一种低温化学气相沉积生长石墨烯薄膜的方法

文档序号:8129994阅读:770来源:国知局
专利名称:一种低温化学气相沉积生长石墨烯薄膜的方法
技术领域
本发明涉及一种低温化学气相沉积生长石墨烯薄膜的方法,属于石墨烯电子薄膜材料领域。
背景技术
石墨烯(Graphene)是一种有sp2杂化碳原子组成的六角型呈蜂巢状的二维纳米材料。目前,自由态石墨烯的制备方法大体可以分为物理方法和化学方法,物理方法包括微机械剥离法、取向附生法、外延生长法等;化学方法包括氧化石墨还原法、化学气相沉积法等。其中,化学气相沉积法可以获得大面积、厚度均一的石墨烯。关于石墨烯的制备、大尺寸石墨烯薄膜的制备以及大尺寸石墨烯薄膜的转移等方面,本领域技术人员已经做了一定的研究,任文才在“石墨烯的化学气相沉积法制备”(石墨烯的化学气相沉积法制备,任文才,2011,2,26 (I):71-79) —文中评述了化学气相沉积法制备石墨烯及其转移技术的研究进展。现有技术中,关于大面积的石墨烯薄膜通常是在多晶金属的表面高温(彡IlO(TC)热解含碳气体制备,然后转移到目标衬底上制备器件。然而,过高的生长温度O IlO(TC)会很大程度限制衬底的选择,同时规模生产制备石墨烯薄膜的难度高。低温化学气相沉积生长石墨烯薄膜不仅经济、环保,而且工业化可行性高,对衬底的选择范围也随之扩大,是石墨烯发展的必然趋势。利用Au-Ni合金催化剂生长石墨烯的温度可以低至450°C,但是只能得到74%的单层石墨烯,而且拉曼光谱显示,在晶界处,D峰(高峰)明显高于G峰(低峰),石墨烯质量较差。用含碳液体作为碳源也可以降低生长石墨烯的温度,有报道用苯作为碳源通过低压化学气相沉积法(LPCVD)在300°C生长石墨烯,遗憾的是所得到的石墨烯薄膜并不是连续的,难以满足使用要求。因此,本领域有开发一种能够低温条件下进行化学气相沉积生长石墨烯薄膜方法的需求。所述方法制备得到的石墨烯薄膜需要具备良好的完整性和导电性
发明内容
本发明的目的之一在于提供一种低温生长石墨烯薄膜的方法。本发明所述的低温为400-1000°C,优选500-800°C。本发明提供的低温生长石墨烯薄膜的方法制备得到的石墨烯薄膜具有良好的完整性和导电性。本发明是通过如下技术方案实现的:一种石墨烯薄膜的制备方法,至少包括以下步骤:( I)对金属衬底进行平整处理;(2)对步骤(I)得到的金属衬底的表面进行化学试剂掺杂;(3)在保护气氛下,将步骤(2)得到的金属衬底进行退火处理;
(4)将所述的金属衬底与碳源接触,加热进行反应,得到石墨烯薄膜;可选地,步骤(4)之后进行步骤(5):停止加热,冷却至室温,取出生长有石墨烯薄膜的金属衬底;其中,步骤(2)所述化学试剂为金属前驱体盐。本发明所述金属前驱体盐中的金属元素选自镍、钴、铁、钼、金、铝、铬、铜、银、镁、锰、钥、钌、钽、钛和钨中的任意I种或至少2种,所述组合例如镍/铬的组合、锰/钌的组合、钛/铝/钨的组合、钴/铁/钼/镍的组合等,优选镍、钴、铁、钼、铜、银中的任意I种或至少2种的组合。前驱体是目标产物的雏形样品,即再经过某些步骤就可实现目标产物的前级产物,是催化剂领域常用的概念。本发明所述的金属前驱体盐为再经过高温加热,即可得到相应的金属团簇,这种金属团簇与生长衬底的金属表面原子形成特定的纳米结构,这些纳米结构可以极大地降低碳源气体裂解时的能量势垒,起到了催化裂解的效果,从而降低了气相沉积时的反应温度。常用的金属前驱体盐(或称前驱体金属盐)可以是氯化物、硝酸盐、硫酸盐、氢氧化物、磷酸盐等等,是本领域技术人员完全有能力获得的,此处不再赘述。优选地,本发明所述的金属前驱体盐中,金属离子的抗衡例子是本领域公知的,典型但非限制性的实例有氯离子、硝酸根离子、硫酸根离子、氢氧根离子中的任意I种或至少2种的组合,优选氯离子和/或硝酸根离子。进一步优选地,本发明所述金属前驱体盐选自氯化镍、硝酸镍、氯化钴、硝酸钴、氯化铜、硝酸铜、氯化亚铁、氯化铁、硝酸铁、氯钼酸、氯化银、硝酸银中的任意I种或至少2种的组合,所述组合例如氯化镍/硝酸镍的组合、氯化钴/氯化镍的组合、硝酸铁/硝酸铜的组合、氯钼酸/硝酸银的组合、氯化亚铁/氯化银的组合、氯化钴/氯化铜/硝酸银的组合等,优选氯化镍、硝酸钴、氯化亚铁、氯化铁、硝酸银中的任意I种或至少2种的组合。优选地,本发明所述金属`衬底的材料选自镍、钴、铁、钼、金、铝、铬、铜、镁、锰、钥、钌、钽、钛和钨中的任意I种或至少2种以上的组合,所述组合例如镍铜合金、铜镁合金、锰铁合金、铝铬合金、锰钌合金、金铬铜合金等等,优选所述衬底为铜箔、镍箔或镍铜合金金属箔中的任意I种。本发明用化学试剂对金属衬底进行掺杂处理,提高了金属衬底的催化能力,使金属衬底更容易吸附碳原子,从而降低了石墨烯薄膜的生长温度。因此,本发明所述的金属前驱体盐中的金属兀素与金属衬底的金属兀素不相同。优选地,本发明步骤(I)所述平整处理选自打磨处理、抛光处理、电镀处理、喷涂处理、激光处理、等离子体处理、电子束处理中的任意I种,优选打磨处理、抛光处理、电镀处理中的任意I种。本发明对金属衬底进行平整处理能够降低金属衬底的粗糙度,进而降低石墨烯成核密度,提高单晶尺寸。因此,本领域技术人员所能获知的任何一种能够将金属衬底表面进行平整处理的方法均可用于本发明,并不仅限于上述提到的方法。优选地,步骤(2)所述化学试剂掺杂的方法选自热蒸镀、溅射、等离子沉积、激光沉积、电子束沉积、涂布中的任意I种,优选涂布、热蒸镀、溅射中的任意I种,进一步优选旋涂O本发明用化学试剂对金属衬底进行掺杂处理,可以提高金属衬底的催化能力,使衬底更容易催化裂解碳源气体,从而降低石墨烯薄膜的生长温度。所述的掺杂即在金属衬底的表面形成其他金属的团簇结构,这种团簇结构与金属衬底表面的原子相结合,形成特定的纳米结构。优选地,所述旋涂为将金属的化学试剂滴落在金属衬底的旋转中心位置,依靠旋转中化学试剂的向心力,将化学试剂均匀的覆盖在石墨烯膜层表面。优选地,旋涂过程中,所述化学试剂为金属前驱体盐的水溶液,所述前驱体盐的水溶液的浓度优选为 0.008-0.lmol/L,例如 0.009mol/L、0.01mol/L、0.011mol/L、0.018mol/L、0.021mol/L、0.041mol/L、0.061mol/L、0.076mol/L、0.085mol/L、0.091mol/L 等,优选
0.01mol/L。优选地,所述旋涂的转速为2000-5000r/min,例如 2200r/min、3200r/min、4100r/min、4700r/min 等,旋涂时间为 25_35s,例如 25.ls、26s、29.5s,32.4s,34.8s,34.9s 等。优选地,步骤(3)所述的保护性气氛为惰性气体气氛和还原气体气氛,优选氮气、氩气、氦气和氖气中的任意I种或至少2种的组合与氢气混合,所述组合例如氮气/氩气的组合、氦气/氖气/氩气的组合、氮气/氦气的组合等,优选氮气、氩气和氦气中的任意I种或至少2种的组合与氢气混合。退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适 宜速度冷却。本发明所述退火的作用是将金属前驱体盐烧结得到金属团簇与生长衬底的表面原子结合成特定的纳米结构。优选地,本发明步骤(3)所述退火温度为400-1000°C,例如403°C、535°C、667°C、725 °C>748 °C>776 °C>786 °C>805 °C>809 °C>816 °C>821 °C>839 °C>856 °C>887 °C>906 °C、925 °C >965 °C >984°C >992 °C > 998 °C 等,优选 500-800 °C。优选地,步骤(3)所述退火时间为20-80min,例如 22min、27min、35min、41min、46min、52min、58min、63min、68min、74min、79min 等,优选 30_60mino优选地,步骤(4)所述加热进行反应的温度为300-800°C,例如302°C、328°C、365 °C>389 °C>426 °C>441 °C>468 °C>495 °C>526 °C>548 °C>589 °C>635 °C>684 °C>697 °C、724°C > 748 °C、769 °C、789 °C > 795 °C > 798 °C 等,优选 400-700 °C。优选地,所述加热进行反应的时间为15_150min,例如16min、21min、29min、38min、42min、48min、56min、61min、68min、77min、89min、95min、106min、I2Imin、126min、142min、148min、149min、等,优选 20_90min。本发明通过前述对金属衬底的处理(平整处理和化学试剂掺杂处理),降低了石墨烯的成核密度,提高了其单晶尺寸。碳源是能够提供碳元素的物质,碳源的选择是本领域技术人员所熟知的技术,本发明不做具体限定。优选地,本发明所述的碳源含有碳元素的气态化合物中的任意I种或至少2种以上的组合;优选所述碳源性气体为只含有碳原子和氢原子的有机气体,优选C1-C4的烷烃、C2-C4的烯烃、C2-C3的炔烃中的任意I种或至少2种的组合,进一步优选甲烷、乙烷、乙烯、乙炔、丙烷、正丁烯、异丁烯、1,2-丁二烯、1,3-丁二烯、顺丁二烯、反二丁烯、正丁烷、异丁烷、丙烯、环丙烷中的任意I种或至少2种的组合。所述碳源的组合典型但非限制性的实例有:甲烷/乙烷的组合、甲烷/ 丁烷的组合、乙烯/ 丁烷的组合、甲烷/1,2- 丁二烯的组合等。优选地,当所述碳源为气体时,通入反应装置的碳源气体的流量为5-40sCCm,例如 5.2sccm、5.9sccm、6.5sccm、12sccm、15.9sccm、23sccm、29sccm、34sccm、38sccm 等,优选10_30sccm。作为优选技术方案,本发明所述石墨烯薄膜的制备方法至少包括以下步骤:
(I)对金属衬底进行反向电镀处理;(2)在步骤(I)得到的电镀处理后的金属衬底的表面旋涂金属前驱体盐;(3)在氮气气氛下,将步骤(2)得到的旋涂有金属前驱体盐的金属衬底,然后在400-1000°C下,进行退火处理20-80min ;(4)将步骤(3)得到的退火后的金属衬底与碳源性气体接触,300-800°C进行反应10-70min,得到石墨烯薄膜;可选地,步骤(4)之后进行步骤(5):停止加热,冷却至室温,取出生长有石墨烯薄膜的金属衬底。本发明的目的之二在于提供一种石墨烯薄膜,所述石墨烯薄膜由本发明目的之一所述的方法制备得 到,所述石墨烯薄膜的迁移率彡9 X IO3Cm2/(V.S),例如9.1 XlO3Cm2/(V.s)、9.8 X IO3Cm2/ (V.s)、1.1 X 104cm2/ (V.s)、1.4 X 104cm2/ (V.s)、1.8 X 104cm2/ (V.s)、
2.1 X 104cm2/(V.s)等。与现有技术相比,本发明具有如下有益效果:(I)本发明对金属衬底进行平整处理,能够降低金属衬底的粗糙度,进而降低石墨烯成核密度,提高单晶尺寸。(2)本发明用化学试剂对金属衬底进行掺杂处理,在衬底表面形成特定的纳米结构,降低裂解碳源气体的能量势垒,提高金属衬底的催化能力,从而降低石墨烯薄膜的生长温度。(3)本发明提供生长石墨烯薄膜的方法生长温度低,成本低、工业化可行性高,对衬底的选择范围广,且能够得到完整、高质量的单层或多层石墨烯薄膜。
具体实施例方式为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:实施例1一种低温化学气相沉积生长高质量石墨烯薄膜的方法,包括以下步骤:(1)取4英寸纯度为99.8%的铜箔作为生长石墨烯的衬底,将铜箔放入抛光液中,在3V的电压下抛光90秒,关闭电源,将铜箔清洗干净;(2)将浓度为0.0lM的氯化镍溶液均匀旋涂在铜箔表面,放置一段时间,使铜箔表面完全干燥;(3)将上述表面掺杂后的铜箔放入气氛管式炉的中央,向管式炉内通入氮气和氢气,升温至KKKTC并保持30min,对铜箔进行退火处理;(4)降低温度至700°C,向管式炉内通入甲烷,控制甲烷的流量为IOsccm保持生长温度60min,在铜箔表面形成石墨烯薄膜;停止加热,待管式炉冷却至室温后,取出生长有石墨稀的铜猜。所得到的石墨烯薄膜的迁移率为1.5X IO4Cm2/(V.S)。实施例2一种低温化学气相沉积生长高质量石墨烯薄膜的方法,包括以下步骤:(I)取4英寸纯度为99.8%铜箔作为生长石墨烯的衬底,在转速为3000rpm的旋转表面抛光机上对铜箔进行机械抛光;(2)将浓度为0.05M的氯钼酸(H2PtCl6.6H20)溶液均匀旋涂在铜箔表面,放置一段时间,使铜箔表面完全干燥;(3)将上述表面掺杂后的铜箔放入气氛管式炉的中央,向管式炉内通入氩气和氢气,升温至950°C并保持60min,对铜箔进行退火处理;(4)降低温度至650°C,向管式炉内通入乙烯,控制乙烯的流量为20sccm保持生长温度45min,在铜箔表面形成石墨烯薄膜。停止加热,待管式炉冷却至室温后,取出生长有石墨稀的铜猜。所得到的石墨烯薄膜的迁移率为1.0X IO4Cm2/(V.S)。实施例3一种低温生长高质量石墨烯薄膜的方法,包括以下步骤:(I)取3.5英寸的金属镍作为生长石墨烯的衬底,将金属镍放入抛光液中,在5V的电压下抛光30秒,关闭 电源,将金属镍清洗干净;(2)将浓度为0.1M的氯化铜溶液均匀旋涂在金属镍表面,放置一段时间,使金属镍表面完全干燥;(3)将上述表面掺杂后的金属镍放入气氛管式炉的中央,向管式炉内通入氢气,升温至60(TC并保持30min,对金属镍进行退火处理;(4)降低温度至550°C,向管式炉内通入甲烷,控制甲烷的流量为5sCCm保持生长温度90min,在金属镍表面形成石墨烯薄膜。停止加热,待管式炉冷却至室温后,取出生长有石墨烯的金属镍。所得到的石墨烯薄膜的迁移率为9.8X IO3Cm2/(V.S)。实施例4一种低温生长高质量石墨烯薄膜的方法,包括以下步骤:(I)取2英寸的镍铜合金作为生长石墨烯的衬底,在转速为5000rpm的旋转表面抛光机上对镍铜合金进行机械抛光;(2)将浓度为0.02M的氯化铁溶液均匀旋涂在镍铜合金表面,放置一段时间,使镍铜合金表面完全干燥;(3)将上述表面掺杂后的镍铜合金放入气氛管式炉的中央,向管式炉内通入氩气和氢气,升温至860°C并保持60min,对镍铜合金进行退火处理;(4)降低温度至500°C,将丙三醇放置于管式炉的进气端,加热丙三醇至280°C跟随载气进入管式炉,保持生长温度20min,在镍铜合金表面形成石墨烯薄膜。停止加热,待管式炉冷却至室温后,取出生长有石墨烯的镍铜合金。所得到的石墨烯薄膜的迁移率为1.4X IO4Cm2/(V.S)。实施例5
一种低温生长高质量石墨烯薄膜的方法,包括以下步骤:(I)取2英寸的金属钌箔作为生长石墨烯的衬底,在转速为5000rpm的旋转表面抛光机上对金属钌箔进行打磨抛光;(2)将浓度为0.008M的硝酸钴溶液均匀旋涂在镍铜合金表面,放置一段时间,使金属钌箔表面完全干燥;(3)将上述表面掺杂后的金属钌箔放入气氛管式炉的中央,向管式炉内通入氩气和氢气(体积比为1:1),升温至400°C并保持80min,对金属钌箔进行退火处理;(4)降低温度至300°C,向管式炉内通入乙炔,控制乙炔的流量为7sccm保持生长温度150min,在金属钌箔表面形成石墨烯薄膜;停止加热,待管式炉冷却至室温后,取出生长有石墨烯的金属镍。所得到的石墨烯薄膜的迁移率为1.3X IO4Cm2/(V.s)。实施例6一种低温生长高质量石墨烯薄膜的方法,包括以下步骤:(I)取4.5英寸的铝镁合金箔作为生长石墨烯的衬底,对铝镁合金进行机械平整处理;(2)将浓度为0.012M的硝酸银溶液溅镀在铝镁合金箔表面,放置一段时间,使铝镁合金箔表面完全干燥;(3)将步骤(2)表面掺杂后的铝镁合金箔放入气氛管式炉的中央,向管式炉内通入氩气和氢气(体积比为1:1),升温至700°c并保持20min,对铝镁合金箔进行退火处理;
`
(4)降低温度至500°C,向管式炉内通入丙烷,控制丙炔的流量为40sccm保持生长温度15min,在金属钌箔表面形成石墨烯薄膜;停止加热,待管式炉冷却至室温后,取出生长有石墨烯的金属镍。所得到的石墨烯薄膜的迁移率为1.39 X IO4Cm2/(V.s)。应该注意到并理解,在不脱离后附的权利要求所要求的本发明的精神和范围的情况下,能够对上述详细描述的本发明做出各种修改和改进。因此,要求保护的技术方案的范围不受所给出的任何特定示范教导的限制。申请人:声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
权利要求
1.一种低温化学气相沉积生长石墨烯薄膜的制备方法,其特征在于,所述方法至少包括以下步骤: (1)对金属衬底进行平整处理; (2)对步骤(I)得到的金属衬底的表面进行化学试剂掺杂; (3)在保护气氛下,将步骤(2)得到的金属衬底进行退火处理; (4)将所述的金属衬底与碳源接触,加热进行反应,得到石墨烯薄膜; 可选地,步骤(4)之后进行步骤(5):停止加热,冷却至室温,取出生长有石墨烯薄膜的金属衬底; 其中,步骤(2 )所述化学试剂为金属前驱体盐。
2.如权利要求1所述的方法,其特征在于,所述金属前驱体盐中的金属元素选自镍、钴、铁、钼、金、招、铬、铜、银、镁、猛、钥、钌、钽、钛和鹤中的任意I种或至少2种,优选镍、钴、铁、钼、铜、银中的任意I种或至少2种的组合; 优选地,所述金属衬底的材料选自镍、钴、铁、钼、金、铝、铬、铜、镁、锰、钥、钌、钽、钛和钨中的任意I种或至少2种以上的组合,优选所述衬底为铜箔、镍箔或镍铜合金金属箔中的任意I种; 优选地,所述金属前驱体盐中的金属元素与金属衬底的金属元素不相同。
3.如权利要求1或2所述的方法,其特征在于,步骤(I)所述平整处理选自打磨处理、抛光处理、反向电镀处理、喷涂处理、激光处理、等离子体处理、电子束处理中的任意I种或至少2种的组合,优选打磨处理、抛光处理、反向电镀处理中的任意I种。
4.如权利要求1-3之一所述的方法,其特征在于,步骤(2)所述化学试剂掺杂的方法选自热蒸镀、溅射、等离子沉积、激光沉积、电子束沉积、涂布中的任意I种或至少2种的组合,优选涂布、热蒸镀、派射中的任意I种,进一步优选旋涂; 优选地,所述旋涂为将金属的化学试剂滴落在金属衬底的旋转中心位置,依靠旋转中化学试剂的向心力,将化学试剂均匀的覆盖在石墨烯膜层表面; 优选地,旋涂过程中,所述化学试剂为金属前驱体盐的水溶液,所述前驱体盐的水溶液的浓度优选为 0.008-0.lmol/L,优选 0.01mol/L ; 优选地,所述旋涂的转速为2000-5000r/min,旋涂时间为25_35s。
5.如权利要求1-4之一所述的方法,其特征在于,所述能够将碳源催化得到石墨烯的金属的前驱体盐选自氯化镍、硝酸镍、氯化钴、硝酸钴、氯化铜、硝酸铜、氯化亚铁、氯化铁、硝酸铁、氯钼酸、氯化银、硝酸银中的任意I种或至少2种的组合,优选氯化镍、硝酸钴、氯化亚铁、氯化铁、硝酸银中的任意I种或至少2种的组合。
6.根据权利要求1-5之一所述的方法,其特征在于,步骤(3)所述的保护性气氛为惰性气体气氛和还原气体气氛,优选氮气、氩气、氦气和氖气中的任意I种或至少2种的组合与氢气的混合,优选氮气、氩气和氦气中的任意I种或至少2种的组合与氢气的混合; 优选地,步骤(3)所述退火温度为400-1000°C,优选500-800°C ; 优选地,步骤(3)所述退火时间为20-80min,优选30_60min。
7.根据权利要求1-6之一所述的方法,其特征在于,步骤(4)所述加热进行反应的温度为 300-800 °C,优选 400-700 °C ; 优选地,所述加热进行反应的时间为15-150min,优选20_90min ;优选地,所述的碳源为含有碳元素的气态化合物中的任意I种或至少2种以上的组合;优选所述碳源性气体为只含有碳原子和氢原子的有机气体,优选C1-C4的烷烃、C2-C4的烯烃、C2-C3的炔烃中的任意I种或至少2种的组合,进一步优选甲烷、乙烷、乙烯、乙炔、丙烷、正丁烯、异丁烯、1,2-丁二烯、1,3-丁二烯、顺丁二烯、反二丁烯、正丁烷、异丁烷、丙烯、环丙烷中的任意I种或至少2种的组合; 优选地,当所述碳源为气体时,通入反应装置的碳源气体的流量为5-40sCCm,优选10_30sccmo
8.根据权利要求1-7之一所述的方法,其特征在于,所述方法至少包括以下步骤: (1)对金属衬底进行反向电镀处理; (2)在步骤(I)得到的电镀处理后的金属衬底的表面旋涂能够将碳源催化得到石墨烯的金属前驱体盐; (3)在氮气和氢气气氛下,将步骤(2)得到的旋涂有金属前驱体盐的金属衬底,然后在400-1000°C下,进行退火处理; (4)将步骤(3)得到 的退火后的金属衬底与碳源性气体接触,300-800°C进行反应15-150min,得到石墨烯薄膜; 可选地,步骤(4)之后进行步骤(5):停止加热,冷却至室温,取出生长有石墨烯薄膜的金属衬底。
9.一种石墨烯薄膜,其特征在于,所述石墨烯薄膜由如权利要求1-8之一所述的方法制备得到,所述石墨烯薄膜的迁移率彡9X IO3Cm2/(V.s)。
全文摘要
本发明涉及一种低温条件下制备石墨烯薄膜的方法,所述方法至少包括以下步骤(1)对金属衬底进行平整处理;(2)对步骤(1)得到的金属衬底的表面进行化学试剂掺杂;(3)在保护气氛下,将步骤(2)得到的金属衬底进行退火处理;(4)将所述的金属衬底与碳源接触,低温条件下进行化学气相沉积,得到石墨烯薄膜;可选地,步骤(4)之后进行步骤(5)停止加热,冷却至室温,取出生长有石墨烯薄膜的金属衬底;其中,所述化学试剂为金属的前驱体盐。本发明提供生长石墨烯薄膜的方法生长温度低,成本低、工业化可行性高,对衬底的选择范围广,且能够得到完整、高质量的单层或多层石墨烯薄膜。
文档编号C30B25/00GK103184425SQ20131008085
公开日2013年7月3日 申请日期2013年3月13日 优先权日2013年3月13日
发明者黄孟琼 申请人:无锡格菲电子薄膜科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1