电源组件和使用该组件的电动输送机的制作方法

文档序号:8022892阅读:259来源:国知局
专利名称:电源组件和使用该组件的电动输送机的制作方法
技术领域
本发明涉及一种电源组件和使用该组件的电动输送机,特别是涉及一种向作为输送机的驱动源使用的电动机(电机)供给电力的电源组件和使用该电源组件的电动输送机。
背景技术
近年来,从环境问题和能源问题的观点出发,注目于将电动机作为驱动源的输送机。另外,与内燃机相比,电动机外形的设计自由度大,电动机可接近于需要驱动源的场所配置,并且电动机还具有驱动时产生的动作音也小的优点。因此,也可实现具有使用以往的内燃机的输送机中不具备的特征的新输送机,从如此观点考虑,进而开发出使用电动机的输送机。
具有电动机的输送机具有向电动机供给电力并控制转速的电源组件(称作电力用半导体装置)。图1为包含有专利文献1所示的以往的电源组件的电路图。正如图1所示,从蓄电池12供给的电力通过虚线所示的电源组件10转换为合适的驱动电力后向电动机14供给。如图1所示,电源组件10包含有速度控制电路20、滤波电容器22、多个FET(场效应晶体管)16和多个二极管18。
图2(a)和(b)为速度控制电路20以外的构成要素形成于印刷电路板上的电源组件10的俯视图和侧视图。正如图示,电源组件10包含有导电性区域40a、40b、40c和40d形成于一表面上的印刷电路板40。导电性区域40c由多个副区域构成,副区域间连接有电阻。
在如此电源组件中使用的FET或二极管中流过的电流较大,从而会成为高温。为了避免由此产生的故障,要求具有较高的散热性。因此,电力用FET和二极管为了可获得良好的散热特性,采用直接接合于电路基板的导电性图形表面上的构造。
具体为,FET16软钎焊(锡焊)到导电性图形40b上,以使漏电极与导电性图形40b接触。FET16的栅电极与导电性图形40c通过铝构成的布线(ヮイヤ)42b而相互连接。FET16的源极电极与导电性图形40d通过2根布线42a而相互连接。FET16的源电极与导电性图形40c通过布线42c而相互连接。另外,二极管18软钎焊到导电性图形40a上,以使阴极电极与导电性图形40a接触。二极管18的阳极电极与导电性图形40b通过铝构成的布线41a而相互连接。
专利文献1日本特开2002-262593号公报在图2所示的电源组件中,向软钎焊着FET16的导电性图形40b流过较大电流。因此,需要加宽导电性图形40b的宽度、降低电阻。然而由此需要将连接FET16的布线42a加长,因此存在着布线的电阻所致的发热问题。例如,直径为0.5mm、长度为15mm的布线并列设置成3根时的2点间的布线的电阻为0.7mΩ,在该2点间流过100A的电流时,布线中产生7.0W的热量,布线例如为大于等于200℃的温度。产生的热量传递给FET16,则就使FET16的温度上升。因此,可流过电源组件的最大电流值限制为布线42a和FET16不会因发热劣化程度的数值。
为了降低布线42a的发热,理论上考虑了几个对策。例如,考虑到通过增加将FET16和各导电性区域连接的布线的数目,使电阻下降并降低发热量。可是,可与FET16连接的布线数目因FET的各电极尺寸而受到限制,不能连接较多布线。另外,因布线的连接使用超声波,在增加布线根数或使布线变粗时,接合面积会扩宽。结果,因超声波会给FET造成损害,并且会使可靠性降低。
也考虑到使印刷电路板的导电层为2层,以提高印刷电路板上的导电性区域和FET或二极管配置的自由度。如此的话,可使应当与FET的各电极连接的导电性图形接近FET,能够使连接电极与导电性图形的布线长度缩短。可此时为了使2个导电层绝缘,必须在印刷电路板上进一步设置绝缘层。通常因绝缘层的热传导率较小,通过设置绝缘层而使得印刷电路板的散热性降低,FET或布线中产生的热量通过印刷电路板向外部发散的效率降低。
另外,也考虑到在由一层导电层构成的印刷电路板中,通过使导电层增厚,以使布线应当跨过的导电性图形的宽度变窄。可是在这种情况下,导电层会变厚,会难以通过蚀刻加工等进行图形化。

发明内容
本发明解决了上述以往的电源组件的问题,其目的在于提供一种产热少、可靠性优或者可通过更大电流的电源组件。
本发明的电源组件,具有含有设置于绝缘性表面上的导电性图形的基板,配置于所述基板上的半导体元件,通过绝缘层而设置于所述导电性图形的一部分上的板状导电体,和将所述板状导电体与所述半导体元件电连接的布线。
在优选实施例中,所述导电性图形含有第1、第2和第3导电性区域,所述板状导电体的一部分通过所述绝缘层配置于所述第2导电性区域上方,所述板状导电体的另一部分与所述第3导电性区域电连接。
在优选实施例中,所述第1、第2和第3导电性区域被配置成所述第2导电性区域被所述第1和第3导电性区域夹着。在第1和第3导电性区域之间也可存在第2导电性区域以外的导电性区域。
在优选实施例中,所述半导体元件含有第1和第2主面、设置于所述第1主面上的第1焊盘、和设置于所述第2主面上的第2焊盘,所述半导体元件被配置于所述第1导电性区域上,所述半导体元件的第1焊盘与所述第1导电性区域相对置地电连接,所述布线与所述第2焊盘电连接。
在优选实施例中,所述板状导电体的另一部分与所述第3导电性区域、以及所述半导体元件的第1焊盘与所述第1导电性区域分别被软钎焊。
在优选实施例中,所述板状导电体主要由铜构成,并且至少在进行所述软钎焊的区域实施改善焊料(焊锡,软钎料)浸湿性的表面处理。
在优选实施例中,所述布线主要由铝构成。
在优选实施例中,所述布线与所述第2焊盘和所述板状导电体分别通过超声波而接合。
在优选实施例中,所述布线为具有两端和中间部分的挠性细线,所述两端与所述板状导电体接合,而所述中间部分与所述第2焊盘接合。
在优选实施例中,电源组件具有多根连接所述板状导电体和所述第2焊盘的布线。
在优选实施例中,所述半导体元件为场效应晶体管。
在优选实施例中,电源组件分别含有多个所述半导体元件和所述板状导电体。
在优选实施例中,所述基板含有金属基板和设置于所述金属基板的表面上的绝缘层。
本发明的电动输送机具有按照上述任一所述的电源组件和与所述电源组件电连接的电动机。
本发明的电动车辆具有按照上述任一所述的电源组件,与所述电源组件电连接的电动机,向所述电源组件供给电力的蓄电池,和由所述电动机驱动的车轮。
本发明的电源组件的制造方法包含有准备在表面上设置有导电性图形的基板的步骤;通过软钎焊将半导体元件固定于所述基板上并将板状导电体通过绝缘层固定到所述导电性图形上的步骤;和通过导电性布线将所述板状导电体与所述半导体元件连接的步骤。
本发明的通过导电性布线而将2个导电性区域连接的连接方法,包含有通过超声波将具有挠性并具有第1和第2端部以及由所述第1和第2端部夹着的中间部的导电性布线的所述第1端部与第1导电性区域接合的步骤;通过超声波将所述导电性布线的中间部与第2导电性区域接合的步骤;和通过超声波将所述导电性布线的第2端部与所述第1导电性区域接合的步骤。
发明的效果根据本发明的电源组件,能够对通过在基板的导电性图形与半导体元件(例如晶体管)之间流过电流而产生的热量加以抑制。因此,可抑制半导体元件的温度上升、提高可靠性的同时,能够使可流过电源组件的电流加大。


图1为示出包含有以往的电源组件的电动机控制器的电路图;图2(a)和(b)为图1所示的以往的电源组件的俯视图和侧视图;图3为示出含有本发明的电源组件的驱动系统的示意性电路图;图4为本发明的电源组件的俯视图;图5为图4的电源组件的一部分的放大的剖视图;图6(a)和(b)为图4的电源组件中使用的晶体管的俯视图和侧视图;图7为示出将晶体管与导电性图形如以往那样只用布线连接的构造的剖视图;图8(a)和(b)为示出本发明的接合线(焊接布线)构造的俯视图和侧视图;图9(a)和(b)为示出以往的接合线构造的俯视图和侧视图;图10为形成本发明的接合线的构造的顺序说明图;图11为形成本发明的接合线的构造的顺序的另一说明图;图12为形成本发明的接合线的构造的顺序的又一说明图;图13为示出本发明的电动车辆辆的实施例的视图。
符号说明101电源组件 102电动机 110半导体元件 120配线基板124导电性图形 124a第1导电性区域 124b第2导电性区域124c第3导电性区域 124d第4导电性区域 124e第5导电性区域130板状导电体 131绝缘层 135焊料140a、140b、140c、141、241、310布线 300接线机301切割器 302工具 303布线(焊丝)导向装置430电动车辆 431行驶驱动用电动机 432后轮 434前轮440行驶驱动用蓄电池装置 443行驶控制用控制器
具体实施例方式
下面,参照

本发明的实施例。图3为示意地示出本发明的电源组件中使用的输送机的驱动系统的电路图。本发明的电源组件可用于作为驱动源使用电动机的各种输送机中。
正如图3所示,该输送机具有电源组件101、电动机102、蓄电池(组)103,滤波(平滑)电容器104和栅极驱动电路105。电动机102在本实施例中为无刷DC电动机,通过向电动机102的3个端子施加相位间隔120度的3相交流电流,以使电动机102转动。
蓄电池103与使电压变动平滑化的滤波电容器104并列连接,为了向电源组件101供给电力,和电源组件101的端子a与端子b连接。电源组件101接受来自蓄电池103的直流电压的电力,产生使电动机102旋转的合适的驱动电力。由于前述的电动机102通过3相交流电流驱动,电源组件101从直流电流产生3相交流电流。为此,在电源组件101的端子a与端子b之间,形成分别由串联连接的2个场效应晶体管110a、110b构成的3个电流路径。即,电源组件101含有作为电力用半导体元件(进行用于控制电流的供给的开关动作的半导体元件)的6个场效应晶体管110。
在本实施例中,是将MOS型的场效应晶体管(以下简单地称作晶体管)作为电力用半导体元件(开关元件)使用的,但也可将双极晶体管或其他晶体管作为电力用半导体元件使用。另外,可使用晶体管以外的二极管或晶闸管等可施加较大电流的其他电力用半导体元件。
各晶体管110的门电极上施加由门驱动电路105生成的控制信号,并且,根据控制信号,各晶体管110进行开关动作。例如,在脉冲宽度调制(PWM)所致的频率下高速地进行开关,由此,生成3相交流电流,并通过端子c、d、e施加到电动机102上。
图4为使用电路基板构成的电源组件101的俯视图,图5为示出其一部分的放大的剖视图。电源组件101具有配线基板(布线基板)120、前述的晶体管110、板状导电体130和布线140a、140b、140c。板状导电体130的断面积大于布线140a,并且电阻较低。
配线基板120包含具有绝缘性表面的基板123和设置在绝缘性表面上的导电性图形124。在电源组件101中,通过向晶体管110或配线(布线)流过较大电流,而产生较大的热量。此时的较大电流例如大于等于50A。因此,最好是基板123的热传导性优良,以使产生的热量通过基板123可向电源组件101的外部发散。例如,基板123可以通过主要由铝构成的基础基板121和由设置于其表面的环氧树脂、聚酰亚胺薄膜等构成的绝缘层122构成。此时,因绝缘层122通常热传导性低,优选地将绝缘层122减薄到可确保电绝缘性的程度,使基础基板121成为可确保配线基板120的强度的足够厚度。从热传导性和作为构造材料的强度的观点考虑,最好将金属基板作为基础基板121使用。另外,也可使用绝缘性和热传导性优良的材料来形成薄板,并作为基板123使用。
在基板123的绝缘性表面上形成有导电性图形124。导电性图形124含有第1导电性区域124a、第2导电性区域124b、第3导电性区域124c、第4导电性区域124d、第5导电性区域124e和第6导电性区域124f。第1导电性区域124a、第2导电性区域124b、第3导电性区域124c、第4导电性区域124d和第5导电性区域124e的一端分别构成端子a、b、c、d和e。
第1导电性区域124a和第2导电性区域124b上分别施加来自蓄电池103的正和负电压。而第3导电性区域124c、第4导电性区域124d和第5导电性区域124e上流过用以驱动电动机102的驱动电流。这些导电性区域因流过较大电流,因此具有充分的宽度(3mm~30mm),其厚度例如为0.05mm~0.7mm。第6导电性区域124f含有与各晶体管110的源极和栅极(门极)连接的多个细线状区域124f1。这些细线状区域124f1与连接门驱动电路105用的连接器125电连接。另外,在各晶体管110的栅极和栅极与源极之间,片式电阻126软钎焊于细线状区域124f1间。
此外,图4所示的导电性图形124为一例,也可将图形化为图4以外的形状的导电性图形124形成于基板123上。
图6(a)和(b)为示意地示出晶体管110的俯视图和侧视图。晶体管110含有第1和第2主面、设置于第1主面上的第1焊盘111c、设置于第2主面上的第2焊盘111b和第3焊盘111a。这些焊盘与晶体管的栅极、源极和漏极电连接。例如,第1焊盘111c为与漏极连接的漏极焊盘(漏电极),第2焊盘111b和第3焊盘111a为分别与源极和栅极连接的源极焊盘(源电极)和栅极焊盘(栅电极)。
正如图4和图5所示,6个晶体管110中的3个晶体管110a,以第1焊盘111c与第1导电性区域124a电连接的方式、使第1焊盘111c与第1导电性区域124a相对置地设置于第1导电性区域124a上。第1焊盘111c与第1导电性区域124a通过焊料135而软钎焊。
另外,其他的3个晶体管110b,以通过焊料135使各自的第1焊盘111c与第3、第4和第5导电性区域124c、124d、124e电连接的方式、使第1焊盘111c与这些导电性区域相对置地配置于第3、第4和第5导电性区域124c、124d、124e上。
在图4所示的导电性图形124中,在配置有晶体管110a的第1导电性区域124a与配置有晶体管110b的第3、第4和第5导电性区域124c、124d、124e之间,配置有第2导电性区域124b。因此,为了使构成各电流路径的2个晶体管110a和110b相互电连接,必须进行跨越第2导电性区域124b的连接。
3个板状导电体130设置成其一部分位于第2导电性区域124b上,另一部分分别位于第3、第4和第5导电性区域124c、124d、124e上。板状导电体130与第2导电性区域124b通过绝缘层131相对设置成不电接触。另外,板状导电体130与第3、第4和第5导电性区域124c、124d、124e通过焊料135软钎焊而电连接。
在本实施例中,图4所示的板状导电体130设置成(其一部分)位于第2导电性区域124b上,另一部分分别位于第3、第4和第5导电性区域124c、124d、124e上。可是,也可以根据导电性图形的形状,使板状导电体130的一部分通过绝缘层而设置于2个或以上的导电性区域上,而另一端与其他的导电性区域电连接。例如,在图4所示的导电性图形124中,可在第1导电性区域124a与第2导电性区域124b之间设置第7导电性区域,3个板状导电体130分别跨越第2导电性区域124b并延伸到第7导电性区域。另外,在图4所示的导电性图形124中,也可在第2导电性区域124b与第3、第4和第5导电性区域124c、124d、124e之间设置第7导电性区域,3个板状导电体130跨越第7导电性区域并分别延伸到第2导电性区域124b处。此时,在第7导电性区域与3个板状导电体130之间也设有绝缘层31。
板状导电体130的电阻最好为较小,例如由主要含有铜、铝等(典型地为大于等于95%)的良导体形成板状导电体130。与第3、第4和第5导电性区域124c、124d、124e通过焊料连接的区域最好是焊料浸湿性良好,例如最好实施镀焊料、镀锡或镀镍和金薄镀(金フラツシュ)等改善焊料浸湿性的表面处理。另外,如以下所说明的,板状导电体130的布线连接区域为了保证可靠地连接布线,通过镀镍和金薄镀等实施表面处理。板状导电体130的形状或厚度可设计成板状导电体130的电阻值或发热量成为所希望的值。从容易实现十分小的电阻值的观点考虑,板状导电体130的厚度最好大于等于0.5mm,更好地是大于等于1.0mm。
绝缘层131由环氧树脂、聚酰亚胺薄膜等绝缘性材料构成。通过与第3、第4和第5导电性区域124c、124d、124e的软钎焊等,如果能够可靠地确保板状导电体130与第2导电性区域124b的间隙,则绝缘层131也可以是空气。
板状导电体130作为通过使其一端与晶体管110a由布线140a连接而将晶体管110a与配线基板120上的导电性图形124c、d、e电连接的导电性配线使用。最好使板状导电体130的一端尽可能地接近晶体管110a,从而能够使电阻较大的布线140a的长度缩短。
布线140a、140b、140c用于使晶体管110a的第2焊盘111b和第3焊盘111a与导电性图形124和板状导电体130电连接。具体而言,布线140a通过其两端分别与板状导电体130的一端和第2焊盘111b连接,而将板状导电体130与第2焊盘111b电连接。在本实施例中,布线140a使用3根。布线140b将第2焊盘111b与第6导电性区域124f电连接。另外,布线140c将第3焊盘111a与第6导电性区域124f电连接。
晶体管110a的第2焊盘111b为源极焊盘,流过较大的电流。因此,第2焊盘111b与板状导电体130使用尽可能多的布线连接,最好第2焊盘111b与板状导电体130之间以低电阻连接。
对于布线140a、140b、140c例如可使用直径为0.5mm的铝线。另外,布线140a、140b、140c与导电性图形124或晶体管110的连接使用接线机进行的超声波接合。也可采取使用由其他材料构成的导电线的熔融或压焊等其他的连接方法。不用说,布线140a、140b、140c也最好要求电阻低,作为材料较适宜使用主要含有铝(典型地为大于等于95%)的良导体。使用超声波接合时,为了使得对半导体元件的损害小,布线的直径最好小于等于1.0mm,更好地是小于等于0.7mm。
前述的端子a和端子b分别与蓄电池103的正端子和负端子连接。另外,端子c、d、e与电动机102连接。6个晶体管110的各栅极通过第6导电性区域124f和连接器125而与栅极驱动电路105连接。
在电源组件101中,从门驱动电路105向晶体管110的栅极施加控制信号时,在规定的定时各个晶体管110成为ON(导通)状态和OFF(截止)状态。由此,由蓄电池103供给的直流电流转换为3相交流电流,被感应到端子c、d、e上。电动机102通过3相交流电流进行旋转驱动。电动机102驱动未图示的驱动车轮等,给予输送机构推进力。
下面,参照图4和图5说明电源组件101的制造方法的一例。首先,制作形成有导电性图形124的配线基板120。准备具有绝缘性表面的基板123的绝缘性表面122全体由导电性膜覆盖的基板,通过蚀刻加工等,在基板123的绝缘性表面122上形成导电性图形124。
接着,通过印刷法等将膏状焊料配置于规定的位置上,在其上配置晶体管110、片式电阻126、连接器125和里面(背面)具有绝缘层131的板状导电体130。绝缘层131由通过加热而熔融硬化的环氧树脂构成,并预先印刷或粘贴到板状导电体130的里面。或者,在配置板状导电体130前,可将绝缘层131配置于第2导电性区域124b的板状导电体130所在的区域。
之后,将配置有这些部件的配线基板120导入回流炉,通过以规定的温度加热,使焊料熔融。此时,绝缘层131也同时熔融。通过从反流炉取出配线基板120并冷却,晶体管110、片式电阻126、连接器125和绝缘层131软钎焊到导电性图形124的规定区域。另外,环氧树脂也硬化,板状导电体130被固定在规定的位置上。
最后,使用接线机,用由铝构成的布线将晶体管110的各焊盘与导电性图形124的规定区域和板状导电体130连接,以形成布线140a、140b、140c。由此,完成电源组件101。
根据本发明的电源组件101,配线基板的导电性图形与晶体管等的电力用半导体元件通过板状导电体和布线构成的配线连接。因板状导电体的电阻比布线的小,在配线基板的导电性图形与晶体管之间的一部分通过用板状导电体代替布线,能够使配线基板的导电性图形与电力用半导体元件之间的配线的电阻降低。因此,能够将电流流过配线基板的导电性图形与晶体管之间所产生的热量得到抑制。另外,板状导电体中发生的热量或从布线向板状导电体传递的热量可通过绝缘层向配线基板发散。因此,也能够使板状导电体和布线中的蓄热得到抑制。
另外,通过将连接于配线基板的导电性图形与晶体管之间的配线所发生的热量降低,能够降低向电力用半导体元件传递的热量。结果,能够抑制电力用半导体元件的温度的上升。在配线中流过同样大小的电流时,与只由布线形成配线相比,能够降低动作中的电力用半导体元件的温度。因此,可抑制电力用半导体元件的劣化,能够提高可靠性。另外,在容许电力用半导体元件上升到相同温度时,与只由布线进行配线时相比,可流过更大的电流。
另外,通过使由布线进行配线的部分变短,能够降低配线基板的导电性图形与电力用半导体元件之间的电感。由此,能够使高速下开关电力用半导体元件之际产生的冲击电压降低。
此外,因可使用导电层为1层的配线基板,能够低成本地制造配线基板。因成为导电层的导电性图形以外不流过电流,即使在为了提高散热性而在配线基板上使用金属板时,在金属板与盒体(ケ-ス)间也不必通过绝缘膜等绝缘。因此,能够有效地利用从配线基板向盒体等的外部的散热,能够在防止半导体元件等的温度上升的同时,提高半导体元件的可靠性。
参照以下的表1和图7说明在电源组件101中使用板状导电体产生的电阻和电感的降低的效果。图7为示出不使用板状导电体130、只用以往的布线140a连接晶体管110a和第3导电性区域124c的构造的剖视图。
表1 正如图7所示,在以往(现有技术)的方法中,晶体管110a和导电性图形124(第3导电性区域124c)跨越第2导电性区域124b而只由布线140a连接。因此,产生需要加长布线140a、并且因布线140a的电阻导致发热的问题。对此,在本发明中,正如图5所示,在晶体管110a与导电性图形124(第3导电性区域124c)之间的一部分中,使用板状导电体130代替布线140a。因此,能够降低晶体管110a与导电性图形124之间的配线电阻。
正如表1所示,在只由布线进行以往的配线时,使用3根直径为0.5mm和长度为15mm的铝构成的布线。由此产生的电阻为0.7mΩ。在本发明中,尽管配线的全长不改变,但通过使用长度为6mm的布线和长度为9mm的板状导电体,电阻成为0.32mΩ。因此,与只由布线进行配线时相比,电阻小于等于1/2。如在这些配线中流过100A的电流,则热损失在以往的配线中为7.0W,而根据本发明则为3.2W。
另外,配线的电感在以往的配线中为10nH,而根据本发明为6.0nH,降低了40%。
在上述实施例中,与板状导电体连接的布线采用与以往的布线同样的连接构造。可是,以下说明的布线的构造可与上述实施例组合而成。图8(a)和(b)示出了作为一例的、将板状导电体130的一端与晶体管110的第2焊盘111b连接的新的布线构造的俯视图和剖视图。正如这些图所示,布线141以其两端141a和141b与板状导电体130接合、中间部分141c与第2焊盘111b接合的方式,连接于板状导电体130与第2焊盘111b之间。即,由于布线141为具有挠性的细线,在中间部分141c形成弯折的2根成为一束的形状,并且将中间部141c与晶体管110的第2焊盘111b接合。
通过成为如此形状,在晶体管110的第2焊盘111b中,仅形成一处接合部分,就可通过布线的2条路径连接于板状导电体130与第2焊盘111b之间。在图8(a)和(b)中示出,通过在第2焊盘111b上设有4处接合部分,就可设置8条路径。
采用如此构造,在晶体管等的半导体元件上的焊盘中,可接合比该焊盘中的接合部位的数目多的布线。因此,在接合时,能够降低例如通过使用超声波所给予半导体元件的损害或因使用熔融所给予半导体元件的热损害。通过降低接合部位的数目,也可缩短布线焊接所需的时间,和降低制造成本。
另外,因半导体元件上的焊盘的面积受到元件的外形的限制,所以即使为了降低配线的电阻而接合多根布线时,该布线的数目也受焊盘大小的限制。图9(a)和(b)为示出用于比较的、通过以往的接合方法形成于板状导电体130和与图8(a)和(b)所示的第2焊盘111b同样大小的焊盘211b之间的布线的构造。在布线241的两端241a和241b分别接合于板状导电体130和焊盘211b之间时,在焊盘211b上限于形成6个接合部位。因此,只可形成6根布线241。与此相对,在图8(a)和(b)所示的构造的场合,通过在第2焊盘111b上形成1个接合部位,可通过布线的2条路径连接。即,以往,尽管可连接的布线数目受到半导体元件上的焊盘面积的限制,但通过采用本发明的构造,能够超过以往限制来连接布线,可降低配线的电阻。
通过使用超声波的布线焊接(丝焊)进行图8(a)和(b)所示的连接时,例如可采取如下的顺序。
首先,如图10所示,在板状导电体130上配置接线机的工具302,将从布线(焊丝)导向装置303输送的布线310的一端通过由工具302施加的超声波而与板状导电体130接合。
接着,如图11所示,使工具302移动到第2焊盘111b上。通过同样的顺序,由布线导向装置303输送布线310,并通过由工具302施加的超声波将布线310接合于第2焊盘111b上。接合后,提升工具302,将布线310稍向上拉出。
之后,使工具302旋转180度,移动工具302到板状导电体130上。也可不改变工具302的方向而使配线基板旋转。通过采取如此顺序,能够在接合部分上不产生应力地改变布线的方向。
接着,如图12所示,将接线机的工具302移动到板状导电体130上后,由布线导向装置303输送的布线310通过由工具302施加的超声波与板状导电体130接合。之后,使用切割器301切断布线310。由此,结束图8(a)和(b)所示的布线的连接。
下面说明本发明的输送机构的实施例。
图13示出本实施例的电动车辆430。该电动车辆430为较适用在高尔夫球场等中输送高尔夫球杆袋等物品或人员的运送车。在图13中,作为一例示出了4轮电动车辆,但可以是两轮机动车等的2轮车辆。另外,可以是电动车辆以外的、将电动机作为驱动源或推进源来使要移动的物品或人员移动的其他输送机构。
本实施例的电动车辆430具有行驶驱动用电动机431,由其驱动的2个后轮432和靠手动或自动转向的前轮434。行驶驱动用电动机431的驱动力通过未图示的传动装置传递给后轮432。前轮434靠方向盘435的手动操作或自动操作而转向。
在前后设置有前侧座位436和后侧座位437。在前侧座位436的下方设有充电用控制器438和制动电动机439。在后侧座位437的下方设有成为行驶驱动用电动机431的电源的行驶驱动用蓄电池装置440。行驶驱动用蓄电池装置440具有串联连接的6个(只图示出单侧的3个)的蓄电池441。这些蓄电池441在设有间隙的状态下承载于支承座442上。
在行驶驱动用电动机431的上侧设有行驶控制用控制器443。行驶控制用控制器443与行驶驱动用蓄电池装置440、行驶驱动用电动机431、制动电动机439和转向电动机444连接,并控制这些构件。行驶控制用控制器443和行驶驱动用电动机431设置于2个后轮432之间。
上述的电源组件101设置于行驶控制用控制器443的内部,接受来自蓄电池440的直流电流的供给,并将其转换为交流电流。来自电源组件101的交流电流向行驶驱动用电动机431、制动电动机439和转向电动机444供给。
根据本实施例,通过将与可靠性高或高输出相对应的电源组件装载于电动车辆上,可实现具有可靠性高或高驱动能力的电动车辆。
工业实用性本发明适用于流过大电流的电源组件。特别是,较适用于将电动机作为驱动源的输送机。
权利要求
1.一种电源组件,具有含有设置于绝缘性表面上的导电性图形的基板,配置于所述基板上的半导体元件,通过绝缘层而设置于所述导电性图形上的板状导电体,和将所述板状导电体与所述半导体元件电连接的布线。
2.按照权利要求1所述的电源组件,其特征在于,所述导电性图形含有第1、第2和第3导电性区域,所述板状导电体的一部分通过所述绝缘层配置于所述第2导电性区域上方,所述板状导电体的另一部分与所述第3导电性区域电连接。
3.按照权利要求2所述的电源组件,其特征在于,所述第1、第2和第3导电性区域被配置成所述第2导电性区域被所述第1和第3导电性区域夹着。
4.按照权利要求3所述的电源组件,其特征在于,所述半导体元件含有第1和第2主面、设置于所述第1主面上的第1焊盘、和设置于所述第2主面上的第2焊盘,所述半导体元件被配置于所述第1导电性区域上,所述半导体元件的第1焊盘与所述第1导电性区域相对置地电连接,所述布线与所述第2焊盘电连接。
5.按照权利要求4所述的电源组件,其特征在于,所述板状导电体的另一部分与所述第3导电性区域、以及所述半导体元件的第1焊盘与所述第1导电性区域分别被软钎焊。
6.按照权利要求5所述的电源组件,其特征在于,所述板状导电体主要由铜构成,并且至少在进行所述软钎焊的区域实施改善焊料浸湿性的表面处理。
7.按照权利要求1所述的电源组件,其特征在于,所述布线主要由铝构成。
8.按照权利要求7所述的电源组件,其特征在于,所述布线与所述第2焊盘和所述板状导电体分别通过超声波而接合。
9.按照权利要求8所述的电源组件,其特征在于,所述布线为具有两端和中间部分的挠性细线,所述两端与所述板状导电体接合,而所述中间部分与所述第2焊盘接合。
10.按照权利要求9所述的电源组件,其特征在于,具有多根连接所述板状导电体和所述第2焊盘的布线。
11.按照权利要求1所述的电源组件,其特征在于,所述半导体元件为场效应晶体管。
12.按照权利要求11所述的电源组件,其特征在于,分别含有多个所述半导体元件和所述板状导电体。
13.按照权利要求1所述的电源组件,其特征在于,所述基板含有金属基板和设置于所述金属基板的表面上的绝缘层。
14.一种电动输送机,具有按照权利要求1~13中任一项所述的电源组件和与所述电源组件电连接的电动机。
15.一种电动车辆,具有按照权利要求1~13中任一项所述的电源组件,与所述电源组件电连接的电动机,向所述电源组件供给电力的蓄电池,和由所述电动机驱动的车轮。
16.一种电源组件的制造方法,包含有准备在表面上设置有导电性图形的基板的步骤;通过软钎焊将半导体元件固定于所述基板上并将板状导电体通过绝缘层固定到所述导电性图形上的步骤;和通过导电性布线将所述板状导电体与所述半导体元件连接的步骤。
17.一种通过导电性布线将2个导电性区域连接的连接方法,包含有通过超声波将具有挠性并具有第1和第2端部以及由所述第1和第2端部夹着的中间部的导电性布线的所述第1端部与第1导电性区域接合的步骤;通过超声波将所述导电性布线的中间部与第2导电性区域接合的步骤;和通过超声波将所述导电性布线的第2端部与所述第1导电性区域接合的步骤。
全文摘要
提供一种发热少、可靠性优或者可通过更大电流的电源组件。本发明的电源组件具有含有设置于绝缘性表面上的导电性图形(124)的基板(120),设置于基板(120)上的半导体元件(110),通过绝缘层(131)而设置于导电性图形(124)的一部分上的板状导电体(130),和将板状导电体(130)与半导体元件(110)电连接的布线(140a)。
文档编号H05K1/02GK1691492SQ20051006792
公开日2005年11月2日 申请日期2005年4月28日 优先权日2004年4月28日
发明者村井孝之, 森田晃司 申请人:雅马哈发动机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1