)发送 PUSCH。
[0090] 参考图7,肥能够通过PDCCH接收PDCCH(UL许可)和/或PHICH(NACK) (S702)。在此, NACK对应于先前的PUSCH传输的ACK/NACK响应。在运样的情况下,经由用于PUSCH传输的过 程(例如,TB编码、TB-CW交换、PUSCH资源分配等等)肥能够在k个子帖之后通过PUSCH来初始 发送/重新发送一个或更多个TB(S704)。本实施例基于执行发送一次PUSCH的正常HARQ操作 的假定。在运样的情况下,在相同的子帖中存在与PUSCH传输相对应的化许可和PHICH。然 而,在通过多个子帖多次发送PUSCH的子帖捆绑的情况下,在不同的子帖中可W存在与 PUSCH传输相对应的PHICH和化许可。
[0091] 表5示出在LTE(-A)中用于PUSCH传输的UAI(上行链路联合索引)化)。表5示出在检 巧慢化HICH/UL许可的化子帖和与化子帖有关的化子帖之间的间隔。具体地,当从子帖η检测 至化HICHAJL许可时,肥能够在子帖n+k中发送PUSCH。
[0092] [表 5]
[0093]
[0094] 图8图示当配置了 UL-DL配置# 1时的PUSCH传输定时。在附图中,SF#0至#9和SF# 10 至#19分别对应于无线电帖,并且块中的数字表示与化子帖有关的化子帖。例如,在SF#6+6 (=SF#12)中发送与SF#6的PHICH/UL许可相对应的PUSCH,并且在SF#14+4(=SF#18)中发送 与SF#14的PHICH/UL许可相对应的PUSCH。
[00巧]图9和图10图示PUSCH-PHICH/UL许可定时。PHICH被用于发送DL ACK/NACK。在此, DL ACK/NACK意指作为对化数据(例如,PUSCH)的响应而在下行链路上发送的ACK/NACK。
[0096] 参考图9,UE将PUSCH信号发送到BS(S902)。在此,PUSCH信号被用于根据传输模式 发送一个或者更多个(例如,2个)TB。基站可W经由用于ACK/NACK传输的过程(例如,ACK/ NACK产生、ACK/NACK资源分配等等),在k个子帖之后通过PHICH发送作为对PUSCH传输的响 应的ACK/NACK(S904)dACK/NACK包括关于步骤S902的PUSCH信号的应答信息。当对PUSCH传 输的响应是NACK时,BS能够在k个子帖之后将用于PUSCH重传的化许可PDCCH发送到UE (S904)。本实施例基于执行发送一次PUSCH的正常HARQ操作的假定。在运样的情况下,能够 在相同的子帖中发送用于PUSCH传输的化许可和PHICH。然而,在子帖捆绑的情况下,能够在 不同的子帖中发送被用于PUSCH传输的化许可和PHICH。
[0097] 表6示出在LTE(-A)中用于PHICHAJL许可传输的UAI。表6示出在存在PHICH/UL许可 的化子帖和与化子帖有关的化子帖之间的间隔。具体地,子帖i的PHICHAJL许可对应于通过 子帖i-k的PUSCH传输。
[009引[表6]
[0099]
[0100] 图10图示当配置了化-DL配置#1时的PHICHAJL许可传输定时。在附图中,SF#0至#9 和SF#10至#19分别对应于无线电帖,并且块中的数字表示与化子帖有关的化子帖。例如,在 SF#化4( = SF#6)中发送与SF#2的PUSCH相对应的PHICH/UL许可,并且在SF#8+6( = SF#14)中 发送与SF#8的PUSCH相对应的PHICH/OJL许可。
[0101] 现在将描述PHICH资源分配。当在子帖#n中发送PUSCH时,UE确定子帖#11(11+1^11甜) 中与PUSCH中相对应的PHICH资源。在抑D的情况下,kPHicH具有固定值(例如,4)。在TOD的情况 下,kpHicH具有取决于tX-DL配置的值。表7不出用于TOD的kpHicH等同于表6。
[0102] [表 7]
[0103]
[0104] 通过[PHI CH总索引、正交序列索引]提供PHI CH资源。使用(i)用于PUSCH传输的最 低的PRB索引和(i i)用于DMRS (解调参考信号)循环移位的3比特字段值,来确定PHICH组索 引和正交序列索引。在此,通过化许可PDCC巧旨示(i)和(i i)。
[0105] 将给出HARQ过程的描述。UE执行用于化传输的多个并行的HARQ过程。多个并行的 HARQ过程被用于在肥等待表示是否先前的化传输已经成功的HARQ反馈的同时继续地执行 化传输。各个HARQ过程与MAC (介质接入控制)层的HARQ缓冲器有关。各个HARQ过程管理缓冲 器中的MAC PDU(物理数据单元)的传输的数目、用于缓冲器中的MAC PDU的HARQ反馈、W及 关于当前冗余版本的状态参数。
[0106] 在LTE(-A)抑D的情况下,用于非子帖捆绑操作(即,正常的HARQ操作)的化HARQ过 程的数目是8。在LTE(-A)TDD的情况下,根据化-UL配置而不同地配置化HARQ过程的数目和 HARQ RTT(往返时间),因为化子帖的数目取决于化-DL配置。在此,HARQ RTT可W是在当接 收到许可时的时间与当通过PUSCH的传输(对应于化许)可接收到PHICH(对应于化许可)时 的时间之间的时间间隔(例如,WSF或者ms为单位)或者在PUSCH传输时间和PUSCH重传时间 之间的时间间隔。
[0107] UL HARQ过程的数目变化。当应用子帖捆绑时,在FDD和TDD中发送由4个连续的化 子帖配置的一束PUSCH。因此,当应用子帖捆绑时的HARQ操作/过程不同于正常HARQ操作/过 程。
[010引表8示出T孤中的同步UL HARQ过程的数目和HARQ RTT。当UL HARQ RTT是10[SF或 者ms](化-DL配置#1、#2、#3、#4^及#5)时,一个化齡39过程使用一个固定的化5。定时。当 UL HARQ RTT不对应于10[SF或者msKUkDL配置#0和#6)时,一个UL HARQ过程使用多个UL SF定时(替代一个固定的化SF定时)同时跳频。例如,在化-DL配置#6的情况下,在一个化 HARQ过程中的PUSCH传输定时是:SF#2 : PUSCH =〉SF#13 : PUSCH(RTT: 11个SF) =〉SF#24: PUSCH(RTT:11个SF) =〉SF#37:PUSCH(RTT:13个SF) =〉SF#48:PUSCH(RTT:11个SF) =〉SF# 52:口115邸(脚1':14个5尸)。
[0109] [表 8]
[0110]
[0111] 在TDD化-化配置#1至#6和正常HARQ操作的情况下,UE在子帖η中检测到化许可 PDCCH和/或PHICH信息时,根据化许可PDCCH和/或PHICH信息在子帖n+k中发送相对应的 PUSCH信号(参考表5)。
[0112] 在TDD化-化配置#0和正常HARQ操作的情况下,当从子帖η检测到化DCI许可 PDCCH和/或PHICH时,根据情况改变肥的PUSCH传输定时。当DCI中的化索引的MSB (最高有效 位)是1并且在子帖#0或者#5中通过与Iphich = 0相对应的资源接收到PHICH时,肥在子帖n+k 中发送相对应的PUSCH信号(参考表5)。当DCI中的化索引的LSB(最低有效位)是1时,在子 帖#0或者#5中通过与Iphich=1相对应的资源接收PHICH,或者在子帖#1或者#6中接收PHICH, 肥在子帖nW中发送相对应的PUSCH信号。当设定在DCI中的MSB和LSB两者时,肥在子帖n+k (参考表5)和子帖nW发送相对应的PUSCH信号。
[0113] 图11图示当配置了化-DL配置#1时的同步化HARQ过程。块中的数字表示化HARQ 过程数目。在图11中示出的同步化HARQ过程对应于常规的HARQ过程。参考图11,HARQ过程# 1调用5。#2、5。#6、5。#12^及5。#16。例如,如果在5。#2中发送初始的?肥邸信号(例如,3¥ = 0),则在SF#6中能够接收到与PUSCH信号相对应的PHICH和/或化许可PDCCH,并且能够在SF# 12中发送与初始PUSCH信号相对应的(重传)PUSCH信号(例如,RV = 2)。因此,在化-DL配置# 1 的情况下存在具有1 ο个SF(或者10ms)的RTT(往返时间)的4个化HARQ过程。
[0114] 图12图示载波聚合(CA)通信系统。为了使用更宽的频带,LTE-A系统采用CA(或者 带宽聚合)技术,其聚合多个化/DL频率块W获得更宽的化/DL带宽。使用分量载波(CC)发送 各个频率块。CC能够被视为用于频率块的载波频率(或者中屯、载波、中屯、频率)。
[0115] 参考图12,能够聚合多个化/DL CCW支持更宽的化/DL带宽。在频域中CC可W是连 续的或者非连续的。可W独立地确定CC的带宽。能够实现非对称的CA,其中UL CC的数目不 同于化CC的数目。例如,当存在两个化和一个化CC时,DL CC和化CC能够W2:l的比率对 应于化CC。在系统中,DL CCAJL CC链路能够被固定或者被半静态地配置。即使系统带宽被 配置有N个CC,特定UE能够监视/接收的频带能够被限制到M(<N)个CC。与CA有关的各种参数 能够被小区特定地、肥组特定地、或者肥特定地配置。可W仅通过特定CC发送/接收控制信 息。此特定CC能够被称为主CC(PCC)(或者错CC)并且其它CC能够被称为辅CC(SCC)。
[0116] 在LTE-A中,小区的概念被用于管理无线电资源。小区被定义为下行链路资源和上 行链路资源的组合。但是,上行链路资源不是强制的。因此,小区可W仅由下行链路资源构 成,或者由下行链路资源和上行链路资源两者构成。下行链路资源的载波频率(或者DL CC) 和上行链路资源的载波频率(或者UL CC)之间的链路可W由系统信息来指示。在主频率资 源(或者PCC)中操作的小区可W被称为主小区(PCell)并且在辅频率资源(或者SCC)中操作 的小区可W被称为辅小区(SCell)DPCell被用于肥建立初始连接或者重新建立连接。PCell 可W指的是在被SIB2-链接到化CC的化CC上操作的小区。此外,PCell可W指的是在切换 期间指示的小区。SCell可W在建立RRC连接之后配置,并且可W用于提供附加的无线电资 源。PCell和SCell可W被统称为服务小区。因此,对于没有向其配置CA或者不支持CA的、处 于RRC连接(RRC_CONNECTED)状态的UE,存在仅由PCell组成的单个服务小区。另一方面,对 于向其配置了CA的、处于RRC连接状态的肥,存在一个或者多个服务小区,包括PCell和整个 SCe 11。对于CA,在初始化初始安全激活操作之后,在连接建立期间,对于支持CA的肥,除了 初始配置的PCell之外,网络还可W配置一个或者多个SCell。
[0117] 图13图示当聚合多个载波时的调度。假定聚合3个化CC并且化CC A被配置为 PDCCH CCJL CC A、DL CC BW及DL CC C能够被称为服务CC、服务载波、服务小区等。在禁 用CIF(载波指示符字段)的情况下,DL CC仅能够发送在没有CIF的情况下调度与化CC相对 应的PDSCH(非跨CC调度)的PDCCH。当根据UE特定(或者UE组特定或者小区特定的)的较高层 信令启用CIF时,特定的CC(例如,DL CC A)不仅能够发送调度与化CC A相对应的PDSCH的 PDCCH,而且能够发送使用CIF调度其它化CC的PDSCH的PDCCH(跨CC调度)。在化CC B/C中 不发送PDCCH。
[0118] 被用于PDCCH传输的特定CC(或者小区)被称为调度CC(或者调度小区)。调度CC(或 小区)可W与监视CC(或者MCC)可互换地使用。通过另一 CC的PDCCH调度PDSCH/PUSCH的CC (或者小区)被称为被调度CC(或者被调度小区)。可W为一个UE配置一个或者更多个调度 CC,并且调度CC中的一个可W被用于化控制信令和化PUCCH传输。即,调度CC包括PCC。当仅 配置一个调度(X时,调度CC对应于PCC。在下面的描述中调度CC/被调度的CC也可W被称为 MCC/SCC。
[0119] 当配置跨CC调度时,根据如下的信号类型定义承载信号的CC。
[0120] -PDCOKUL/DL许可):调度CC(或者MCC)
[0121] -PDSCH/PUSCH:由从调度CC检测到的PDCCH的Cl巧旨示的CC
[0122] -DL ACK/NACK(例如,PHICH):调度CC(或者MCC)(例如,DL PCC)
[0123] -UL ACK/NACK(例如,PUCCH):UL PCC
[0124] 常规的CA TDD系统仅考虑被聚合的CC具有相同的化-DL配置的情况。在运样的情 况下,可W使用参考图5至图10描述的在单个小区情形下的TDD信号传输定时,因为所有的 CC具有相同的化/UL子帖定时。然而,考虑到在CC之间的化/DL负荷不同和信道状态不同而 为各个CC独立地配置化-DL配置的方案最近正在讨论中。然而,如果当应用跨CC调度时,多 个CC具有不同的化-DL配置,则可能产生与信号发送/接收定时有关的下述问题。此外,可能 有必要定义新的化/DL ACK/NACK定时和/或化/UL许可定时。
[0125] 为了解决上述问题,本发明提出了一种在支持CA和TDD的系统中的信号传输定时 (例如,UL ACK/NACK传输定时、UL许可传输定时W及DL ACK/NACK传输定时)设定方案。另 夕h本发明提出根据信号传输定时配置化HARQ过程的方法。在下面的描述中,为了方便起 见,UL ACK/NACK被简单地称为ACK/NACK,UL许可被称为UG,并且DL ACK/NACK被称为PHICH。
[0126] 在此,ACK/NACK定时可W意指被配置成发送用于通过特定的D接收到的化数据(例 如,PDSCH)的ACK/NACK的U,或者意指在接收到DL数据的D与发送ACK/NACK的U之间的时间间 隔。UG定时可W意指被配置成调度接收通过特定的U发送的化数据(例如,PUSCH)的UG的D, 或者意指在接收到UG的D与发送化数据的U之间的时间间隔。PHICH定时可W意指被配置成 接收用于通过特定U发送的化数据(例如,PUSCH)的ACK/NACK的D,或者意指在发送化数据的 U与接收到ACK/NACK的D之间的时间间隔。例如,为特定的CC或者特定的UD-cfg配置的ACK/ NACK定时对应于表4的定时。例如,为特定的CC或者特定的UD-cfg配置的UG定时对应于表5 的定时。例如,为特定的CC或者特定的UD-cfg配置的PHICH定时对应于表6和表7的定时。
[0127] 在ACK/NACK的情况下,不论非跨CC调度和跨CC调度如何,能够应用在下面描述的 所提议的方法。在UG或者PHICH的情况下,仅当配置跨CC调度模式或者执行跨CC调度时,能 够应用在下面描述的所提议的方法。例如,如果调度CC仅调度它本身,尽管已经配置跨CC调 度模式(即,非跨CC调度),也不能使用下面的方法。在运样的情况下,能够应用为调度CC配 置的TDD信号传输定时。
[0128] 在下面的描述中,为了容易理解本发明,假定关于ACK/NACK定时配置聚合了具有 不同化-DL配置的PCC和SCC。此外,假定关于UG或者PHICH定时配置聚合了具有不同的化-DL 的MCC和SCC。然而,在下面描述的所提议的方法可应用于具有不同的化-DL配置的多个SCC 中的每一个。例如,当存在具有不同的化-DL配置的多个SCC和PCC (在ACK/NACK定时的情况 下)或者MCC (在UG或者PHI CH定时的情况下)时,在下面描述的被提议的方法能够被独立地 应用于各个SCC和PCC或者各个SCC或者MCC。
[0129] 在下面的描述中,D表示化SF,S表示特定SF,并且U表示化SF。假定D或者U被用作 S,并且除非另有明文规定,否则D被用作D。另外,ms或者SF的单位可W被称为TTK传输时间 间隔)"CC与小区(或者服务小区)可交换地使用并且PCC和SCC分别可W与PCell和SCell可 交换地使用。
[0130] 在下面的描述中,通过UE执行信号发送/接收。如果BS(或者中继)执行信号发送/ 接收过程,则仅改变信号发送/接收方向,并且与通过UE执行的信号发送/接收过程相同的 过程能够由BS执行。
[0131]实施例1:配置信号发送/接收定时 [0。。ACK/NACK 定时-方法 1-1
[0133] 当具有不同化-DL配置的PCC和SCC被聚合时,能够考虑W下ACK/NACK定时设定规 贝1J。方法1 -1可W包括在跨CC调度期间的跨SF调度操作。在运里,跨SF调度意指在化SF#n中 调度待通过化SF#(n+kKk〉0)发送的化数据。
[0134] 对于通过PCC接收到的DL数据的ACK/NACK
[0135] ?能够应用PCC的ACK/NACK定时。
[0136] -能够在从多CC重配置成单CC(或从单CC重配置成多CC)期间至少对于PCC的ACK/ NACK来防止BS与肥之间的不对准。
[0137] 对于通过SCC接收到的DL数据的ACK/NACK
[013引 ?首先,能够从所有化-DL配置(例如表1)选择W下化-DL配置,在该化-DL配置中, 与PCC和SCC两者都是U的SF相对应的SF被全部配置为U。然后,从所选择的化-DL配置选择具 有最小数目的U(相当于,最大数目的D)的化-DL配置,并且能够应用向其配置的ACK/NACK定 时。相当于,能够从所有化-DL配置选择W下化-DL配置,在该化-DL配置中,与PCC或SCC是D 的SF相对应的SF被全部配置为D。然后,从所选择的UL-DL配置之中选择具有最小数目的D (相当于,最大数目的11)的化-化配置(在下文中被称为"DL联合"),并且能够应用为DL联合 所配置的ACK/NACK定时(在下文中被称为"公共ACK/NACK定时")。
[0139] -在化联合情况下,D/U被配置为使得用于SCC的D的ACK/NACK定时能够被配置为 PCC的U。
[0140] -优选地,能够从化联合中提取并且应用仅具有与SCC的时目同的SF定时的D的ACK/ NACK定时。
[0141] 公共ACK/NACK定时能够适用于通过PCC和SCC接收到的所有DL数据。
[0142] 图14和15图示了根据本实施例的ACK/NACK定时设定方案。假定PCC和MCC是相同的 并且因此MCC也被表示为PCC。此外,UL-DL配置被表示为UD-cf g。
[0143] 图14图示了PCC和see分别对应于UD-cfg#3和UD-cfg#6的情况。在运种情况下,方 法1-1被应用如下。
[0144] 对于通过PCC接收到的DL数据的ACK/NACK
[0145] *能够应用PCC 的 ACK/NACK 定时(即,UD-cf g#3)。
[0146] 对于通过SCC接收到的DL数据的ACK/NACK
[0147] ?能够应用对于在PCC和see两者都是U的SF(即SF#2、#3W及#4)被全部配置为U的 UD-cf g (即UD-cf g#0、#3 W及#6)之中的具有最小数目的U的UD-cf g (即UD-cf g#3) (*)所配置 的ACK/NACK定时(参考图14(a))。相当于,能够应用对于在PCC或SCC是D的SF (即SF#0、# 1、# 5、#6、#7、#8 W及#9)被全部配置为D的UD-cf g (即UD-cf g#3、#4 W及#5)之中的具有最小数目 的D的UD-cf g(即UD-cf g#3) (*)所配置的ACK/NACK定时(参考图14(b))。
[014引图15图示了PCC和see分别对应于UD-cfg#2和UD-cfg#4的情况。在运种情况下,方 法1-1被应用如下。
[0149] 对于通过PCC接收到的DL数据的ACK/NACK
[0150] ?能够应用PCC 的 ACK/NACK 定时(即UD-cf g#2)。
[0151] 对于通过SCC接收到的DL数据的ACK/NACK
[0152] ?能够应用对于在PCC和see两者都是U的SF(即SF#2)被全部配置为U的UD-cfg(即 UD-cfg#0至#6)之中的具有最小数目的U的UD-cfg(即UD-cfg#5)(*)所配置的ACK/NACK定 时。相当于,能够应用对于在PCC或see是D的SF(即SF#0、#1W及#3至#9)被全部配置为D的 UD-cfg(即UD-cfg#5)之中的具有最小数目的D的UD-cfg(即UD-cfg#5)(*)所配置的ACK/ NACK定时(参考图15(b))。
[015引 ACK/NACK 定时-方法 1-2
[0154] 当具有不同TOD UkDL配置的多个CC(例如PCC、MCC和see;PCC(= MCC)和see)被聚 合时,能够考虑W下ACK/NACK定时设定规则W便不在跨CC调度期间引入附加的SF调度操 作。
[01对[替代方案0]
[0156] 对于通过PCC接收到的DL数据的ACK/NACK
[0157] ?能够应用PCC的ACK/NACK定时。
[015引 对于通过see接收到的DL数据的ACK/NACK
[0159] ?非跨CC调度:能够应用为PCC和see的化联合(方法1-1)所配置的ACK/NACK定时。
[0160] ?跨CC调度:将see或配置成跨CC调度see的MCC是U的SF被全部配置为U,而其它SF (即对应的2个CC两者都被配置为D的SF)被全部配置为D的虚拟化-化配置被定义为"ULU- C妃'。最后,能够应用为PCC的DL联合和ULU-cfg所配置的ACK/NACK。
[0161] ?能够在配置成跨CC调度see的MCC是U而see是D的SF(在下文中,冲突SF)中跳过 对see的D的调度。在运种情况下,肥能够省略用于在冲突SF中接收有关see的化许可DCI格 式的程序(例如PDCCH候选的捜索空间监视和盲解码)。
[0162] [替代方案1]
[0163] 对于通过PCC接收到的DL数据的ACK/NACK
[0164] ?能够应用PCC的ACK/NACK定时。
[0165] 对于通过see接收到的DL数据的ACK/NACK
[0166] ?非跨CC调度:能够应用为PCC和see的化联合所配置的ACK/NACK定时。
[0167] ?跨CC调度:能够应用为配置成跨CC调度see的MCC和PCC的化联合所配置的ACK/ NACK定时。
[016引 ?能够在配置成跨CC调度see的MCC是U而see是D的冲突SF中跳过对see的D的调 度。在运种情况下,肥能够省略用于在冲突SF中接收有关see的化许可DCI格式的程序(例如 PDCCH候选的捜索空间监视和盲解码)。
[0169] [替代方案2]
[0170] 对于通过PCC接收到的DL数据的ACK/NACK
[0171] ?能够应用PCC的ACK/NACK定时。
[0172] 对于通过see接收到的DL数据的ACK/NACK
[0173] ?非跨CC调度:能够应用为PCC和see的化联合所配置的ACK/NACK定时。
[0174] ?跨CC调度:能够应用PCC的ACK/NACK定时。
[0175] ?能够在配置成跨CC调度PCC或see的MCC是U而see是D的冲突SF中跳过对see的D 的调度。在运种情况下,UE能够省略用于在冲突SF中接收有关see的化许可DCI格式的程序 (例如PDCCH候选的捜索空间监视和盲解码)。
[0176] 当使用方法1-巧日1-2(或其它方法)配置ACK/NACK定时时,可W根据PCC的U不同地 配置待发送的ACK/NACK比特/数目。在运种情况下,可W考虑为通过PCC的U中的每一个发送 的ACK/NACK配置/应用不同的PUCCH资源/格式(例如PUCCH格式la/化和PUCCH格式3)和/或 不同的传输方案(例如多比特ACK/NACK编码和ACK/NACK选择),W便有效地使用ACK/NACK传 输资源。
[0177] 例如,用于PCC和SCC的ACK/NACK能够通过PCC的特定U(例如PCC-U1)来同时地发 送,然而仅用于PCC的ACK/NACK能够通过PCC的另一特定U (例如PCC-U2)来发送。在运里,不 同的PUCCH资源和/或不同的传输方案(例如PUCCH格式)可W适用于通过PCC-U1和PCC-U2发 送的ACK/NACK。具体地,使用显式PUCCH资源(例如PUCCH格式3)的多比特ACK/NACK编码方案 能够适用于通过PCC-U1发送的ACK/NACK,而使用隐式PUCCH资源(例如PUCCH格式la/化)的 ACK/NACK选择方案能够适用于通过PCC-U2发送的ACK/NACK。也就是说,能够对于通过PCC的 特定U来发送用于N(例如N = 2)个或更多个CC的ACK/NACK的情况W及对于通过PCC的特定U 来发送用于少于N个CC的ACK/NACK的情况分别确定PUCCH格式和资源分配方案。
[017引图16图示了根据上面提出的方法来发送ACK/NACK的程序。参考图16,UE在接收到 DL数据(例如PDSCH)时生成ACK/NACK信息(S1602)。然后,肥执行PUCCH资源分配,W在子帖# η中发送ACK/NACK信息(S1604)。在运里,考虑到用于多少(N)个CC的ACK/NACK信息将在子 帖扣中发送来确定PUCCH资源分配。例如,当N是1时,ACK/NACK信息能够通过PUCCH格式la/ 化(隐式资源)来发送(S1606)。当N是2或更多的时,ACK/NACK信息能够通过PUCCH格式3 (显 式资源)来发送(S1606)。
[0179] 化许可(UG)或PHICH定时-方法1-3
[0180] 当具有不同化-DL配置的MCC和SCC被聚合时,能够考虑W下UG或PHICH定时设定规 则。
[0181 ] 对于通过MCC发送的UL数据的UG或PHICH
[0182] ?能够应用MCC的UG或PHICH定时。
[0183] -能够在从跨CC调度模式重配置成非跨CC调度模式(或从非跨CC调度模式重配置 成跨CC调度模式)期间至少对于MCC的UG或PHICH定时来防止BS与肥之间的不对准。
[0184] 对于通过SCC发送的UL数据的UG或PHICH
[0185] 户首先,能够从所有化-DL配置选择W下化-DL配置,在该化-DL配置中,MCC或see是 U的SF被全部配置为U。然后,从所选择的化-DL配置中选择具有最小数目的U(相当于,最大 数目的D)的化-DL配置(被称为"UL联合"),并且能够应用为化联合所配置的UG或PHICH定时 Γ公共UG或PHICH定时")。
[0186] -在化联合情况下,D/U被配置使得用于see的所有U的UG或PHICH定时能够被配置 为MCC的D。
[0187] -优选地,能够从化联合中提取并且应用仅具有与see的財目同的SF定时的U的UG或 PHICH定时。
[018引 公共ACK/NACK定时能够适用于通过MCC和see发送的所有UL数据。
[0189]当使用方法1-3(或其它方法)配置UG或PHICH定时时,未被配置成在MCC单独操作 时发送UG或PHI畑的MCC的特定D(例如MCC-D1)能够被配置为用于MCC/SCC的特定U中的 PUSCH传输的UG或PHICH定时。为了方便,与配置为UG或PHICH定时的MCC-D1相对应的MCC/ see的U被称作孤立iKorphan U)。在运里,能够参考表1、6 w及7来标识MCC-Dl。在运种情况 下,能够仅取决于即时UG(而不用设及基于PHICH的HARQ过程)将孤立U(或包括该孤立U的CC 的所有U)用于一次性PUSCH调度/传输。在运里,尽管HARQ过程不伴有PHICH,但一次性PUSCH 传输意指在没有非自适应重传的情况下执行仅基于化许可的(自适应)重传。例如,一次性 PUSCH传输能够被用来承载UL数据和/或UCI (例如ACK/NACK和/或CQI/PMI/RI等)(运不设及 基于PHICH的HARQ过程)。否则,能够考虑限制对于孤立U(或包括该孤立U的CC的所有U)的 PUSCH调度/传输并且将孤立U用于其它目的(例如PUCCH和/或SRS和/或PRACH传输)的方案。 在运种情况下,肥能够省略用于在对应于孤立U的MCC的D(即MCC-D1)中接收化许可DCI格式 的程序(例如PDCCH候选的捜索空间监视和盲解码)。
[0190] 图17和18图示了根据本实施例的UG/PHICH定时设定方案。假定PCC和MCC是相同的 并且因此MCC还被表示为PCC。此外,UL-DL配置被表示为UD-cf g。
[0191] 图17图示了PCC和see分别对应于UD-cfg#3和UD-cfg#6的情况。在运种情况下,上 面描述的所提出的方法被应用如下。
[0192] 对于通过PCC发送的UL数据的UG或PHICH
[0193] ?能够应用 PCC 的 UG 或 PHICH 定时(即 UD-cfg#3)。
[0194] 对于通过see发送的UL数据的UG或PHICH
[01巧]?能够应用对于在PCC或see是U的SF(即5。#2、#3、#4、#7^及#8)被全部配置为1]的 UD-cfg(即UD-cfg#0和#6)之中的具有最小数目的U的UD-cfg(即UD-cfg#6)(*)所配置的UG 或PHICH定时。
[0196] 图18图示了PCC和see分别对应于UD-cfg#2和UD-cfg#4的情况。在运种情况下,上 面所描述的所提出的方法被应用如下。
[0197] 对于通过PCC发送的UL数据的UG或PHICH
[019引 ?能够应用PCC的UG或PHICH定时(即UD-cfg#2)。
[0199] 对于通过see发送的UL数据的UG或PHICH
[0200] ?能够应用对于在PCC或see是U的SF(即SF#2、#3W及#7)被全部配置为U的UD-cfg (良阳D-cf g#0、#l W及#6)之中的具有最小数目的U的UD-cf g(即UD-cfg#l) (*)所配置的UG或 PHICH定时。
[0201] 实施例2:配置信号发送/接收定时
[0202] 当应用实施例1的方法时,能够根据未被设定到聚合CC(例如PCC和see)中的任一 个的UD-cf g来确定ACK/NACK定时、UG定时W及PHICH定时。然而,鉴于D或U,PCC的UD-cfg和 see的UD-cfg中的一个被包括在另一个中(也就是说,采用嵌套结构),当应用实施例1的方 法时,ACK/NACK定时、UG定时W及PHICH定时遵循被设定到PCC或see的UD-cfg的定时。因此, 当多个CC被聚合并且具有嵌套关系时,实施例1的定时设定过程能够被简化。
[0203] 具体地,实施例1能够适用于与图19的阴影部分相对应的CA组合(UD-cfg#l和#3的 CA、UD-cfg#2和#3的CAW及UD-cfg#2和#4的CA),而在下面描述的所提出的方法能够适用于 其它CA组合。
[0204] ACK/NACK 定时-方法 2-1
[0205] 对于通过PCC接收到的DL数据的ACK/NACK
[0206] ?能够应用为PCC所配置的ACK/NACK定时。
[0207] 对于通过see接收到的DL数据的ACK/NACK
[0208] ?能够应用为具有最小数目的U(相当于,最大数目的D)的PCC和see中的一个所配 置的ACK/NACK定时(即"公共ACK/NACK定时")。
[0209] -优选地,能够提取并且应用仅在所选择的CC的UD-cfg中具有与see的D相同的SF 定时的D的ACK/NACK定时。
[0210] 公共ACK/NACK定时能够通常适用于通过PCC和see接收到的所有DL数据。
[0211] UG 或 PHICH 定时-方法 2-2
[0212] 对于通过MCC发送的UL数据的UG或PHICH
[0213] ?能够应用MCC的UG或PHICH定时。
[0214] 对于通过see发送的UL数据的UG或PHICH
[0215] ?能够应用为具有较大数目的U(相当于,较小数目的D)的MCC和see中的一个所配 置的UG或PHICH定时(即"公共UG或PHICH定时")。
[0216]-优选地,能够提取并且应用仅在所选择的CC的UD-cfg中具有与see的財目同的SF 定时的U的UG或PHICH定时。
[0217] 公共UG或PHICH定时能够通常适用于通过MCC和see接收到的所有DL数据。
[021引实施例3:信号发送/接收定时和UL HARQ过程
[0219]如上面参考表8所描述的,化SF的数目在TDD情况下根据化-DL配置被不同地定 义,并且能够根据化-DL配置不同地配置基于化SF的数目的化HARQ RTT和化HARQ过程的 数目。
[0220] 当应用实施例1和2的UG或PHICH定时分配方案时,在MCC/SCC的特定组合中,可W 应用具有与为MCC/SCC所配置的UL HARQ RTT不同的UL HARQ RTT的UD-cfg的UG或PHICH。例 女日,如果MCC对应于UD-cfg#6并且see对应于UD-cfg#l(具有10个SF或10ms的UL HARQ RTT), 则当应用所提出的实施例1和2的方法时,为UD-cfg#6所配置的UG或PHICH定时和化HARQ RTT(其不是10个SF或10ms)可W被应用于see U,并且因此在配置整个化HARQ定时过程中 可能发生问题。
[0221] 图20图示了当应用实施例1和2的UG或PHICH定时分配方案时,在配置化HARQ定时 过程中发生问题的CA组合。在图20中,阴影部分对应于在配置化HARQ定时过程中发生问题 的CA组合。与阴影部分相对应的MCC/SCC组合被称作"非适用MCC/SCC-comb"。其它MCC/SCC 组合被称作可适用MS-comb。图20 (a)示出了MCC的UG或PHICH定时被应用于MCC并且公共UG 或PHICH定时被应用于see的情况。图20(b)示出了公共UG或PHICH被应用于MCC和see两者的 情况。
[0222] 因此,上面描述的UG或PHICH定时设定方法适用于可适用MS-comb,并且能够对于 非适用MS-comb考虑W下方法。
[0223] 0)虽然应用实施例1和2的UG或PHICH定时设定方法,但是仅对于应用公共UG或 PHICH定时的CC,在W下方法3-0或3-0-1的基础上,UL HARQ RTT被改变为N*10个SF或N* 10ms(N为大于1的整数,优选地,1或2),
[0224] 1)跨CC调度可能不被许可(对于化和化两者或者仅对于化),
[0225] 2)载波聚合可能不被许可(对于化和化两者或者仅对于化),
[0226] 3)当配置跨CC调度时,用于对应see的UL数据调度/传输可W被跳过或者丢弃,
[0227] 4)可W应用基于W下方法3-1的UG或PHICH定时设定方案,或者
[0228] 5)可W应用基于W下方法3-2的UG或PHICH定时设定方法。
[0。9] HARQ过程配置-方法3-0
[0230] ·υ6/ΡΗ?α? =〉PUSCH定时关系(为了方便,其间的定时差被称为K个SF或K ms)能 够遵循实施例1和2的UG或PHICH定时。
[0231] ?115邸=沖^吼/1]6定时关系(为了方便,其间的时间差被称为1个5。或11113)能 够被配置为使得UG/PHICH =〉PUSCH=〉UG/PHICH所需要的时间对应于N*10个SF或N*10ms。 在运里,N是等于或大于1的整数,优选地,1或2。
[0232] ?也就是说,L能够被配置为N*l〇-K。 脚引 HARQ过程配置-方法3-0-1
[0234] UG =〉PUSCH定时关系(为了方便,其间的时间差被称为K个SF或K ms)能够通过 将实施例1和2的公共UG或PHICH定时应用于SF#n中的PUSCH传输来配置。
[02对 ·Ρυ501 =〉PHICH定时关系(为了方便,其间的时间差被称为L个SF或L ms)能够通 过将实施例1和2的公共UG或PHICH定时应用于SF#n中的PUSCH传输来配置。
[0236] 最后,PHI畑=〉UG定时能够被配置为使得在N*10个SF或N*10ms的间隔下的 PUSCH传输配置相同的PUSCH HARQ过程。也就是说,PHICH与UG之间的时间差能够被配置为Η = N*10-K-L(代替 0)。
[0237] 例如,SF#N 中的 PUSCH、SF# (n+L)中的 PHI CH、SF# (n+L+ (N* 10-K-L)) = SF# (n+N* 10- K)中的UGW及SF#(n+N*10-K+K) = SF#(n+N*10)中的PUSCH能够被分配,使得它们配置相同 的 PUSCH HARQ过程。
[023引因此,鉴于PUSCH传输,当在与SF#(n-K)相对应的MCC中接收到化许可时,肥能够在 与 SF#(n-K-(N*10-K-L))=#(n-K-H)=#(n-y = #(n-(N*10-L))相对应的 MCC 中接收 PHICH 和/或在与SF#n相对应的see中发送PUSCH。能够根据PHICH的接收/非接收、UL许可的内容 (例如NDI(新数据指示符)是否被切换(toggle)))来确定PUSCH是最初发送还是重传。
[0239] 为了参考,描述方法3-0-1的应用。当根据基于实施例1和2的UG或PHICH定时设定 方案,将DU-cfg#6确定为化联合时,能够参考表5、6 W及7将用于SF#3中的PUSCH传输的基于 20[TTI]UL HARQ RTT的UL许可/PHICH定时配置如下。TTI的单位可W为SF或ms。
[0240] 化=〉PUSCH定时关系,也就是说,能够通过将化联合定时,即为UD-cfg#6所配置 的化许可/PHICH定时应用于SF#3中的PUSCH传输来确定时间间隔Κ[ΤΤΙ]。
[0241] ?参考表5,SF#6中的化许可与SF#(10+3)中的PUSCH之间的时间差对应于L = 7 [TTI]。
[0242] ·Ρυ501 =〉ΡΗ?α?定时关系,也就是说,能够通过将化联合定时,即为UD-cfg#6所 配置的化许可/PHICH定时应用于SF#3中的PUSCH传输来确定时间间隔L[TTI]。
[0243] ?参考表7,SF#3中的PHI CH与SF#9中的PHICH之间的时间差对应于L = 6[TTI]。
[0244] ·ΡΗ?α? =〉UL许可定时关系,也就是说,时间间隔20-K-L[TTI ]能够被确定为使得 在20[TTI ]的间隔下的SF#3中的PUSCH传输配置相同的PUSCH HARQ过程。
[0245] 仲^邸=〉化许可定时间隔根据上述结果变成20-K-L = 20-7-6 = 7[TTI]。
[0246] 因此,SF#3 中的PUSCH、SF# (3+L) = SF#9 中的PHI CH、SF# (9+ (20-K-L)) = SF# 16 中 的化许可、SF#(16+K) = SF#23中的PUSCH能够被分配,使得它们配置相同的PUSCH HARQ过 程。
[0247] HARQ过程配置-方法3-1
[024引 对于MCC U中的PUSCH传输的UG或PHICH
[0249] ?能够应用MCC的UG或PHICH定时。
[0巧0] 对于SCC U(即SF#n)中的PUSCH传输的UG或PHICH
[0巧1] ?UG定时(在下文中,SF#UG):运个能够被配置为最接近于SF#(n-p)或存在于SF# (n-p)之前的SF#n的MCC的D。在运里,P是等于或大于1的整数,优选地,4。
[0巧2] ?PHICH定时(在下文中,SF#PH):运个能够被配置为与从UG定时起N*10个SF或N* 10ms之后的时间,即SF#(UG+N*10)相对应的MCC的D。
[0巧3] ?在n-UG〉10-p(例如6)情况下:因为PH-n<p(例如4)对于与SF#n相对应的SCC U不 能够执行具有10个SF或10ms的HARQ RTT的同步HARQ。因此,能够对于SCC U考虑W下方案。
[0254] 替代方案0)能够应用方法3-0、3-0-1或3-2。
[0255] 替代方案1)具有20个SF或20ms的HARQ RTT的同步HARQ能够通过分别将UG定时和 PHICH定时配置为SF#UG和SF#(UG+20)来支持。
[0256] 替代方案2)仅UG定时被配置为SF#UG(也就是说,PHICH定时未被配置),并且SF#n 能够仅取决于即时UG(而不用伴随的基于PHICH的HARQ过程)而被用于一次性PUSC的周度/传 输。在运里,一次性PHICH传输用来在没有非自适应重传的情况下执行仅基于化许可的(自 适应)重传,该非自适应重传设及没有PHICH的HARQ过程。例如,一次性PUSCH传输能够被用 来承载UL数据和/或UCI (例如ACK/NACK和/或CQI/PMI/R等)(运不设及基于PHICH的HARQ过 程)。
[0257] 替代方案3)对于与SF#n相对应的SCC U的PUSCH调度/传输能够被限制,并且与SF# η相对应的SCC U能够被用于其它目的(例如PUCCH和/或SRS和/或PRACH传输)。
[0測]HARQ过程配置-方法3-2
[0259] 实施例1和2的UG或PHICH定时设定方法(例如化联合)仅适用于应用公共UG或 PHICH定时的CC(例如SCC),使得当SCC D或S被包括在一个化HARQ在跳频时使用的多个化 SF定时中时,SCC D或S中的化数据传输能够被跳过。为了实现运一点个,可W省略用于与 SCC D或S相对应的MCC DL SF(发送在对应SF定时处调度PUSCH的UG和用于在对应SF定时处 的PUSCH的ACK/NACK(PHICH))中的UL数据传输的UG(和/或PHICH)调度/接收。
[0260] 也就是说,UL HARQ过程在跳频时使用的多个SCC化定时在化联合定时的基础上 被连接,并且能够(在化联合定时上)跳过在不对应于SCC的化定时处的数据(例如PUSCH)的 传输W及与其有关的控制信息(例如PHICH/UG)发送和接收。当控制信息被跳过时,化HARQ 过程中see化的连接可W使用与先前的see化相对应的化联合PHICH定时和与随后的see 化相对应的化联合UG定时(在运里,先前的和随后的see化可能在化联合化ARQ)定时方面 不是连续的)来执行。例如,能够W先前的see化中的see PUSCH传输=〉在与先前的see UL (MCC)相对应的化联合PHICH定时处的PHICH接收=〉在与随后的see UL (MCC)相对应的化联 合化许可定时处的化许可接收=〉随后的see化中的see PUSCH传输的顺序连接HARQ过程 (运里,对于先前的see化与随后的see化之间的化联合中的化的PHICH/UL许可调度/接收 被省略)。在其它情况下(即当上面提到的跳过操作不存在时),化HARQ过程中see化的连 接可W使用对于UL联合中的先前的UL的PHICH定时和调度UL联合中的随后的UL的UG定时来 执行。在运里,先前的和随后的化可能在化联合化ARQ)定时方面是连续的。例如,能够W化 联合中的先前的化中的SCC PUSCH传输=〉在与化联合(MCC)中的先前的化相对应的PHICH 定时处的PHICH接收=〉在与化联合(MCC)中的随后的化相对应的化许可定时处的化许可接 收=〉在化联合中的随后的化中的SCC PUSCH传输的顺序连接HARQ过程。在运里,先前的和 随后的SCC化在化联合(HARQ)定时方面是连续的,并且因此与先前的和随后的SCC化有关 的PHICH/OJL许可调度/接收未被省略。
[0261] 也就是说,用与MCC和SCC的化联合相对应的UD-cf g定义的化许可或PHICH定时(即 化联合定时)能够适用于随着时间而执行与SCC的特定PUSCH HARQ过程相关的PUSCH传输 (和PHICH/UL许可传输)。然而,当用与化联合相对应的UD-cfg定义的特定PUSCH传输定时 (U1)未被定义为SCC中的化SF时,需要通过U1而被执行的PUSCH传输能够通过在U1之后可 用的第一SCC UL SF(U2)来执行。在运里,假定能够基于化联合定时紧接在U1之前执行的 PUSCH传输的化SF(对于SCC)是U0。在运种情况下,能够WU0中的PUSCH传输、相对于在U0中 的PUSCH的传输而在PHICH定时(DO)(在该处发送PUSCH的ACK/NACK)处的PHICH接收、在用于 在U2中调度PUSCH的化许可定时(D2)处的化许可接收W及U2中的PUSCH传输的顺序来执行 PUSCH HARQ相关操作。在运里,根据化联合定时,DO和D2可能是相同的或不同的。D2可W包 括DO并且可W被定义为在DO之后最接近于DO的D2SF定时(例如UG定时)(在化联合定时方面 有效)。
[0262] 例示本实施例的方法。如果UD-cfg#6对应于MCC而UD-cfg#l对应于SCC,则SF#2、# 3、#4、#7 W及#8在MCC情况下是UL SF并且SF#2、#3、#7 W及#8在see情况下是UL SF。在运里, 当应用UL联合方法时,能够在用UD-cfg#6(MCC)定义的UL许可或PHICH定时处执行see中的 PUSCH HARQ过程(即UL许可/PUSCH/PHICH传输)。当方法3-2被应用于从see的SF#3中的初始 PUSCH传输开始的特定PUSCH HARQ过程时,肥能够基于UD-cfg#6 (MCC)执行W下操作。
[0263] 1)在用于在SF#2中调度PUSCH的化许可定时(DO)处的化许可接收
[0264] 2) SF#2中的PUSCH传输(初始传输)
[0265] 3)在用于SF#2中的PUSCH传输的PHI CH定时(D1)处的PHI CH接收
[0%6] 在用于在SF#13(=#化ll(RTT))中调度PUSCH的化许可定时(D2)处的化许可接收
[0267] 在运里,D1和D2可W为相同的SF定时。
[026引4)SF#13中的PUSCH传输(第一传输)
[0269] 5)在用于在SF# 13中的PUSCH传输的PHI CH定时(D3)处的PHI CH接收
[0270] 6)在用于在SF# 27 (= # 13+14 (RTT))中调度PUSCH的UL许可定时(D4)处的UL许可接 收
[0271] 在运里,D3和D4可W为相同的SF定时或不同的SF定时。D4可W包括D3并且可W被 配置为在D3之后最接近于D3的D4SF定时(在化联合定时方面有效)。
[0272] 当应用用与化联合相对应的UD-cfg#6定义的定时时,能够在SF#24中执行PUSCH在 SF#13中的重传。然而,因为在SF#24情况下在see中定义化或S SF来代替化SF,所WSF#24 中的PUSCH传输、调度PUSCH传输的化许可的接收W及相对于该PUSCH传输的PHICH接收能够 被省略,并且在SF#13中的PUSCH重传能够根据所提出的方法通过与在SF#24之后可用的第 一see UL SF相对应的SF#27来执行。
[0273] 7)SF#27(=#13+14(RTT))中的 PUSCH 传输(第二传输)
[0274] 8)在用于SF#27中的PUSCH传输的PHICH定时(D5)处的PHICH接收
[0275] 在用于在SF#38(=#27+11(RTT))中调度PUSCH的UL许可定时(D6)处的UL许可接收
[0276] 在运里,D5和D6可W为相同的SF定时
[0277] 9)SF#38中的PUSCH传输(第Ξ传输)
[027引 10)在用于SF#38中的PUSCH传输的PHICH定时(D7)处的PHICH接收
[0279] 在用于在SF#52(=#38+14(RTT))中调度PUSCH的UL许可定时(D8)处的UL许可接收
[0280] 在运里,D7和D8可W为相同的SF定时 [0%1 ]现将更详细地说明上面描述的示例。
[0282] 当用与化联合相对应的UD-cfg#6定义的化HARQ定时被应用于SC別寸,能够期望 用于SCC PUSCH的W下UL HARQ过程。
[0283] SF#2 :PUSCH= >SF#6 : PHICH+UG = >SF#13 : PUSCH = >SF#19 : PHICH+UG = >SF#24 : PUSCH(对see无效)=〉SF#30: PHICH+UG =〉SF#37 : PUSCH =〉SF#41: PHICH+UG =〉SF#48 : PUSCH=〉SF#55:PHICH+UG =〉SF#62:PUSCH
[0284] 然而,SF#24不能够被用于see PUSCH传输,因为SCC(UD-cfg#l)对应于SF#24中 的化。因此,当方法3-2被应用于SC別寸化HARQ定时能够被确定如下。
[0285] SF#2 : PUSCH = >SF#6 : PHICH+UG = >SF#13 : PUSCH= >SF#19 : PHICH = >SF#20 : UG = > SF#27:PUSCH=>SF#31:PHICH+UG = >SF#38:PUSCH=>SF#45:PHICH+UG = >SF#52:PUSCH
[0286] 图21至25图示了相对于根据MCC的UD-cfg和see的UD-cfg通过方法3-1所计算的 see U(其能够支持10-SF同步HARQ)的UG/PHICH定时。图21至25分别示出了MCC的UD-cfg对 应于#〇、#1、#2、#3^及#6的情况。在图中,为5。抽1所配置的数值4意味着用于在5。#(111+1〇中 通过see U发送的PUSCH的UG/PHICH定时被配置为SF#m中的MCC的D。
[0287] 仅描述图21和24,因为图21至25图示了相同的或类似的方案。参考图21,当MCC对 应于UD-cf g#0并且see对应于UD-cf g#6巧个U存在于SF#2、#3、#4、#7 W及#8中)时,仅对于与 SF#2、#4W及#7相对应的see U(n-UG《6)能够支持10-SF RTT同步RTT,并且替代方案0至3 能够适用于与SF#3和#8相对应的see U(n-UG〉6)(通过将SF#0、#1W及#6的MCC D配置为UG 或PHICH定时)。参考图24,当MCC对应于UD-cfg#3并且see对应于UD-cfg#l(4个U存在于#2、# 3、#7W及#8中)时,仅对于与SF#2、#3W及#7相对应的see U(n-UG《6)能够支持10-SF RTT 同步HARQ,并且替代方案0至3能够适用于与SF#8相对应的see U(n-UG〉6)(通过将SF#1、#8 W及#9的MCC D配置为UG或PHICH定时)
[0288] 当使用方法3-0、3-0-1、3-1或3-2(或其它方法)来配置UG或PHICH定时时,未被配 置成在MCC单独操作时发送UG或PHICH的MCC的特定D(例如MCC-D1)能够被配置为用于MCC/ see的特定U中的PUSCH传输的UG或PHICH定时。为了方便,与配置为UG/PHICH定时的MCC-D1 相对应的MCC/SCC的U被称作孤立U。在运里,能够参考表1、6和7来标识MCC-D1。在运种情况 下,能够仅取决于即时UG(而不用设及基于PHICH的HARQ过程)将孤立U(或包括该孤立U的CC 的所有U)用于一次性PUSCH调度/传输。在运里,尽管HARQ过程不伴有PHICH,但是一次性 PUSCH传输意指在非自适应重传的情况下执行仅基于化许可的(自适应)重传。例如,一次性 PUSCH传输能够被用来承载UL数据和/或UCI (例如ACK/NACK和/或CQI/PMI/RI等)(运不设及 基于PHICH的HARQ过程)。否则,能够考虑限制孤立U(或包括该孤立U的CC的所有U)的PUSCH 调度/传输并且将孤立U用于其它目的(例如PUCCH和/或SRS和/或PRACH传输)的方案。在运 种情况下,肥能够省略在对应于该孤立u的MCC的D中接收化许可DCI格式的程序(例如PDCCH 候选的捜索空间监视和盲解码)。
[0289] 实施例4:信号发送和接收定时W及化HARQ过程
[0290] 实施例3的化HARQ过程配置方案根据应用实施例1和2的假定来过程非适用MS- comb。在本实施例中,描述能够与CC组合(即UD-cfg)无关地应用的广义化HARQ过程配置方 案。能够考虑W下方法。
[0巧1] HARQ过程配置-方法4-1
[0巧2] 对于MCC U中的PUSCH传输的UG或PHICH
[0293] ?能够应用MCC的UG或PHICH定时。
[0巧4] 对于SCC U(即SF#n)中的PUSCH传输的UG或PHICH
[02M] ?UG定时(在下文中,SF#UG):运个能够被设定为最接近于SF#(n-p)或存在于SF# (n-p)之前的SF#n的MCC的D。在运里,P是大于1的整数,优选地,4。
[0296] ?PHICH定时(在下文中,SF#PH):运个能够被配置为与从UG定时起N*10个SF或N* 10ms之后的时间,即SF#(UG+N*10)相对应的MCC的D。在运里,N是等于或大于1的整数。例如, N可W是1。
[0297] ?在n-UG〉10-p(例如6)情况下:因为PH-n<p(例如4),对于与SF#n相对应的SCC U不 能够支持具有10个SF或10ms的HARQ RTT的同步HARQ。因此,能够对于SCC U考虑W下方案。 [029引替代方案1)具有20个SF或20ms的HARQ RTT的同步HARQ能够通过分别将UG定时和 PHICH定时配置为SF#UG和SF#(UG+20)来支持。
[0299] 替代方案2)仅UG定时被配置为SF#UG(也就是说,PHICH定时未被配置),并且能够 仅取决于即时UG(而不用伴有基于PHICH的HARQ过程)将SF#n用于一次性PUSCH调度/传输。 在运里,一次性PHICH传输用来在没有非自适应重传的情况下执行仅基于化许可的(自适 应)重传,该非自适应重传设及没有PHICH的HARQ过程。例如,一次性PUSCH传输能够被用来 承载UL数据和/或UCI (例如ACK/NACK和/或CQI/PMI/R等)(运不设及基于PHICH的HARQ过 程)。
[0300] 替代方案3)用于与SF#n相对应的SCC U的PUSCH调度/传输能够被限制,并且与SF# η相对应的SCC U能够被用于其它目的(例如PUCCH和/或SRS和/或PRACH传输)。
[0301] 能够为考虑UD-cfg#0和#6的HARQ RTT不是10个SF或10ms的上面描述的规则定义 W下例外。
[0302] 当MCC对应于UD-cfg#l至#6并且SCC对应于UD-cfg#0时,能够使用UG或PHICH定 时和为SCC所配置的化HARQ RTT。
[0303] 当MCC对应于UD-cfg#l至#5并且see对应于UD-cfg#6时,能够使用UG或PHICH定 时和为see所配置的化HARQ RTT。
[0304] 图26图示了相对于根据MCC的UD-cfg和see的UD-cfg通过方法4-1所计算的see U 的UG/PHICH定时。在图26中,为SF#m所配置的数值k意味着用于在SF#(m+k)中通过see U发 送的PUSCH的UG/PHICH定时被配置为SF#m中的MCC的D。图27图示了当采用图26的UG/PHICH 定时时能够支持10-SF同步HARQ的see U(由"炉表示)。
[0305] 参考图26和27,当MCC对应于UD-cfg#3并且see对应于UD-cfg#l(4个U存在于SF# 2、#3、#7W及#8中)时,仅对于与SF#2、#3W及#7相对应的SCCU能够支持10-SFRTT同步 HARQ,并且替代方案1至3能够适用于与SF#8相对应的see U(通过将与SF#1、#8W及#9相对 应的MCC D配置为UG或PHICH定时)。替代地,当MCC对应于UD-cf g#3并且see对应于UD-cf g#0 或#6时,为see所配置的UL HARQ RTT和UG或PHICH定时能够被应用于see U。替代地,当MCC 对应于UD-cf g#0并且see对应于UD-cf g#6 (5个U存在于SF#2、#3、#4、#7 W及#8中)时,仅对于 与SF#2、#4W及#7相对应的see U能够支持10-SF RTT同步HARQ,并且替代方案1至3能够适 用于与SF#3和#8相对应的see U(通过将与SF#0、#lW及#6相对应的MCC D配置为UG或PHICH 定时)。
[030y HARQ过程配置-方法4-2
[0307] 方法4-2基于UL HARQ RTT对于所有see来说是N*10个SF或N*10ms而与MCC无关的 假定。在运里,N是等于或大于1的整数。因此,假定甚至当see对应于UD-cfg#0和#6时see的 UL HARQ RTT也被改变为N*10个SF或N*10ms,而与MCC无关。在运种情况下,能够考虑W下方 案。
[030引 对于MCC U中的PUSCH传输的UG或PHICH
[0309] ?能够应用MCC的UG或PHICH定时。
[0310] 对于see U(即SF#n)中的PUSCH传输的UG或PHICH
[0311] KJG定时(在下文中,SF#UG):运个能够被配置为接近于SF#(n-p)或存在于SF#(n- P)之前的SF#n的MCC的D。在运里,P是大于1的整数,优选4。
[0312] ?PHICH定时(在下文中,SF#PH):运能够被配置为与从UG定时起N*10个SF或N*10ms 之后的时间,即SF#(UG+N*10)相对应的MCC的D。在运里,N是等于或大于1的整数,例如,N可 W是1。
[0313] ?在n-UG〉10-p(例如6)情况下:因为PH-n<p(例如4),对于与SF#n相对应的see U不 能够支持具有10个SF或10ms的HARQ RTT的同步HARQ。因此,能够对于see U考虑W下方案。 [0314] 替代方案1)具有20个SF或20ms的HARQ RTT的同步HARQ能够通过分别将UG定时和 PHICH定时配置为SF#UG和SF#(UG+20)来支持。
[0315] 替代方案2)仅UG定时被配置为SF#UG(也就是说,PHICH定时未被配置),并且能够 仅取决于即时UG(而不用伴有基于PHICH的HARQ过程)将SF#n用于一次性PUSCH调度/传输。 在运里,一次性PHICH传输用来在没有非自适应重传的情况下执行仅基于化许可的(自适 应)重传,该非自适应重传设及没有PHICH的HARQ过程。例如,一次性PUSCH传输能够被用来 承载化数据和/或化UCI (例如ACK/NACK和/或CQI/PMI/R等)(运不设及基于PHICH的HARQ过 程)。
[0316] 替代方案3)用于与SF#n相对应的see U的PUSCH调度/传输能够被限制,并且与SF# η相对应的see U能够被用于其它目的(例如PUCCH和/或SRS和/或PRACH传输)。
[0317] 图28图示了相对于根据MCC的UD-cfg和see的UD-cfg通过方法4-2计算的see U的 UG/PHICH定时。在图28中,为SF#m所配置的数值k意味着用于在SF#(m+k)中通过see U发送 的PUSCH的UG/PHICH定时被配置为SF#m中的MCC的D。图29图示了当采用图28的UG/PHICH定 时时能够支持10-SF同步HARQ的see U(由"炉表示)。 惦1引参考图28和29,当MCC对应于UD-cfg#l并且see对应于UD-cfg#6(5个U存在于SF# 2、#3、#4、#7 W及#8中)时,对于所有see U能够支持10-SF RTT同步HARQ (通过将与SF#0、# 1、#4、#5 W及#6相对应的MCC D配置为UG或PHICH定时)。替代地,当MCC对应于UD-cfg#6并且 see对应于 UD-cf g#0 (6 个U存在于 SF#2、#3、#4、#7、#8 w 及 #9 中)时,仅对于与 SF#2、#3、#4、#7 W及#9相对应的see U能够支持10-SF RTT同步HARQ,并且替代方案1至3能够适用于与SF#8 相对应的50:1](通过将与5。#0、#1、#5、#6^及#9相对应的10:0配置为1]6或?阳邸定时)。
[0319] 当使用上面提出的方法(或其它方法)来配置UG或PHICH定时时,未被配置成在MCC 单独操作时发送UG或PHICH的MCC的特定D(例如MCC-D1)能够被配置为用于MCC/SCC的特定U 中的PUSCH传输的UG或PHICH定时。为了方便,对应于配置为UG或PHICH定时的MCC-D1的MCC/ see的U被称作孤立U。在运里,能够参考表1、6和7来标识MCC-D1。在运种情况下,能够仅取决 于即时UG(而不用设及基于PHICH的HARQ过程)将孤立U(或包括该孤立U的CC的所有U)用于 一次性PUSCH调度/传输。在运里,尽管HARQ过程不伴有PHICH,但是一次性PUSCH传输意指在 没有非自适应重传的情况下执行仅基于化许可的PUSCH传输。例如,一次性PUSCH传输能够 被用来承载UL数据和/或UCI (例如ACK/NACK和/或CQI/PMI/RI等)(运不设及基于PHICH的 HARQ过程)。否则,能够考虑限制孤立U(或包括该孤立U的CC的所有U)的PUSCH调度/传输并 且将该孤立U应用其它目的(例如PUCCH和/或SRS和/或PRACH传输)的方案,在运种情况下, 肥能够省略用于在对应于孤立U的MCC的D中接收化许可DCI格式的程序(例如PDCCH候选的 捜索空间监视和盲解码)。
[0320] 图30图示可应用于本发明实施例的BS和UE。当无线通信系统包括中继时,在回程 链路上在BS和中继之间并且在接入链路上在中继和UE之间执行通信。如有必要,在附图中 示出的BS或肥可W由中继取代。
[0321] 参考图30,RF通信系统包括BS 110和肥120。88 110包括处理器112、存储器114和 RF单元116。处理器112可W被配置来实施由本发明提出的过程和/或方法。存储器114被连 接到处理器112,并且存储与处理器112的操作相关联的各种信息。RF单元116被连接到处理 器112并且发送和/或接收RF信号。肥120包括处理器122、存储器124、W及RF单元126。处理 器122可W被配置来实施由本发明提出的过程和/或方法。存储器124被连接到处理器122, 并且存储与处理器122的操作相关的各种信息。RF单元126被连接到处理器122并且发送和/ 或接收RF信号。BS 110和肥120可W具有单个天线或多个天线。
[0322] 在下文所描述的本发明的实施例是本发明的元件和特征的组合。除非另外提到, 否则该元件或特征可W被认为是选择性的。可W在没有与其它元件或特征组合的情况下实 践每个元件或特征。另外,可W通过组合元件和/或特征的一部分来构造本发明的实施例。 可W重新排列在本发明的实施例中所描述的操作次序。任何一个实施例的一些构造都可W 被包括在另一实施例中,并且可另一实施例的对应构造来替换。对本领域的技术人员 而言将明显的是,在所附权利要求中未彼此明确引用的权利要求可组合方式呈现作为 本发明的实施例,或者通过在本申请被提交之后的后续修改被包括作为新的权利要求。
[0323] 在本发明的实施例中,集中在BS和肥之间的数据发送和接收关系进行了描述。在 一些情况下,描述为由BS执行的特定操作可W由该BS的上层节点来执行。即,显而易见的 是,在由包括BS的多个网络节点组成的网络中,为了与MS通信而执行的各种操作可W由BS 或除了该BS之外的网络节点来执行。术语"eNB"可W用术语"固定站"、"节点B"、"基站 (BSr、"接入点'等来替换。术语"UE"可W用术语"移动站(MSr、"移动订户站(MSSr、"移动 终端"等来替换。
[0324] 可W通过例如硬件、固件、软件或其组合的各种装置来实现本发明的实施例。在硬 件配置中,可W通过一个或更多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号 处理器件(DSPD)、可编程逻辑器件(PLD)、现场可编程口阵列(FPGA)、处理器、控制器、微控 制器、微处理器等来实现根据本发明实施例的方法。
[0325] 在固件或软件配置中,可模块、程序、函数等的形式来实现本发明的实施例。 例如,软件代码可W被存储在存储器单元中并且由处理器来执行。存储器单元位于处理器 的内部或外部,并且可W经由各种已知的装置将数据发送到处理器和从处理器接收数据。
[0326] 本领域的技术人员将了解的是,在不脱离本发明的精神和本质特性的情况下,可 除了在此陈述的特定方式W外的其它特定方式来执行本发明。上述实施例因此在所有 方面都被解释成说明性的而不是限制性的。本发明的范围应该由所附权利要求和它们的合 法等价物来确定,而不是由上述描述来确定,并且旨在将落入所附权利要求的意义和等价 范围内的所有改变均包括在其中。
[0327] 工业实用性
[〇32引本发明可应用于诸如肥、中继、BS等的无线通信设备。
【主权项】
1. 一种用于通过无线装置发送上行链路信号的方法,所述无线装置被配置有具有第一 时分双工上行链路-下行链路(TDD UL-DL)配置的主小区和具有不同于所述第一TDD UL-DL 配置的第二TDD UL-DL配置的辅助小区,所述方法包括: 通过所述无线装置在所述辅助小区上在子帧#n-k'(k'eK')内接收一个或者多个数 据;和 根据不同于所述第二TDD UL-DL配置的参考TDD UL-DL配置通过所述无线装置在子帧# η中发送关于所述一个或者多个数据的肯定应答信息, 其中Κ'是由如在下面的表1中所定义的所述参考TDD UL-DL配置的Κ: {k〇,lu,…,kM-!}个 元素的子集组成,使得子帧#n-k '是所述辅助小区中的下行链路子帧或者特定子帧, 其中,根据表2定义TDD UL-DL配置:其中D表示DL子帧,S表示特定子帧,并且U表示UL子帧。2. 根据权利要求1所述的方法, 其中,在下面的表3中示出在所述第一TDD UL-DL配置、所述第二TDD UL-DL配置和所述 参考TDD UL-DL配置之间的关系: 表33. 根据权利要求1所述的方法, 其中,当(第一TDD UL-DL配置,第二TDD UL-DL配置)对应于(#1,#3)或者(#3,#1)时,所 述参考TDD UL-DL配置是TDD UL-DL配置#4, 其中,当(第一了00皿-01^配置,第二了00皿-01^配置)对应于(#2,#3)、(#3,#2)、(#2,#4) 或者(#4,#2)时,所述参考100皿-01^配置是100皿-01^配置#5。4. 根据权利要求1所述的方法,其中,经由物理上行链路控制信道(PUCCH)在所述主小 区上发送所述肯定应答信息。5. 根据权利要求1所述的方法,其中,经由物理上行链路共享信道(PUSCH)在所述主小 区或者所述辅助小区上发送所述肯定应答信息。6. -种无线装置,所述无线装置能够被配置有具有第一时分双工上行链路-下行链路 (TDD UL-DL)配置的主小区和具有不同于所述第一TDD UL-DL配置的第二TDD UL-DL配置的 辅助小区,所述无线装置包括: 接收机; 发送机;以及 处理器,所述处理器可操作地连接到所述接收机和所述发送机,所述处理器被配置成: 在所述辅助小区上在子帧#n-k '(k ' e K ')内接收一个或者多个数据;并且 根据不同于所述第二TDD UL-DL配置的参考TDD UL-DL配置在子帧#n中发送关于所述 一个或者多个数据的肯定应答信息, 其中K'是由如在下面的表1中所定义的所述参考TDD UL-DL配置的K: {k〇,lu,…,kM-!}个 元素的子集组成,使得子帧#n-k '是所述辅助小区中的下行链路子帧或者特定子帧, 其中,根据表2定义TDD UL-DL配置: 表1:表2其中D表示DL子帧,S表示特定子帧。并且U表示UL子帧。7. 根据权利要求6所述的无线装置, 其中在下面的表3中示出在所述第一TDD UL-DL配置、所述第二TDD UL-DL配置和所述 参考TDD UL-DL配置之间的关系: 表38. 根据权利要求6所述的无线装置, 其中,当(第一TDD UL-DL配置,第二TDD UL-DL配置)对应于(#1,#3)或者(#3,#1)时,所 述参考TDD UL-DL配置是TDD UL-DL配置#4, 其中,当(第一了00皿-01^配置,第二了00皿-01^配置)对应于(#2,#3)、(#3,#2)、(#2,#4) 或者(#4,#2)时,所述参考100皿-01^配置是100皿-01^配置#5。9. 根据权利要求6所述的无线装置,其中,经由物理上行链路控制信道(PUCCH)在所述 主小区上发送所述肯定应答信息。10. 根据权利要求6所述的无线装置,其中,经由物理上行链路共享信道(PUSCH)在所述 主小区或者所述辅助小区上发送所述肯定应答信息。11. 一种用于通过无线装置接收上行链路信号的方法,所述无线装置被配置有具有第 一时分双工上行链路-下行链路(TDD UL-DL)配置的主小区和具有不同于所述第一TDD UL-DL配置的第二TDD UL-DL配置的辅助小区,所述方法包括: 通过所述无线装置在所述辅助小区上在子帧#n-k'(k'eK')内发送一个或者多个数 据;和 根据不同于所述第二TDD UL-DL配置的参考TDD UL-DL配置通过所述无线装置在子帧# η中接收关于所述一个或者多个数据的肯定应答信息, 其中Κ'是由如在下面的表1中所定义的所述参考TDD UL-DL配置的Κ: {k〇,lu,…,kM-!}个 元素的子集组成,使得子帧#n-k '是所述辅助小区中的下行链路子帧或者特定子帧, 其中,根据表2定义TDD UL-DL配置:其中D表示DL子帧,S表示特定子帧,并且U表示UL子帧。12. 根据权利要求11所述的方法, 其中在下面的表3中示出在所述第一TDD UL-DL配置、所述第二TDD UL-DL配置和所述 参考TDD UL-DL配置之间的关系: 表313. 根据权利要求11所述的方法, 其中,当(第一TDD UL-DL配置,第二TDD UL-DL配置)对应于(#1,#3)或者(#3,#1)时,所 述参考TDD UL-DL配置是TDD UL-DL配置#4, 其中,当(第一了00皿-01^配置,第二了00皿-01^配置)对应于(#2,#3)、(#3,#2)、(#2,#4) 或者(#4,#2)时,所述参考100皿-01^配置是100皿-01^配置#5。14. 根据权利要求11所述的方法,其中,经由物理上行链路控制信道(PUCCH)在所述主 小区上接收所述肯定应答信息。15. 根据权利要求11所述的方法,其中,经由物理上行链路共享信道(PUSCH)在所述主 小区或者所述辅助小区上接收所述肯定应答信息。16. -种无线装置,所述无线装置能够被配置有具有第一时分双工上行链路-下行链路 (TDD UL-DL)配置的主小区和具有不同于所述第一TDD UL-DL配置的第二TDD UL-DL配置的 辅助小区,所述无线装置包括: 接收机; 发送机;以及 处理器,所述处理器可操作地连接到所述接收机和所述发送机,所述处理器被配置成: 在所述辅助小区上在子帧#n_k '(k ' e K ')内发送一个或者多个数据;并且 根据不同于所述第二TDD UL-DL配置的参考TDD UL-DL配置,在子帧#n中接收关于所述 一个或者多个数据的肯定应答信息, 其中K'是由如在下面的表1中所定义的所述参考TDD UL-DL配置的K: {k〇,lu,…,kM-!}个 元素的子集组成,使得子帧#n-k '是所述辅助小区中的下行链路子帧或者特定子帧, 其中根据表2定义TDD UL-DL配置:其中D表示DL子帧,S表示特定子帧,并且U表示UL子帧。17. 根据权利要求16所述的无线装置, 其中,在下面的表3中示出在所述第一TDD UL-DL配置、所述第二TDD UL-DL配置和所述 参考TDD UL-DL配置之间的关系: 表3Q18. 根据权利要求16所述的无线装置, 其中,当(第一TDD UL-DL配置,第二TDD UL-DL配置)对应于(#1,#3)或者(#3,#1)时,所 述参考TDD UL-DL配置是TDD UL-DL配置#4, 其中,当(第一了00皿-01^配置,第二了00皿-01^配置)对应于(#2,#3)、(#3,#2)、(#2,#4) 或者(#4,#2)时,所述参考100皿-01^配置是100皿-01^配置#5。19. 根据权利要求16所述的无线装置,其中,经由物理上行链路控制信道(PUCCH)在所 述主小区上接收所述肯定应答信息。20. 根据权利要求16所述的无线装置,其中,经由物理上行链路共享信道(PUSCH)在所 述主小区或者所述辅助小区上接收所述肯定应答信息。
【文档编号】H04L5/14GK106059656SQ201610523438
【公开日】2016年10月26日
【申请日】2012年3月26日
【发明人】梁锡喆, 金民奎, 安俊基, 徐东延
【申请人】Lg电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1