一种高效环保抗菌防霉无机复合纳米粉浆及其制备方法

文档序号:143317阅读:362来源:国知局
专利名称:一种高效环保抗菌防霉无机复合纳米粉浆及其制备方法
技术领域
本发明涉及抗菌材料领域,具体为一种利用纳米氧化镁与其他纳米无机物复合得到高效环保抗菌防霉无机复合纳米粉浆及其制备方法。
背景技术
细菌及霉菌在人们生活环境及一些物品中的滋生,不但危害人类健康,而且污染环境、损坏物品。因此,高效环保抗菌防霉剂的研究和运用对保护人类健康、改善生活环境具有十分重要的意义。传统的抗菌剂多为有机抗菌剂,其杀菌速度快,开发和使用技术成熟,但存在不同程度的毒性、对皮肤有刺激、有难闻气味、易挥发、药效短、不能广谱杀菌、操作复杂、一次投资较大等缺点。发明内容
本发明的目的在于提供一种高效、长效抗菌防霉、环保的利用纳米氧化镁等无机物复合得到的无机复合纳米粉浆,其制备方法操作简单、工艺条件容易控制、成本低。
本发明的技术方案是
一种高效环保抗菌防霉无机复合纳米粉浆,由纳米无机物、高分子分散剂和溶剂组成的悬浮液,经过分散和研磨后形成高度均勻的分散体系;以纳米氧化镁为主体,其与纳米氧化锌、纳米氧化钛、纳米氧化铜、纳米氧化亚铜、纳米氧化银、纳米硫化锌、纳米氧化锆、 纳米氧化钇、纳米氧化铝、纳米氧化钙等中的一种或一种以上无机物复合组成纳米粉浆。按重量百分比计,纳米粉浆中,纳米氧化镁的含量为0. 1 40% (优选1 30% ),其它无机物含量为0.01 40% (优选0.03 30% ),高分子分散剂含量为0.5 12% (优选1 8% ),余量为溶剂。
所述高效环保抗菌防霉无机复合纳米粉浆的制备方法,利用纳米氧化镁和所述的一种或一种以上纳米无机物在高分子分散剂和溶剂组成的溶液中形成的高度分散体系,制备一系列成分的无机复合纳米粉浆。以平均颗粒尺寸小于IOOnm的氧化镁粉和平均颗粒尺寸小于IOOnm的所述的一种或一种以上纳米无机物为原料,按预定比例将其高速分散进入高分子分散剂和溶剂组成的溶液中,分散速度为400 3000rpm(优选为500 2500rpm), 分散时间为2 120min(优选为5 60),混合物经球磨20min 20h(优选为40min 1 ),形成高度分散的无机复合纳米粉浆。所述混合物的球磨方式为行星式、滚筒式或振动式球磨方法。
其中的高分子分散剂是聚烯烃类、聚羧酸类、聚羧酸盐类、聚丙烯酸类、聚丙烯酸盐类、聚酯类、聚酯盐类、聚酰胺类、聚酰胺盐类、聚氨酯类、聚氨酯盐类、聚醚类、聚醚盐类、 聚酐类、聚硅氧烷类、聚氧乙烯类、聚氧丙烯类、马来酸酐类、聚ε -己内酮类、聚醇类、醇类中的一种或一种以上化合物。
其中的溶剂是脂肪烃类、脂环烃类、芳香烃类、醇类、酮类、酯类、萜类、醇醚及醚酯类、取代烃类、水中的一种或一种以上化合物。
本发明中,纳米无机物的抗菌机理如下
(1)纳米氧化镁
氧化镁极易水合,并在表面形成一层氢氧化镁,溶解在溶液中的氧通过单电子还原反应生成活性氧离子。氧化镁的表面包覆一层氢氧根离子,由于氧气在碱性环境中具有化学稳定性,所以高浓度的活性氧离子得以在氧化镁表面存在。而活性氧离子有强的氧化性,可以破坏细菌的细胞膜壁的肽键结构,从而迅速杀死细菌。另外,纳米氧化镁粒子可以产生破坏性吸附,也可能将细菌的细胞膜破坏。这样的抗菌机理可以克服银系抗菌剂作用慢、易变色和二氧化钛系抗菌剂需要紫外线照射的不足。
(2)纳米氧化锌
在光照条件下,纳米氧化锌的抗菌是光催化和金属离子溶出共同作用的结果,纳米氧化锌对金葡球菌的抗菌性强于大肠杆菌,原因是在近中性或弱碱性环境中,金葡球菌带有更多的负电荷,带正电荷纳米氧化锌更容易吸附到其表面,从而将其杀死;在无光照时,只是金属离子溶出机理在起作用,纳米粒子的粒径越小,光催化效应越强。
(3)纳米氧化钛
由于TW2电子结构所具有的特点,使其受光时生成化学活泼性很强的超氧化物阴离子自由基和氢氧自由基,攻击有机物,达到降解有机污染物的作用。当遇到细菌时,直接攻击细菌的细胞,致使细菌细胞内的有机物降解,以此杀灭细菌,并使之分解。一般常用的杀菌剂银、铜等能使细菌细胞失去活性,但细菌杀死后,尸体释放出内毒素等有害的组分。 纳米二氧化钛不仅能影响细菌繁殖力,而且能破坏细菌的细胞膜结构,达到彻底降解细菌, 防止内毒素引起的二次污染,纳米二氧化钛属于非溶出型材料,在降解有机污染物和杀灭菌的同时,自身不分解、不溶出,光催化作用持久,并具有持久的杀菌、降解污染物效果。
(4)纳米氧化铜
纳米氧化铜可抗细菌和真菌,纳米氧化铜可很容易的混人到塑料、合成纤维、粘合剂和涂料等中,即使是在苛刻的环境中也可长期保持高活性,纳米氧化铜对金黄色葡萄球菌和枯草杆菌均具有较好的抗菌作用。
(5)纳米氧化亚铜
氧化亚铜作为一种低毒性的广谱抗菌剂,主要靠释放出铜离子与真菌或细菌体内蛋白质中的-SH、-N2H、-C00H、-OH等基团起作用而导致细菌死亡,不溶于有机溶剂和水,溶于稀无机酸(盐酸、硫酸、硝酸)和氨中。在潮湿的空气中易慢慢氧化成氧化铜,在干燥的空气中稳定。
(6)纳米氧化银
纳米氧化银释放出带正电荷的银离子与细菌蛋白酶中带负电荷的巯基发生反应, 蛋白酶因巯基的丧失而迅速失去活性,从而导致细菌无法进行分裂繁殖而被杀灭。当菌体失去活性后,银离子又会从菌体中游离出来,重复进行杀菌活动,因此其抗菌效果持久。此外,银离子还具有光催化作用。在光的作用下,银离子能起到催化活性中心的作用,激活水和空气中的氧,产生羟基自由基和活性氧离子,活性氧离子具有很强的氧化能力,能在短时间内破坏细菌的增殖能力而使细胞死亡。
(7)纳米硫化锌
纳米硫化锌的抗菌机理为,纳米硫化锌与细菌接触时,锌离子缓慢释放出来,由于锌离子具氧化还原性,并能与有机物(硫代基、羧基、羟基)反应,可以与细菌细胞膜及膜蛋白结合,破坏其结构,进入细胞后与酶结合并与DNA反应,达到抗菌的目的。
(8)纳米氧化锆
纳米氧化锆为荷正电纳米粒子,其对细菌有强的吸附作用,以使其他具有抗菌作用粒子与细菌充分作用,强化抗菌效果。
(9)纳米氧化钇
纳米氧化钇为荷正电纳米粒子,其对细菌有强的吸附作用,以使其他具有抗菌作用粒子与细菌充分作用,强化抗菌效果。
(10)纳米氧化铝
纳米氧化钇为荷正电纳米粒子,其对细菌有强的吸附作用,以使其他具有抗菌作用粒子与细菌充分作用,强化抗菌效果。
(11)纳米氧化钙
纳米氧化钙可通过其局部的强碱性发挥抗菌作用。
本发明的优点是
1、抗菌防霉性能强。采用本发明方法制备的无机复合纳米粉浆具备了多种无机物的协同抗菌防霉性能,并且具有增效作用,其抗菌效果远高于同浓度的单种纳米粉浆。
2、工艺简单,成本低。本发明采用分散和球磨相结合的方法制备无机复合纳米粉浆,工艺及设备都很成熟、简单。
3、具有高度的分散性。利用本发明的技术制备出的无机复合纳米粉浆形成了高度分散的体系,能均勻地分散到其他体系中,该纳米复合粉浆贮存期在一年以上,抗菌抗霉性能优异,达到或超过国际先进水平,因而在抗菌涂料、除臭剂、纺织品、纸制品、塑料、橡胶、 水处理剂、船舶保护剂等方面有潜在的广泛应用前景,是一种有很大使用价值的无机抗菌剂。
4、本发明无机抗菌剂具有长效、环保、抑菌率高等优异性能,纳米级的氧化锌、氧化钛、氧化铜、氧化亚铜、氧化银、硫化锌、氧化锆、氧化钇、氧化铝、氧化钙等无机物抗菌剂抗菌机理各异,复合后将发挥抗菌防霉的奇效。
具体实施方式
下面通过实例详述本发明,本发明中除特别指明外,所涉及的比例均为重量比, 粉体抗菌性能依照国家标准GB/T 21510-2008方法鉴定,涂料抗细菌及霉菌能力按HG/T 3950-2007行业标准鉴定。
实施例1
在2000ml烧杯中称取去离子水840g,用高速分散机在IOOOrpm条件下高速搅拌, 加入高分子分散剂(德国毕克化学公司的Disperbykl92) 60g,分别加入平均颗粒尺寸50nm 的氧化镁粉70g、氧化锌粉20g和氧化钛粉10g,分散60min,混合物经行星式球磨证,球磨机转速为300rpm,形成高度分散的无机复合纳米粉浆。根据原始配比,其中纳米氧化镁重量比为7%,纳米氧化锌重量比为2%,纳米氧化钛的重量比为1%,复合粉总重量比为10%, 高分子分散剂重量比为6%。
该无机复合纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达99. 2 %,24h大肠杆菌杀菌率达99. 96 %。该无机复合纳米粉浆以粉体含量重量加入丙烯酸水性涂料中,24h复合纳米抗菌涂料抗菌率达99. 93%,为I级,长霉等级为1级。
实施例2
在2000ml烧杯中称取去离子水700g,用高速分散机在2000rpm条件下高速搅拌, 加入高分子分散剂(德国毕克化学公司的Disperbykli^) IOOg,分别加入平均颗粒尺寸 60nm的氧化镁粉40g、氧化锌粉120g和氧化钛粉40g,分散120min,混合物经行星式球磨 IOh,球磨机转速为500rpm,形成高度分散的无机复合纳米粉浆。根据原始配比,其中纳米氧化镁重量比为4%,纳米氧化锌重量比为12%,纳米氧化钛的重量比为4%,复合粉总重量比为20%,高分子分散剂重量比为10%。
该无机复合纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达99. 3 %,24h大肠杆菌杀菌率达99. 99 %。该无机复合纳米粉浆以粉体含量重量加入丙烯酸水性涂料中,24h复合纳米抗菌涂料抗菌率达99. 96%,为I级,长霉等级为0级。
实施例3
在2000ml烧杯中称取去离子水890g,用高速分散机在500rpm条件下高速搅拌, 加入高分子分散剂(德国毕克化学公司的Disperbykl92) 30g,分别加入平均颗粒尺寸30nm 的氧化镁粉40g和氧化锌粉40g,分散lOmin,混合物经振动式球磨池,形成高度分散的无机复合纳米粉浆。根据原始配比,其中纳米氧化镁重量比为4%,纳米氧化锌重量比为4%,复合粉总重量比为8 %,高分子分散剂重量比为3 %。
该无机复合纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达99. 5 %,24h大肠杆菌杀菌率达99. 94 %。该无机复合纳米粉浆以粉体含量重量加入丙烯酸水性涂料中,24h复合纳米抗菌涂料抗菌率达99. 93%,为I级,长霉等级为1级。
实施例4
在2000ml烧杯中称取去离子水900g,用高速分散机在700rpm条件下高速搅拌,加入高分子分散剂(德国毕克化学公司的Disperbykl92)50g,分别加入平均颗粒尺寸SOnm的氧化镁粉45g和氧化钛粉5g,分散40min,混合物经滚筒式球磨15h,形成高度分散的无机复合纳米粉浆。根据原始配比,其中纳米氧化镁重量比为4. 5%,纳米氧化钛重量比为0. 5%, 复合粉总重量比为5%,高分子分散剂重量比为5%。
该无机复合纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达99. O %,24h大肠杆菌杀菌率达99. 5 %。该无机复合纳米粉浆以粉体含量1 % 重量加入丙烯酸水性涂料中,24h复合纳米抗菌涂料抗菌率达99. 2%,为I级,长霉等级为 1级。
实施例5
在2000ml烧杯中称取去离子水800g,用高速分散机在2500rpm条件下高速搅拌, 加入高分子分散剂(德国毕克化学公司的Disperbykl92) 80g,分别加入平均颗粒尺寸40nm 的氧化镁粉84g、氧化锌粉Mg、氧化钛粉10. Sg和氧化铜粉1. 2g,分散lOOmin,混合物经行星式球磨8h,球磨机转速为600rpm,形成高度分散的无机复合纳米粉浆。根据原始配比,其中纳米氧化镁重量比为8.4%,纳米氧化锌重量比为2.4%,纳米氧化钛的重量比为 1.08%,纳米氧化铜的重量比为0. 12%,复合粉总重量比为12%,高分子分散剂重量比为 8%。
该无机复合纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达99. 6 %,24h大肠杆菌杀菌率达99. 97 %。该无机复合纳米粉浆以粉体含量重量加入丙烯酸水性涂料中,24h复合纳米抗菌涂料抗菌率达99. 98%,为I级,长霉等级为0级。
实施例6
在2000ml烧杯中称取去离子水630g,用高速分散机在3000rpm条件下高速搅拌, 加入高分子分散剂(德国毕克化学公司的Disperbykli^) 120g,分别加入平均颗粒尺寸 20nm的氧化镁粉75g、硫化锌100g、氧化钛73. 75g和氧化亚铜1. 25g,分散llOmin,混合物经振动式球磨他,形成高度分散的无机复合纳米粉浆。根据原始配比,其中纳米氧化镁重量比为7. 5 %,纳米硫化锌重量比为10%,纳米氧化钛的重量比为7. 375%,纳米氧化亚铜的重量比为0. 125%,复合粉总重量比为25%,高分子分散剂重量比为12%。
该无机复合纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达99. 7 %,24h大肠杆菌杀菌率达99. 98 %。该无机复合纳米粉浆以粉体含量重量加入丙烯酸水性涂料中,24h复合纳米抗菌涂料抗菌率达99. 98%,为I级,长霉等级为0级。
实施例7
在2000ml烧杯中称取去离子水780g,用高速分散机在1500rpm条件下高速搅拌, 加入高分子分散剂(德国毕克化学公司的Disperbykl92) 70g,分别加入平均颗粒尺寸45nm 的氧化镁粉148. 5g和氧化银粉1. 5g,分散80min,混合物经滚筒式球磨13h,形成高度分散的无机复合纳米粉浆。根据原始配比,其中纳米氧化镁重量比为14. 85%,纳米氧化银重量比为0. 15%,复合粉总重量比为15%,高分子分散剂重量比为7%。
该无机复合纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达98. 9 %,24h大肠杆菌杀菌率达99. 96 %。该无机复合纳米粉浆以粉体含量重量加入丙烯酸水性涂料中,24h复合纳米抗菌涂料抗菌率达99. 94%,为I级,长霉等级为0级。
实施例8
在2000ml烧杯中称取去离子水730g,用高速分散机在1800rpm条件下高速搅拌, 加入高分子分散剂(德国毕克化学公司的Disperbykl92) 90g,分别加入平均颗粒尺寸85nm 的氧化镁粉140g、硫化锌粉25g、氧化铝粉IOg和氧化钙粉10g,分散30min,混合物经行星式球磨几,球磨机转速为450rpm,形成高度分散的无机复合纳米粉浆。根据原始配比,其中纳米氧化镁重量比为13.9%,纳米硫化锌重量比为2. 49%,纳米氧化铝重量比为1%,纳米氧化钙重量比为1%,复合粉总重量比为18.4%,高分子分散剂重量比为8. 96%。
该无机复合纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达98. 3 %,24h大肠杆菌杀菌率达99. 90 %。该无机复合纳米粉浆以粉体含量 1 %重量加入丙烯酸水性涂料中,24h复合纳米抗菌涂料抗菌率达99. 8%,为I级,长霉等级为1级。8
实施例9
在2000ml烧杯中称取去离子水490g,用高速分散机在1300rpm条件下高速搅拌, 加入高分子分散剂(德国毕克化学公司的Disperbykl92) IlOg,分别加入平均颗粒尺寸 70nm的氧化镁粉40g、氧化锌320g、氧化锆20g、氧化钇20g和氧化银8g,分散90min,混合物经行星式球磨12h,球磨机转速为350rpm,形成高度分散的无机复合纳米粉浆。根据原始配比,其中纳米氧化镁重量比为3. 97%,纳米氧化锌重量比为31.7%,纳米氧化锆的重量比为1.98%,纳米氧化钇的重量比为1.98%,纳米氧化银的重量比为7. 94%,复合粉总重量比为40.5%,高分子分散剂重量比为10.9%。
该无机复合纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达99. 4 %,24h大肠杆菌杀菌率达99. 98 %。该无机复合纳米粉浆以粉体含量重量加入丙烯酸水性涂料中,24h复合纳米抗菌涂料抗菌率达99. 99%,为I级,长霉等级为0级。
实施例10
在2000ml烧杯中称取去离子水780g,用高速分散机在400rpm条件下高速搅拌, 加入高分子分散剂(德国毕克化学公司的Disperbykl92) 60g,分别加入平均颗粒尺寸25nm 的氧化镁粉96g、氧化锌48g、氧化钙12. 8g、氧化银1. 6g和氧化铜1. 6g,分散120min,混合物经行星式球磨20min,球磨机转速为SOOrpm,形成高度分散的无机复合纳米粉浆。根据原始配比,其中纳米氧化镁重量比为9.6%,纳米氧化锌重量比为4.8%,纳米氧化钙的重量比为1.观%,纳米氧化银的重量比为0. 16%,纳米氧化铜的重量比为0. 16%,复合粉总重量比为16%,高分子分散剂重量比为6%。
该无机复合纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达99. 3 %,24h大肠杆菌杀菌率达99. 96 %。该无机复合纳米粉浆以粉体含量重量加入丙烯酸水性涂料中,24h复合纳米抗菌涂料抗菌率达99. 98%,为I级,长霉等级为0级。
实施例11
将实施例1中的溶剂由840g水改为672g石油醚和168g三氯乙烷,分散剂采用德国毕克化学公司的Anti-Terra-202,但所加重量比不变,其他物质的量及工艺参数不变,制备无机复合纳米粉浆。
该无机复合纳米粉浆以粉体含量重量加入涂料中,24h复合纳米抗菌涂料抗菌率达99. 80%,为I级,长霉等级为1级。
实施例12
将实施例2中的溶剂由700g水改为380g 二甲苯和320g甲苯,分散剂采用汉高 Henkel公司的TEXAPH0R 963S,但所加重量比不变,其他物质的量及工艺参数不变,制备无机复合纳米粉浆。
该无机复合纳米粉浆以粉体含量重量加入涂料中,24h复合纳米抗菌涂料抗菌率达99. 93%,为I级,长霉等级为0级。
实施例13
将实施例3中的溶剂由890g水改为840g异己烷和50g松节油,分散剂采用丹麦 KVK公司的Hypersol L4708,但所加重量比不变,其他物质的量及工艺参数不变,制备无机复合纳米粉浆。
该无机复合纳米粉浆以粉体含量重量加入涂料中,24h复合纳米抗菌涂料抗菌率达99. 88%,为I级,长霉等级为1级。
实施例14
将实施例4中的溶剂由900g水改为900g异丙醇,分散剂也相应改变,分散剂采用德国Avecia公司的SolSperSe41090,但所加重量比不变,其他物质的量及工艺参数不变, 制备无机复合纳米粉浆。
该无机复合纳米粉浆以粉体含量重量加入涂料中,24h复合纳米抗菌涂料抗菌率达99. 30%,为I级,长霉等级为1级。
实施例15
将实施例5中的溶剂由800g水改为800g环己酮,分散剂采用汉高Henkel公司的 TEXAPH0R 3250,但所加重量比不变,其他物质的量及工艺参数不变,制备无机复合纳米粉浆。
该无机复合纳米粉浆以粉体含量重量加入涂料中,24h复合纳米抗菌涂料抗菌率达99. 95%,为I级,长霉等级为0级。
比较例1
采用与实施例1相同的工艺参数制备了纯纳米氧化镁水性粉浆,其最终纳米氧化镁重量比为10%。
该纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达62. 2%,24h大肠杆菌杀菌率达93. 6%。该无机纳米粉浆以粉体含量1 %重量加入丙烯酸水性涂料中,24h纳米抗菌涂料抗菌率达95%,为II级,长霉等级为2级。
比较例2
采用与实施例1相同的工艺参数制备了纯氧化镁水性粉浆,氧化镁粒度在1 μ m 100 μ m,其最终氧化镁重量比为10%。
该粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达 ??^二处大肠杆菌杀菌率达观^。该无机粉浆以粉体含量重量加入丙烯酸水性涂料中,24h抗菌涂料抗菌率达31 %,基本不具有抗霉性。
比较例3
采用与实施例11相同的工艺参数制备了纯纳米氧化镁粉浆,其最终纳米氧化镁重量比为10%。
该无机纳米粉浆以粉体含量重量加入涂料中,24h纳米抗菌涂料抗菌率达 94. 4%,为II级,长霉等级为2级。
比较例4
采用与实施例1相同的工艺参数制备了纯纳米氧化锌水性粉浆,其最终纳米氧化锌重量比为10%。
该纳米粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达88.0%,24h大肠杆菌杀菌率达95. 1%。该无机纳米粉浆以粉体含量1 %重量加入丙烯酸水性涂料中,24h纳米抗菌涂料抗菌率达96. 5%,为II级,长霉等级为2级。
比较例5
采用与实施例1相同的工艺参数制备了纯氧化锌水性粉浆,氧化锌粒度在1 μ m 100 μ m,其最终氧化锌重量比为10%。
该粉浆以粉体含量0. 5%重量加入营养肉汤培养基(NB)中,Ih大肠杆菌杀菌率达 25 %,24h大肠杆菌杀菌率达31 %。该无机粉浆以粉体含量1 %重量加入丙烯酸水性涂料中,24h抗菌涂料抗菌率达33 %,基本不具有抗霉性。
比较例6
采用与实施例11相同的工艺参数制备了纯纳米氧化锌粉浆,其最终纳米氧化锌重量比为10%。
该无机纳米粉浆以粉体含量重量加入涂料中,24h纳米抗菌涂料抗菌率达 96. 0%,为II级,长霉等级为2级。
由实施例和比较例可见,本发明方法制备的无机复合纳米粉浆具有极好的抗菌防霉效果。
权利要求
1.一种高效环保抗菌防霉无机复合纳米粉浆,其特征在于所述无机复合纳米粉浆为由纳米无机物、高分子分散剂和溶剂组成的悬浮液,经过分散和研磨后形成均勻的分散体系;以纳米氧化镁为主体,其与纳米氧化锌、纳米氧化钛、纳米氧化铜、纳米氧化亚铜、纳米氧化银、纳米硫化锌、纳米氧化锆、纳米氧化钇、纳米氧化铝、纳米氧化钙中的一种或一种以上无机物复合组成纳米粉浆;按重量百分比计,纳米粉浆中纳米氧化镁的含量为0. 1 40%,其它无机物含量为0. 01 40%,高分子分散剂含量为0. 5 12%,余量为溶剂。
2.按照权利要求1所述的高效环保抗菌防霉无机复合纳米粉浆,其特征在于按重量百分比计,所述无机复合纳米粉浆的优选组成为纳米粉浆中纳米氧化镁的含量优选为 1 30 %,其它无机物含量优选为0. 03 30 %,高分子分散剂含量优选为1 8 %,余量为溶剂。
3.按照权利要求1或2所述的高效环保抗菌防霉无机复合纳米粉浆,其特征在于以纳米氧化镁为主体,其与纳米氧化锌、纳米氧化钛、纳米氧化铜、纳米氧化亚铜、纳米氧化银、纳米硫化锌、纳米氧化锆、纳米氧化钇、纳米氧化铝、纳米氧化钙中的三种或三种以上无机物复合组成纳米粉浆。
4.按照权利要求1或2所述的高效环保抗菌防霉无机复合纳米粉浆,其特征在于以纳米氧化镁为主体,其与纳米氧化锌、纳米氧化钛、纳米氧化铜、纳米氧化亚铜、纳米氧化银、纳米硫化锌、纳米氧化锆、纳米氧化钇、纳米氧化铝、纳米氧化钙中的五种或五种以上无机物复合组成纳米粉浆。
5.按照权利要求1所述的高效环保抗菌防霉无机复合纳米粉浆,其特征在于所述纳米氧化镁的平均颗粒尺寸小于lOOnm,纳米氧化锌的平均颗粒尺寸小于lOOnm,纳米氧化钛的平均颗粒尺寸小于lOOnm,纳米氧化铜的平均颗粒尺寸小于lOOnm,纳米氧化亚铜的平均颗粒尺寸小于lOOnm,纳米氧化银的平均颗粒尺寸小于lOOnm,纳米硫化锌的平均颗粒尺寸小于lOOnm,纳米氧化锆的平均颗粒尺寸小于lOOnm,纳米氧化钇的平均颗粒尺寸小于 100nm,纳米氧化铝的平均颗粒尺寸小于100nm,纳米氧化钙的平均颗粒尺寸小于lOOnm。
6.按照权利要求1所述的高效环保抗菌防霉无机复合纳米粉浆,其特征在于所述的高分子分散剂是聚烯烃类、聚羧酸类、聚羧酸盐类、聚丙烯酸类、聚丙烯酸盐类、聚酯类、聚酯盐类、聚酰胺类、聚酰胺盐类、聚氨酯类、聚氨酯盐类、聚醚类、聚醚盐类、聚酐类、聚硅氧烷类、聚氧乙烯类、聚氧丙烯类、马来酸酐类、聚ε -己内酮类、聚醇类、醇类中的一种或一种以上化合物。
7.按照权利要求1所述的高效环保抗菌防霉无机复合纳米粉浆,其特征在于所述的溶剂是脂肪烃类、脂环烃类、芳香烃类、醇类、酮类、酯类、萜类、醇醚及醚酯类、取代烃类、水中的一种或一种以上化合物。
8.按照权利要求1或2所述的高效环保抗菌防霉无机复合纳米粉浆的制备方法,其特征在于利用纳米氧化镁和所述的一种或一种以上纳米无机物在高分子分散剂和溶剂组成的溶液中形成的分散体系,制备一系列成分的无机复合纳米粉浆;以平均颗粒尺寸小于 IOOnm的氧化镁粉和平均颗粒尺寸小于IOOnm的所述的一种或一种以上纳米无机物为原料,按预定比例将其高速分散进入高分子分散剂和溶剂组成的溶液中,分散速度为400 3000rpm,分散时间为2 120min,混合物经球磨20min 20h,形成高度分散的无机复合纳米粉浆。
9.按照权利要求8所述的高效环保抗菌防霉无机复合纳米粉浆的制备方法,其特征在于分散速度优选为500 2500rpm,分散时间优选为5 60min,混合物经优选球磨时间为 40min 15h,形成高度分散的无机复合纳米粉浆。
10.按照权利要求8所述高效环保抗菌防霉无机复合纳米粉浆的制备方法,其特征在于所述混合物的球磨方式为行星式、滚筒式或振动式球磨方法。
全文摘要
本发明涉及抗菌材料领域,具体为一种利用纳米氧化镁与其他纳米无机物复合得到高效环保抗菌防霉无机复合纳米粉浆及其制备方法。以纳米氧化镁为主体,其与纳米氧化锌、纳米氧化钛、纳米氧化铜、纳米氧化亚铜、纳米氧化银、纳米硫化锌、纳米氧化锆、纳米氧化钇、纳米氧化铝、纳米氧化钙中的一种或一种以上无机物复合组成纳米粉浆;按重量百分比计,纳米粉浆中纳米氧化镁0.1~40%,其它无机物0.01~40%,高分子分散剂0.5~12%,余量为溶剂。将纳米无机物按预定比例高速分散进入高分子分散剂和溶剂组成的溶液中,再经球磨,制成纳米复合粉浆。该纳米复合粉浆应用在抗菌涂料、除臭剂、纺织品、纸制品、塑料、橡胶、水处理剂、船舶保护剂、化妆品等方面。
文档编号A01P3/00GK102511503SQ20111040122
公开日2012年6月27日 申请日期2011年12月6日 优先权日2011年12月6日
发明者吴进怡, 柴柯 申请人:海南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1