原位成型的椎间融合器械和方法

文档序号:1091175阅读:644来源:国知局
专利名称:原位成型的椎间融合器械和方法
相关申请本申请要求申请日为2003年2月14日的美国临时申请号60/448,221的优先权。上述申请的完整内容被收作本文参考。
背景技术
由腰椎间盘病理学导致的后背下部疼痛的主要原因,包括椎间盘破裂或退化。下肢的神经根痛可能是由于出现的椎间盘压迫脊神经根导致的。另外,后背下部疼痛可能由椎间盘的收缩和不稳定的关节变形或退化性椎小平面关节造成。所提出的解决上述问题的一种方法是取出所述有问题的椎间盘,并且用多孔器械取代它,以便恢复椎间盘高度,并且允许通过它进行骨生长,以便使相邻的椎骨融合。所述器械一般被称为″融合器械″。
椎间融合器械通常必须有几个月的时间,或者直到发生融合承受非常高的负荷(在1-4kN的数量级上)。因此,被设计用于促进在身体的其他部位的骨融合(如长骨融合)的融合器械或骨移植代用品可能不适合用作椎间融合器械。例如,很多骨融合器械披露了将诸如水凝胶的凝胶用作骨诱导性或骨形成成分的结构载体。不过,所述凝胶通常不具备腰椎间融合器械所需要的硬度或机械强度。
一般,常规椎间融合器械需要造成较大伤害的植入方法。后部植入物的开放手术植入需要接触稳定的肌肉,韧带,腱和骨结构,如小面关节。所述植入物不仅必须克服由手术过程造成的去稳定化,而且还必须增加促进骨融合所需要的额外稳定性。在腰脊柱上进行的开放式前部手术是非常危险的,因为它靠近敏感的血管结构,如大动脉和大动脉的分支。另外,前面开放式手术可能导致在脊柱上形成明显的疤痕,如果必要的话,使得前面恢复手术变得更为危险。
业已开发出了较少侵害性的方法,以便缓解上述问题。不过,现有技术需要良好的手术技能,并且明显延长了手术时间。另外,通过最低限度入侵方式插入体间融合笼子通常需要较大的插入力。
业已披露了多种被用作椎间盘,或髓核,代用品的假体植入物,包括通过不超过实施适当的椎间盘切除术所需要的小直径套管输送假体材料。因此,所述可注射的假体器械通常是以第一种流体形式输送的,并且在椎间盘切除术之后,一旦进入所述盘间隙内部硬化成第二种形式,跨越所述盘间隙高度,并且优选填充盘间隙。不过,对来自可注射的假体器械的骨融合系统的要求是非常困难的。
总之,需要可注射到盘间隙中的椎骨间支柱,它可以产生或保持相邻的椎骨体终板之间的优选的空间关系(弯曲和张开),并且包括骨形成成分,以便促进两个相邻的椎骨之间的融合。
发明概述本发明涉及用于椎骨间融合的器械和制备这种器械的方法。
在一种实施方案中,本发明是用于植入相邻的椎骨之间的矫形器械,包括基本上的弓形气囊,和装在所述气囊中的可硬化的材料。
在另一种实施方案中,本发明是椎骨间脊柱融合器械,包括至少一个弓形可充气的气囊,以便至少部分填充位于两个相邻的椎骨之间的气囊,至少部分恢复相邻椎骨之间的自然角度,并且,其中所述弓形气囊包括位于由所述气囊限定的腔中的承重成分。
在另一种实施方案中,本发明是椎骨间脊柱融合器械,包括具有上部可充气的边缘和下部可充气的边缘的前支架,和刚性可充气的后支架,连接在所述前支架的上部和下部可充气的边缘。所述前支架可分离地连接在第一流体连通装置上。所述后支架可分离地连接在第二流体连通装置上。在至少部分填充位于两个相邻的椎骨之间的上部和下部可充气的边缘和所述后支架时,至少部分恢复了所述椎骨之间的自然角度。
在另一种实施方案中,本发明是一种植入椎骨间脊柱融合器械的方法,包括以下步骤(a)施行椎间盘切除术,同时保持外部环形外壳;(b)将包括收缩的弓形气囊的充气装置插入椎骨间隙;(c)将骨生物学成分导入收缩的弓形气囊,其用量足以张开所述气囊并且张开盘间隙。
在另一种实施方案中,本发明是一种植入椎骨间脊柱融合器械的方法,包括以下步骤(a)通过套管将充气装置插入椎骨间隙,所述充气装置包括连接在至少一个流体连通装置上的弓形气囊,其中,所述充气装置在邻椎骨之间膨胀时至少部分恢复相邻椎骨之间的自然角度;(b)确定所述充气装置的方向,以便在膨胀时至少部分恢复椎骨之间的自然角度;(c)通过所述流体连通装置将承重成分导入所述充气装置。
在另一种实施方案中,本发明是至少部分恢复相邻椎骨之间的自然角度的方法,包括以下步骤(a)通过套管将充气装置插入椎骨间隙;(b)确定所述充气装置的方向,以便在所属装置膨胀时至少部分恢复椎骨之间的自然角度;和(c)通过将承重成分导入所述充气装置使所述充气装置膨胀。
在另一种实施方案中,本发明是输送骨生物学材料的方法,包括(a)将充气装置插入椎骨间隙,其中,所述器械的至少一部分在膨胀时具有基本上的环形形状,以便限定由所述环形形状的外表面构成的开口腔,并且具有轴向尺寸和径向尺寸;(b)确定所述器械的至少一部分的方向,以便所述开口腔的轴向尺寸基本上平行于业已植入了所述器械的患者脊柱的长轴;(b)通过将承重成分导入所述充气装置使所述充气装置膨胀;(c)将骨生物学材料导入所述开口腔,所述材料包括至少一种水溶性材料;(d)将含水流体导入由所述充气装置限定的开口腔,以便溶解至少一种所述水溶性材料,并且形成多孔基体;和(e)将其他骨生物学成分导入所述多孔基体,其用量足以填充所述多孔基体体积的至少90%。
在另一种实施方案中,本发明是药用组合物,包括可以药用的载体或稀释剂和(a)选自下列的在38℃-45℃之间可流动的至少一种聚合物聚(ε-己内酯),聚(对二噁烷酮),或聚(环丙烷碳酸酯)的均聚物或共聚物或它们的混合物,或对二噁烷酮或环丙烷碳酸酯与乙交酯或丙交酯的共聚酯或它们的混合物,并且,具体地讲,对二噁烷酮/乙交酯,对二噁烷酮/丙交酯,环丙烷碳酸酯/乙交酯和环丙烷碳酸酯/丙交酯的共聚酯,或ε-黽内酯和乙交酯或它们的混合物的共聚酯,或ε-己内酯和丙交酯的均聚物的混合物;和(b)选自下列的能够承受在至少大约45℃下的变性的至少一种生长因子骨形态发生蛋白。
在另一种实施方案中,本发明是椎间融合器械包括原位成型的骨生物学成分,包括(a)基体,具有限定适合通过它进行骨生长的开口空隙,和(b)位于所述开口空隙中的骨形成成分。
在另一种实施方案中,本发明是用于提供通过盘间隙的骨融合的椎间融合器械,包括(a)具有用于支撑所述上终板的上表面和用于支撑所述下终板的下表面的支柱,和(b)原位成型的骨生物学成分。
在另一种实施方案中,本发明是用于提供通过盘间隙的骨融合的包括支柱的椎间融合器械,包括(a)用于支撑所述上终板的上表面,(b)用于支撑所述下终板的下表面,和(c)位于所述上表面和下表面之间的可注射的承重组合物。
在另一种实施方案中,本发明是包括基体的椎间融合器械,具有限定适合通过它进行骨生长的开口空隙,其中,所述基体是通过多个原位结合的球限定的。
在另一种实施方案中,本发明是包括支柱的椎间融合器械包括(a)第一部件,包括(i)适合支撑下脊椎终板的下支撑表面,和(ii)上表面,包括前端,倾斜的中部和尾端;和(b)第二部件,包括(i)适合支撑上脊椎终板的上支撑表面和(ii)上表面,包括前端,倾斜的中部和尾端。第一部件的倾斜部分与第二部件的倾斜部分配合。
在另一种实施方案中,本发明是提供通过椎间盘间隙的体间融合的成套用具,包括(a)限定内径的套管;(b)能够支撑椎骨间负荷的可硬化的材料;和(c)可流动的骨生物学组合物。
在另一种实施方案中,本发明是用于提供通过盘间隙的骨融合的椎间融合器械,包括(a)具有用于支撑上终板的上表面和用于支撑下终板的下表面的支柱,所述上表面和下表面在它们之间限定了高度,和(b)原位成型的骨生物学成分。所述支柱的高度不超过所述盘间隙的高度。
在另一种实施方案中,本发明是提供通过椎间盘间隙的体间融合的方法,包括以下步骤(a)提供限定内径的套管;(b)通过所述套管移动承重组合物,并且进入所述盘间隙,以便限定原位成型的承重支柱;和(c)通过所述套管移动骨生物学组合物,并且进入所述盘间隙,以便形成原位成型的骨生物学组合物。
在另一种实施方案中,本发明是用于提供通过盘间隙的骨融合的椎间融合器械,包括支柱,包括(a)用于支撑所述上终板的上表面和(b)用于支撑所述下终板的下表面。所述支柱包括原位成型的承重组合物。
在另一种实施方案中,本发明是用于提供通过盘间隙的骨融合的椎间融合器械,包括支柱,包括(a)用于支撑所述上终板的上表面,(b)用于支撑所述下终板的下表面,和(c)位于所述上表面和下表面之间的原位成型的承重组合物。
在另一种实施方案中,本发明是椎间融合器械,包括(a)具有形状记忆的支柱,并且包括(i)用于支撑所述上终板的上表面,(ii)用于支撑所述下终板的下表面,和(b)原位成型的骨生物学成分。
在另一种实施方案中,本发明是椎间融合器械,包括(a)具有用于支撑所述上终板的上表面和用于支撑所述下终板的下表面的支柱,和(b)原位成型的骨生物学成分,包括具有限定支架的内表面的基体成分,具有适合通过它的骨生长的开口空隙,和位于所述开口空隙中的骨形成成分。
在另一种实施方案中,本发明是椎间融合器械,包括具有用于支撑所述上终板的上表面和用于支撑所述下终板的下表面的支柱,和原位成型的骨生物学成分,包括可注射的基体成分,和包埋在所述基体中的骨诱导成分。
在另一种实施方案中,本发明是椎间融合器械,包括具有用于支撑所述上终板的上表面和用于支撑所述下终板的下表面的支柱,和原位成型的骨生物学成分,包括可注射的基体成分,和包埋在所述基体中的成孔剂。
在另一种实施方案中,本发明是椎间融合器械,包括具有用于支撑所述上终板的上表面和用于支撑所述下终板的下表面的支柱,和原位成型的骨生物学成分,包括限定空腔的可膨胀的装置,和位于所述空腔中的可注射的骨生物学组合物。
在另一种实施方案中,本发明是包括支柱的椎间融合器械,包括具有空腔的可膨胀的装置,用于支撑所述上终板的上表面,用于支撑所述下终板的下表面,和限定通孔的内壁,和位于所述空腔中的可注射的承重组合物,和位于所述通孔中的骨生物学成分。
在另一种实施方案中,本发明是椎间融合器械,包括具有用于支撑所述上终板的上表面和用于支撑所述下终板的下表面的支柱;和原位成型的骨生物学成分,包括可注射的,基本上不含单体的基体成分基体成分。
在另一种实施方案中,本发明是用于提供通过盘间隙的骨融合的包括支柱的椎间融合器械,包括(a)用于支撑所述上终板的上表面,(b)用于支撑所述下终板的下表面,和(c)位于所述上表面和下表面之间的原位成型的承重组合物,并且用包括交联的可再吸收的聚合物的材制成。
本发明的优点是多方面的。一个优点是本发明可以利用最低侵害性手术方法恢复自然角度,并且加大两个相邻的椎骨之间的盘间隙。另外,可以用相同的装置限定张开/脊柱前凸,可以起着保持高度和自然角度的椎骨间植入物的作用。另一个优点是,本发明可以利用最低侵害性方法原位限定填充了骨诱导性材料的结构支架。
附图的简要说明

图1是可再吸收的聚合物和骨生长的强度与时间的曲线图。
图2(a)-2(e)是本发明的装置的半圆形,圆形,双面和基本上新月形,弓形,或环形形状的优选实施方案的示意图。
图2(f)和2(g)分别表示本发明装置的优选实施方案的透视图和俯视图。
图3(a)和图3(b)分别表示将套管导入盘间隙的优选方法的透视图和俯视图。
图4(a)和图4(b)分别表示通过所述套管将所述充气装置部署到盘间隙的优选方法的透视图和俯视图。
图5(a)和图5(b)分别表示本发明的实施方案的透视图和俯视图,其中,所述装置包括基本上的环形气囊,并且,将所述骨生物学成分注入由所述基本上的环形气囊的外表面限定的开口腔。
图6(a)和图6(b)分别表示本发明的包括一个以上气囊的实施方案的透视图和俯视图。
图7(a)和图7(b)分别表示本发明的包括一个以上气囊的另一种实施方案的透视图和俯视图。
图8(a)和图8(b)表示本发明的包括具有强化壁的弓形可充气的气囊的实施方案。
图9(a)-(d)表示充气装置和将本发明的充气装置插入盘间隙的实施方案,其中,将一对半-圆形柔性部件用于引导所述装置。
图10(a)和10(b)分别表示本发明的充气装置的实施方案的平面图和侧视图,其中,将可用于引导所述装置的一对半-圆形柔性上壁部件和下壁部件通过可充气的气囊的结合在一起。
图11(a)和(b)表示本发明的实施方案,其中,所述装置包括四个半-圆形柔性部件,用于将所述充气装置导入盘间隙。
图12(a)和(b)表示包括导向部件的本发明的另一种实施方案。
图13(a)-(d)表示本发明方法的优选实施方案。图13(a)和图13(b)表示将套管插入椎骨间隙,然后通过所述套管将具有基本上的环形形状的可充气的气囊插入椎骨间隙。通过将承重成分导入所述气囊使所述气囊膨胀。图13(c)表示将包括水溶性成分的骨生物学成分导入由所述气囊的外表面限定的开口腔,和图13(d)表示溶解所述水溶性成分。
图14(a)和(b)分别表示本发明的采用了坡道的装置的另一种实施方案的俯视图和侧视图。
图14(c)是图14(a)和(b)所示装置的剖视图。
图14(d)是图14(a)-(c)所示装置的透视图。
图15表示采用了图14(a)-(d)所示装置的方法的一种实施方案。
图16表示采用图14(a)-(d)所示装置的方法的另一种实施方案。
图17(a)和(b)分别表示处在收缩和膨胀状态下的本发明的特别优选的实施方案的装置。
发明的详细说明本发明涉及用于同时张开两个相邻的椎骨体并且将可流动的材料的输送到盘间隙的椎骨融合器械。在本文中,术语″椎骨融合″表示医学方法,它导致了保持椎骨之间的分离。在一种实施方案中,椎骨融合提供了骨向内生长,它能够以理想的,例如,张开的和/或倾斜的状态固定两个相邻的椎骨。
在优选实施方案中,两个相邻椎板之间的自然角度是通过融合所述两个相邻的椎骨再现的。在本文中,″自然角度″表示自然脊柱前凸或自然驼背。所述角度可以由正、负或零(即,相邻的椎骨的相对的表面大体是共平面的)。在一种实施方案中,再现或恢复了自然脊柱前凸。在本文中,术语″自然脊柱前凸″表示在脊柱腰段或脊柱颈段中两个相邻椎板之间的自然角度,其中,两个相邻椎板的前部之间的距离不小于两个相邻椎板的后部之间的距离。在另一种实施方案中,再现或恢复了自然驼背。在本文中,术语″自然驼背″表示在脊柱胸段两个相邻椎板之间的自然角度,其中,两个相邻椎板的前部之间的距离不大于两个相邻椎板的后部之间的距离。
在椎骨融合的另一种实施方案中,融合装置保持椎骨之间的分离。优选的是,所述融合装置至少部分恢复了髓核的自然功能,包括允许相对自由的运动,同时基本上保持椎骨之间的分离。
所述器械的成分包括选自下列的至少一种成分承重成分和骨生物学成分。优选的是,同时使用这两种成分。在某些实施方案中,承重成分包括骨生物学成分。在本文中,术语″承重″成分或材料表示将椎骨支撑在张开状态的任何材料。所述承重成分包括容纳在可充气的气囊中的可硬化的材料或不可压缩的流体。术语″支柱″表示所述器械的任何部件,部分或成分,包括可流动的材料,它是单独的或者与所述装置的其他部件,部分或成分组合,能够将所述椎骨支撑在张开的状态。支柱的例子包括硬化的可流动的材料,具有刚性壁的气囊和可充气的气囊或填充了可硬化的材料或不可压缩的流体的袋子。所述支柱的用途是承受高的脊椎负荷。另外,所述支柱可用于增加盘间隙高度和/或至少部分恢复或限定要融合的脊椎部位的弯曲。对神经根减压和恢复或形成健康的脊柱弯曲来说,增加椎间盘高度对于避免相邻椎间盘的加速退化是重要的。术语″弓形″表示具有基本上相当于脊椎终板外周的曲线的形状,但是,不包括闭合的环形或基本上的环形结构。
在本文中,″骨生物学″成分或材料表示任何能够诱导和/或支持存在或新骨生长的材料。在某些实施方案中,所述承重材料包括骨生物学材料。例如,包括骨生长因子或间叶干细胞的材料是骨生物学成分。骨生物学成分还可以包括骨诱导性成分和骨传导性成分中的一种或两种。在本文中,″骨诱导性″成分或材料表示能够诱导骨生长的任何材料。优选的是,骨诱导性成分包括诱导骨祖细胞,以便形成新骨的信号分子。骨诱导性成分的例子是骨形态发生蛋白(BMP′s),生长分化因子(GDF′s)和转化生长因子(TGF)。在本文中,″骨传导性″成分或材料表示可以提供在诱导之后支持骨生长的任何材料。骨传导性成分的例子包括天然胶原型材料,包括骨骼,和合成的多孔可再吸收的聚合物和陶瓷。
一般,本发明涉及原位成型的椎间融合器械。优选的是,所述原位成型的器械的成分可以经皮输送(例如,通过直径不超过5mm,优选不超过2mm的套管输送)。不过,所述原位成型的器械的前体成分还可以通过更大尺寸的套管输送(如高达18mm,或通过Craig针头)。更优选的是,所述原位成型的器械的成分是以可注射的组合物形式输送到盘间隙中的。
对本发明来说,术语″原位成型的″表示以第一种形式输送到盘间隙中,并且在进入盘间隙之后采用另一种形式的任何材料。在某些实施方案中,″原位成型″包括将粘性流体输入盘间隙,并且使所述流体硬化。在某些实施方案中,″原位成型″包括将独立的成分输送到盘间隙,并且将这些成分粘合(优选的是,加热粘合或通过反应粘合)在一起。在某些实施方案中,″原位成型″包括将独立的成分输送到位于盘间隙中的充气装置的开口中,并且通过封闭所述充气装置的开口阻止它们从所述充气装置中流出。在某些实施方案中,″原位成型″包括将独立的成分输送到盘间隙,并且在盘间隙中将这些成分组装在一起。
″原位成型″排除了将诸如自体移植物或同种异体移植物颗粒的包装颗粒简单地包装到盘间隙中,以及简单地将凝胶输送到盘间隙中。
不受任何特定理论的约束,据信,常规融合系统,通常面临着植入物和骨生长之间的竞争。参见图1,提供了常规可再吸收的植入物(点划线)和取代所述植入物的骨骼(实线)的假想强度曲线。为了说明图1,将该系统的强度定义为低于所述可再吸收的植入物的强度,和愈合的骨骼的强度。然后,在手术方法的时间(T0)和完成骨愈合的时间(TF)之间,施加在该系统上的负荷必须不能超过该系统在点C的强度(表示为Sc)。本领域公知的是,在人腰脊柱上的每天活动负荷的平均体内最大负荷为4,000N。假设该负荷是所述系统要经受的最大负荷,该系统强度应当不低于4,000N。
由于可以将所述支柱制作得相对牢固(例如,能够支撑大约15kN的轴向压力),即使在施加到该系统上的负荷较高时,该系统的强度仍然足以支撑盘间隙,并且发生融合。一旦通过所述骨生物学成分发生了充分的骨生长,所述支柱就可以降解,而不会危急盘间隙的支撑。
总之,所述支柱能支撑盘间隙,同时所述骨生物学组合物能生长骨骼。
在优选实施方案中,本发明的支柱以类似于椎骨体的皮层边缘的方式起作用。所述支柱的所述承重组合物的理想特征如下a)足以承受由椎骨体承受的常见负荷的强度;b)类似于皮层骨的硬度(或,在较厚的实施方案中,皮层-松质骨);c)至少一年,优选至少18个月的降解阻力(例如,能够承受至少15MPa,优选至少25Mpa的降解阻力)d)再吸收性。
因此,在一种实施方案中,本发明是包括可再吸收的承重材料的椎骨间脊柱融合器械,其中,所述可再吸收的承重材料和所述新骨生长的组合提供了至少足以支撑脊椎负荷的承重能力。优选的是,所述承重材料包括或补充了骨生物学成分。在另一种实施方案中,本发明是制备椎间融合器械的方法,包括选择可再吸收的承重材料,其中,所述可再吸收的承重材料和所述新骨生长的组合提供了至少足以支撑脊椎负荷的承重能力。
在一种实施方案中,所述支柱应当具有足以提供覆盖相应的脊椎终板的大约3%-大约40%的面积的覆盖区。优选的是,所述支柱能覆盖相应的脊椎终板的大约10%-大约30%,更优选为大约10%-大约20%。
在某些实施方案中,其中,所述骨生物学成分包括下列成分中的至少一种a)生长因子和b)骨形成成分,例如,细胞来源(如干细胞),据信,所述支柱覆盖区可以占所述盘间隙的大约10%-大约20%。这是因为据信这些添加剂可以缩短融合时间,以便显著降低脊柱损坏的危险。类似的,在某些实施方案中,其中,所述骨生物学成分包括a)生长因子和b)如干细胞,据信,所述支柱覆盖区可以是盘间隙的大约5%-大约10%。
另外据信,提供了所述骨生物学成分,它具有a)生长因子和b)干细胞提供了理想的设计选项。这些添加剂还可以减少或消除对晚期或补充固定的需要。现有的后期固定通常被认为是在椎体间隙中获得成功融合所高度理想的。在某些实施方案中,提供了有效数量的这种添加剂,可以加快融合速度,以便使得多余的后期或补充固定变得不再必要,并且患者不再需要忍耐更有侵害性的螺钉固定方法,以便提供融合所需要的稳定性。
在某些实施方案中,所述器械可以包括半圆形,圆形,双面(包括一个以上气囊)和基本上的环形形状的气囊。在图2(a)-(e)中示出了本发明的器械在椎骨10的终板8上的优选实施方案和位置。参见图2(a),这种形状使得气囊12能基本上至少覆盖相应的脊椎终板8的前部周边14,以便承受大部分的脊椎负荷。这种形状还使得外科医生首先将该器械放置就位,然后用,例如骨生物学成分填充盘间隙的其余部分。
参见图2(b),在其他实施方案中,气囊12具有准圆形形状。该器械的优点是提供比图2(a)所示的实施方案的承重能力更强的覆盖区,并且还能基本上阻止在随后填充由气囊的外表面限定的开口腔期间发生的不希望的所述骨生物学成分的泄露。
参见图2(c),在某些实施方案中,所述器械包括两个气囊12,它们可用于支撑椎骨负荷。使用两个气囊使得外科医生能均匀地将负荷支撑在终板8的每一侧。
参见图2(d),在某些实施方案中,气囊12具有基本上的环形(″香蕉″)形状,所述香蕉形状使得外科医生可以将一个器械放置就位,优选放置在盘间隙的前半部分14。在其他实施方案中,所述支柱具有香蕉笼子形状的覆盖区,如在律师档案号#DEP 5012,″NovelBanana Cage″中所披露的,申请日为2002年12月31日,美国申请流水号10/334599,它的整体内容被收作参考。
参见图2(e),在某些实施方案中,支柱12是横向导入的,以便限定基本上横跨终板8的单一的坡道。这种设计的优点是,在用于手术的后外侧通道时是有利的,因为该通道利用了以下事实位于所述通道附近的肌肉平面允许植入物以较少侵害性方式输送。
参见图2(f),在优选实施方案中,本发明的器械具有基本上半圆形的覆盖区。将所述器械放置在椎骨10的终板8的前部,以便所述器械前部的高度D等于或大于所述器械厚度的高度h。参见图2(g),所述器械限定了内径,外径re和厚度t。在一种实施方案中,如图2(g)所示,ri基本上等于22mm,re基本上等于25mm,而t基本上等于3mm。
在优选实施方案中,所述支柱的高度至少为自然盘间隙的90%,并且优选至少等于自然盘间隙的高度。这使得外科医生可以张开盘间隙,并且恢复所述盘高度的至少一部分。在某些实施方案中,所述支柱的高度大于自然盘间隙的高度。
在本文中,单词″张开″表示结合表面分开理想的程度,而不会出现它们的结合韧带的破裂并且没有位移。张开可以通过任何合适的装置实现,例如,机械或流体静力学装置。例如,机械装置可以包括将钩子或爪子结合在骨终板上,并且利用所述钩子或爪子分离骨骼。外科医生可选择性地采用外部牵引。在一种实施方案中,将原位材料用作张开装置。其他装置包括,例如,流体静力学装置,例如,通过对所述生物材料本身进行加压注射。通过利用张开,可以充分地重建盘间隙,以便获得任何理想的最终尺寸和位置。选择性地,并且优选的是,用于实现张开的装置还起着可流动的承重支柱材料的一个或多个屏障(例如,气囊)的作用。
可以在椎间盘切除术本身之前和/或期间张开盘间隙,和/或输送可流动的生物材料。收缩的盘间隙的高度通常为3-4mm。合适的张开装置可以提供大约3个大气压-大约4个大气压的压力(或大约40psi-大约60psi),以便将所述间隙张开到8-12mm的高度。
在一种实施方案中,所述支柱具有楔形形状,以便所述膨胀装置前部高度大于所述膨胀的装置后部的高度。这使得外科医生可以恢复脊柱前凸,此时,所述体间融合器械被用于脊柱的腰段或颈段。优选的是,所述楔形形状产生了5-20度的角度,更优选为5-15度。
在另一种实施方案中,所述支柱具有楔形形状,以便所述膨胀装置前部高度小于所述膨胀的装置后部的高度。这使得外科医生可以恢复脊柱前凸,此时,所述体间融合器械被用于脊柱的胸区域。优选的是,所述楔形形状产生了5-20度的角度,更优选为5-15度。
在优选实施方案中,所述支柱中间部分的高度大于所述膨胀的装置的后面部分的高度。这种几何形状更接近于盘间隙的自然凸起。
采用本发明的可注射的装置,提供了与患者终板的解剖形状吻合的“定制的”植入物。一致的植入物的提供可以提供更快和更一致的融合。
在某些实施方案中,所述纤维环本身可用作合适的模具,用于输送并且制造可流动的承重材料(在一种实施方案中)或所述骨生物学成分(在另一种实施方案中)。自由注射可以优化可注射的装置与盘间隙的轮廓吻合的程度,以便提高对向后压力的承受能力。
可以处理所述纤维环的内表面或者用合适的材料覆盖,以便提高它的完整性,并且用作模具。
在某些实施方案中,在放入盘间隙之前,将至少一种可流动的材料输送到充气装置(如气囊)中。
在某些实施方案中,在放入盘间隙之前,将所述承重组合物输入充气装置(如气囊)。参见图3(a)和(b),在一种优选方法中,将内径不超过6mm的套管18插入盘间隙。然后,参见图4(a)和(b),通过套管18的出口展开充气装置12,并且将可流动的承重组合物导入所述充气装置,其压力和体积适合张开所述充气装置,并且分开盘间隙。
所述膨胀的装置的固定形状使得外科医生能够预先确定可流动的材料的形状,并且用所述可流动的材料简单地填充所述装置。所述装置基本上避免了材料的不希望的流动。阻止不希望的流动,优选阻止了所述材料对重要的周围结构,如脊髓,大动脉和腔静脉的破坏。另外,所述充气装置可以是修饰过的,以便填充盘间隙的任何部分。
另外,本发明人认为,在支柱中采用可充气的气囊,可以确保生物可吸收的材料降解的相反趋势,并且新骨生长会导致椎骨以接近相邻椎骨之间的自然角度的状态融合。如果所述气囊是用可再吸收的,不透水的材料制成的话,所述气囊能在融合的起始阶段对所述承重组合物进行防水,并且推迟所述承重材料的水解作用和降解的发生。优选的是,所述气囊在骨生物学组合物融合之后大约1-2个月内开始降解,以便使得它所容纳的承重材料缓慢地降解并且生长骨骼。
在某些优选实施方案中,盘间隙的张开是通过可充气的,刚性的气囊或气囊实现的。所述气囊能够以收缩的形式输送到所述环面内部,并且在这里充气,以便张开盘间隙,并且提供用于输送生物材料的部位。所述气囊优选具有足够的长度并且具有合适的尺寸并且张开所述间隙到需要的程度,并且保持所述间隙处在张开的状态足够输送所述生物材料,和选择性地硬化的时间。
所述气囊的主要功能之一是在注射到它里面之后影响或控制所述可硬化的材料的形状。随着时间的延长,所述可植入的气囊正常情况下不需要制止压力。因此,与常规血管成形术或其他扩张气囊相比允许具有更大的设计灵活性。例如,所述气囊可以是多孔,用于药物输送,正如业已讨论的,或者允许进行骨结合和/或骨向内生长。
在一种特别优选的实施方案中,提供了用于融合椎间盘间隙的方法,包括以下步骤a)采用显微外科技术进行椎间盘切除术,同时保持外部环形外壳;b)将收缩的气囊插入盘间隙;c)可流动的承重组合物注入收缩的气囊(优选的是,其用量足以张开盘间隙),和d)固化所述可流动的支柱材料。
在一种特别优选的实施方案中,提供了用于融合椎间盘间隙的方法,包括以下步骤a)采用显微外科技术进行椎间盘切除术,同时保持环形外壳;b)将具有外周支柱的收缩的气囊插入盘间隙;c)将骨生物学成分注入可收缩的气囊,其用量足以张开所述气囊,并且用所述气囊的所述支柱成分张开盘间隙。
选择性地,并且优选的是,所述间隙是通过使用一个或多个合适的可插入的或可充气的装置张开的,例如,可充气的气囊的形式。在充气时,所述气囊提供了刚性壁(例如,纤维支撑的),所述气囊强到足以张开所述间隙。具有足够强度和尺寸的充气装置可以使用常规材料制备。在一种实施方案中,可以将未充气的气囊输送到环形外壳的中央,并且在这里充气,以便张开所述环形外壳,并且进一步张开所述间隙。在另一种实施方案中,所述未充气的气囊可以输送到环形外壳的前部边缘,并且在这里充气,以便提供用于注射所述承重的可流动的材料的间隙。
优选的是,所述承重组合物是以足以张开所述间隙的用量注入的。
所述充气装置可以是通过任何合适的装置输送到盘间隙的,例如,以收缩形式保持在刚性或半-刚性杆内或保持在它的末端。一旦放入所述盘中,位于环形外壳的中央或沿环形边缘放置,可以通过所述杆输送合适的气体(例如,氮气或二氧化碳)或所述可流动的承重材料,以便在原位对所述气囊进行充气,使它在径向或纵向方向上充分充气。在某些实施方案中,将承重的支柱材料的球简单地包装到所述气囊中。所述气囊是否适当地放入可以通过使用辅助装置验证,如使用C-臂,或通过包含在所述气囊本身内或它的输送装置中的自我执行的装置。
对它的组成部件来说,在本发明的一种优选的气囊输送气体中,提供了充气装置,马达驱动装置,具有与管系列结合的遥控器,nonscope流入输送套管,它具有独立的流体动力学压力,和流速调节装置,用于冲洗,真空,废物过滤,和溢流罐的附件。
用于制备本发明气囊的合适材料包括目前用于气囊血管成形术的材料。合适的材料提供了以下特性的优化组合如顺从性,生物稳定性和生物兼容性,以及生物特性,如弹性和强度,气囊能够以任何合适的形式提供,包括具有多层的气囊,以及在膨胀时具有多个腔室的形式。有用的气囊装置包括所述气囊本身,以及输送套管(选择性地具有多个纵向延伸的肋腔,和流体或气体压力装置。
用于制备气囊的合适材料的例子(例如,树脂)包括,但不局限于,聚烯烃共聚物,聚乙烯,聚碳酸酯,聚对苯二甲酸乙二醇酯和醚-酮聚合物,如聚(醚醚酮)。所述聚合材料能够以无支持的形式,或支持的形式使用,例如通过整合DacronTM或其他纤维。优选的是,制造所述气囊的材料能够承受至少80℃,优选至少100℃,更优选至少250℃的软化或熔化温度。另外,所述气囊(或气囊样结构)可以用多种编织或非编织纤维,织物,金属网,如织物或编织的金属丝,和碳中的任意一种制成。生物兼容的织物或片状材料,如ePTFE和Dacron也可以使用。
根据输送和固化生物材料的方式,气囊可以采用若干种形式。例如,可以将单个的,薄壁气囊用于接触其余环状材料的内表面并且沿该表面形成屏障。一旦就位,所述可流动的承重成分可以输送并且在所述气囊内固化,以便起着本发明的承重支柱的作用。在所述实施方案中,所述气囊优选具有使它可以保留在环状材料和固化的承重成分之间的位置上,而又没有过度的破坏作用。
气囊可以选择性地仅仅主要填充盘间隙的中央部分。在所述实施方案中,所述气囊可以是,例如,圆柱形状的。可以提供这样的气囊,以便它的上壁和下壁处在与相对的椎骨体接触的状态,而它的侧壁提供了足够的强度,以便在充气时张开所述间隙。然后,将所述承重成分输送到所述环形间隙的周边,即,位于环状材料和所述气囊之间的间隙,并且在那里固化。随着将额外的生物材料插入所述间隙,所述气囊可选择性地逐渐缩小。然后,一旦所述承重材料稳定地定位,就将所述骨生物学成分导入所述气囊,以便填充所述气囊。
在某些实施方案中,所述气囊具有整合在它里面的金属丝或其他可成像的装置。在荧光显微镜下可以看见的任何材料都是可以接受的。潜在的材料包括任何金属,金属合金或陶瓷,它们可以与聚合物组合。所述材料可以是结合在所述气囊内或它的表面上的金属丝,丝网,或颗粒形式的。
在某些实施方案中,所述气囊具有化学活性的内表面,以便在它聚合时与所述气囊的填料结合。在本文中,化学“结合”被理解成是存在于两个原子之间或原子的基团之间,当作用在它们之间的力大到足以导致形成具有足够稳定性的聚合物时,就被认为是独立类型的。在本文中,″化学活性″表示能够形成化学键。在一种例子中,所述表面是通过诸如等离子聚合的方式化学修饰过的。在这种场合下,将所述气囊放入真空室,并且产生含有小分子(例如胺)的等离子体。用所述小分子轰击所述气囊表面,并且所述小分子化学结合在它的表面上。具有它的胺基的所述气囊的表面随后可以与注入所述气囊的聚合物(即,环氧树脂)起反应,形成具有更大的疲劳性能的装置,因为气囊和气囊填料“复合物”是彼此化学结合在一起的。
通过最低侵害性方式将需要数量的本发明的承重和骨生物学成分输送到制备部位。在输送之前,可以将这些成分储存在合适的储存容器种,例如,不锈钢,特氟龙衬里的金属罐。可以根据需要用泵将所述可流动的成分从储存罐输送到输送套管。所述成分能够以单一组合物的形式输送,或者能够以多种成分或组份的形式输送。
在某些实施方案中,所述充气装置可以用粘性材料填充,这些材料随后固化,以便形成所述支柱或骨生物学成分。所述粘性材料可以是加热的聚合物(如含有聚己酸内酯的组合物),或聚合物前体成分(如可光聚合的酸酐,参见A.K.Burkoth,Biomaterials(2000)212395-2404,所述文献的完整内容被收作本文参考)。
在某些实施方案中,在加压条件下,如通过使用泵将被加热到产生大约100-大约500cps的粘度的可流动的承重组合物,如聚己酸内酯注入所述气囊,压力范围为大约4ATM-大约10ATM或更高,这取决于粘度,气囊强度和其他设计因素。所述泵可以工作足够的时间,并且在足够的压力下工作,以便确保聚己酸内酯使所有的对二噁烷酮纤维湿润。该时间可以为大约10分钟或更长至大约1小时,并且,在一种用途中,所述泵是在大约5ATM的压力下工作,需要至少大约1小时。可以根据聚己酸内酯的粘度注入压力,注入流速,包装填料的密度,以及本领域技术人员在阅读本说明书之后显而易见的其他变量优化特定的方法参数。
在文献中业已报导了插入盘间隙的气囊可以经受向后的压力。因此,在本发明的某些实施方案中,在膨胀时,所述充气装置形成了多个从它的上表面向外突出的第一齿。在所述装置膨胀时,这些齿沿所述上终板的方向突出,并且,在该装置完全膨胀时,会与所述终板结合,以便形成与所述终板的互锁,并且承受向后的压力。
优选的是,这些齿是用刚性可再吸收的材料,如聚醚醚酮(PEEK)制成。优选的是,所述齿的高度为0.5-1.5mm,并且具有三角形截面。
在本发明的某些实施方案中,在膨胀时,所述充气装置限定了由具有高摩擦系数的材料构成的上表面。在所述装置膨胀时,所述上表面和下表面的高的摩擦系数会导致对所述上表面的任何运动的拖拉,并因此将所述装置保持在原位,并且承受向后的压力。
优选的是,所述充气装置的上表面和下表面由选自下列的材料制成聚醚嵌段共聚物(PEBAX),ABS(丙烯腈丁二烯苯乙烯);ANS(丙烯腈苯乙烯);Delrin;PVC(聚氯乙烯);PEN(聚萘二甲酸乙二醇酯);PBT(聚对苯二甲酸丁二醇酯);聚碳酸酯;PEI(聚醚酰亚胺);PES(聚醚砜);PET(聚对苯二甲酸乙二醇酯);PETG(聚对苯二甲酸乙二醇酯),高和中等熔化温度聚酰胺,芳族聚酰胺,聚醚,聚酯,Hytrell,聚甲基丙烯酸甲酯,聚氨基甲酸酯共聚物,EVA(乙烯乙酸乙烯酯)或乙烯基乙烯醇;低,线性低,中等和高密度聚乙烯,胶乳橡胶,FEP,TFE,PFA,聚丙烯,聚乙烯;聚硅氧烷,液晶聚合物,inomers,Surlins,硅橡胶,SAN(苯乙烯丙烯晴),尼龙6,6/6,6/66,6/9,6/10,6/12,11,所有PEBAXs12;聚醚嵌段酰胺;和热塑性弹性体等。
在某些实施方案中,与盘间隙相对的脊椎终板是粗糙的。这种粗糙性提供了凸起和凹陷。可流动的聚合物可以在所述凹陷中流动并且硬化,以便在所述装置和骨表面之间形成机械闭锁,并且承受向后的压力。
所述粗糙度可以通过机械(如耳匙),或化学(如通过酸),或通过能量传递装置(如消溶装置,优选借助于超传导流体,如高渗盐水)提供。
在某些实施方案中,形成机械闭锁的所述可流动的聚合物的独立的层。换言之,所述可流动的聚合物可以是所述支柱的成分。换言之,所述可流动的聚合物可以是骨生物学组合物的成分。
在某些实施方案中,所述装置的支柱部分可以具有支架材料的外层,适合接受生骨因子和/或生长因子,以便产生快速的骨向内生长,以便有效将所述支柱锁定在原位。
在某些实施方案中,支架材料的外层适当地接种了生骨因子和/或生长因子,还可将它用在所述骨生物学成分的气囊成分中。所述接种同样产生了快速的骨向内生长,以便有效地将所述骨生物学成分锁定在原位。
本发明的气囊可以用在血管成形术装置中使用的材料和生产技术制备。Green的美国专利号5,807,327,所述文献的完整内容被收作本文参考,(以下称之为″Green″)披露了用于本发明的气囊。由Green披露的用于所述气囊的材料包括坚硬的非-顺从性的层状材料(第8栏,第18-36行),和具有高摩擦系数的层状材料(第8栏,第42-54行)。
参见图5(a)和(b),在某些实施方案中,通过可充气的气囊12将所述承重成分输入盘间隙,而所述骨生物学成分20是自由地注入的。该实施方案是理想的,因为气囊12可以起着所述承重成分水解的障碍物的作用,以便延长所述承重成分的寿命。相反,用所述骨生物学成分覆盖的所述气囊的缺乏,在需要马上开始骨生长过程的场合下是理想的。
该实施方案在以下场合下可能是有利的,其中,所述承重成分包括可交联的组合物,并且外科医生希望在所述前体反应期间提供患者组织和前体之间的屏障。
参见图6(a)和(b),在某些实施方案中,所述使用包括两个独立的可充气的气囊12的装置将所述承重和所述骨生物学成分输入盘间隙。该实施方案在以下场合下是理想的,其中,业已功能性地破坏了环状纤维化,并且可流动的材料可能从盘间隙流出,并且通过所述裂口进入身体的其他部分。在本实施方案中,含有所述骨生物学材料的所述气囊优选对养分至少是半透性的,并且优选是可再吸收的。在本文中,术语″半透性的″表示是上述可流动的材料不能渗透的,但是对支持这里的骨生长重要的水和养分来说是可渗透的。合适的半透性的材料包括多孔的和无孔的聚合物结构,如薄膜,织物(纺织和无纺)和泡末。
在某些实施方案中,通过充气装置将所述承重和所述骨生物学成分输入盘间隙。
参见图7(a)和(b),示出了本发明装置和方法的另一种实施方案,其中,所述装置包括至少两个可充气的气囊12。在本实施方案中,所述承重成分是通过至少两个可充气的气囊12输送到盘间隙中的,并且,所述骨生物学成分20是自由地注入盘间隙的,利用了气囊之间的空间。
在某些实施方案中,通过充气装置将所述骨生物学成分输入盘间隙,而所述承重成分是自由地注入的。该实施方案在以下场合下是有利的,其中,所述骨生物学成分包括原位可硬化的组合物,如含有钙的粘合剂,或可交联的聚合物,如聚(丙烯富马酸酯),聚酸酐,或polyoxaester,并且外科医生希望在它们的反应期间使患者不接触所述前体。在本实施方案中,另外优选的是,包括骨生物学材料的所述气囊对养分来说至少是半透性的,并且优选是可再吸收的。该实施方案在以下场合下可能是有利的,其中,所述承重组合物包括生长因子,并且外科医生希望在所述承重成分中马上开始骨生长过程。
¥在某些实施方案中,通过充气装置将所述承重成分输入盘间隙,并且所述骨生物学成分是自由地注入的。该实施方案在以下场合下可能是有利的,其中,环状纤维化基本上完整的,并且外科医生希望立即在所述承重成分中开始骨生长。
在某些实施方案中,所述充气装置包括具有上表面和下表面,上壁和下壁的单一的外周壁,以及在它们之间限定的空腔。对本发明来说,该实施方案的形状被称作″圆盘″。可以对所述圆盘的外周壁和上壁和下壁进行设计,以便可以通过内径为0.5-18mm,优选不超过4mm的套管经皮输送。
在一种实施方案中,所述圆盘的周向壁被设计成在所述充气装置以它的充气状态放置时承重。优选的是,所述外周壁是用形状记忆合金,如镍钛金属互化物,和薄膜合金制成的。
在某些实施方案中,所述气囊的外周是用纤维强化的。在它的某些实施方案中,所述周向壁包括聚合物纤维。这些纤维可以制成编织物形式,它具有足够的柔韧性(在纤维的纵向方向上),以便穿过所述套管,并且膨胀到膨胀状态。通常,这些纤维具有高的抗张强度,以便它们可以非常有效地适应有问题的环向应力,该应力可以从容纳在所述气囊的中间环形区的所述骨生物学成分中转移。
具有纤维的周向侧壁的各种强化形式都是可行的。在一种实施方案中,所述纤维形成了X-形交叉影线形式。在另一种实施方案中,所述纤维形成了具有波峰和波谷的连续的波浪形式,其中,所述波峰和波谷接近上表面和下表面。
在一种实施方案中,所述装置的壁是用构成多角体结构的内部支架加强的。它具有位于上表面,下表面和周向表面上的侧壁。
在某些实施方案中,所述周向强化装置是用可再吸收的聚合物纤维制成的。
所述圆盘实施方案的上壁和下壁被设计成最初是可以接受的,并且包括流入圆盘空腔的所述骨生物学成分。因此,所述上壁和下壁应当至少是半透性的,以便包括所述骨生物学成分。在优选实施方案中,所述上壁和下壁是用可再吸收的材料制成,它能迅速地吸收,以便使所包含的骨生物学材料接触从脱皮的终板中流出的血液。
在某些实施方案中,这种可吸收的材料具有弹性性质。这种弹性性质使得所述可再吸收的上壁和下壁能够通过所述套管输送,并且在装置膨胀时变平。在优选实施方案中,这种弹性聚合物是从披露于Bezwada的美国专利号6,113,624中的材料中选择的,所述文献的完整内容被收作本文参考(以下称之为″Bezwada″)。
在其他实施方案中,这种可吸收的材料不是弹性的,并且优选用薄膜金属合金或编织的金属合金制成。
参见图8(a)和8(b),提供了本发明的装置30,它包括可充气的部分32,该部分包括弓形可充气的气囊。
参见图8(a),在它的展开前的状态下,装置30的可充气的部分32通常自身重复地折叠,以便降低装置30的大小,并且使得能够最低侵害性地插入盘间隙。在插入盘间隙期间,优选将装置30插入沿图8(a)所示的夹心方向,其中,结构壁34是基本上平行于脊椎终板设置的。所述夹心方向使得结构壁34的高度H与盘间隙高度一致或超过盘间隙高度,同时,折叠宽度W不超过盘间隙高度。
参见图8(b),在插入盘间隙之后,流体流入装置30的可充气的部分32,以便将装置30膨胀到图中所示的形状。结构壁34的高度H足以恢复自然盘间隙的高度。在装置30张开盘间隙之后,由膨胀部分32所限定的间隙通过骨生物学成分填充。本实施方案的结构壁34优选通过粘合剂结合在可充气的部分32上。应当对结构壁34进行设计,以便宽度和制作材料的强度和模量能够支撑盘间隙,以及通过所述骨生物学成分的骨融合。
在某些实施方案中,结构壁34的高度H至少等于自然盘间隙高度。在可充气的部分32膨胀时,这种条件优选能恢复所述盘间隙的高度。在某些实施方案中,壁34的前部的高度H大于壁34的后部的高度h。在可充气的部分32膨胀时,这种条件优选提供了脊柱前凸的作用。
在某些实施方案中,壁34是用同种异体移植物骨骼制成的,并且优选包括皮层骨。换言之,所述壁是用合成的可再吸收的聚合材料制成的。在某些实施方案中,所述壁可以具有足够的孔度,以便提供有效的支架,以便使得可以通过它进行骨融合。
在某些实施方案中,本实施方案的壁部件34是用骨骼移植物制备的。在其他实施方案中,部件34包括其他可充气的部分。在插入盘间隙之后,承重组合物可以流入所述其他可充气的部分的间隙,以便使所述其他可充气的部分膨胀,并最终产生壁34的需要的尺寸。
在某些实施方案中,每一个壁34是在所述膨胀的装置中沿横向方向设置的。在这种条件下,第一个壁主要支撑相对的皮层边缘的前部,而第二个壁主要支撑相对的皮层边缘的后部,以便所述壁之一在关节弯曲期间能基本上能承受所有的负荷,并且其他壁在关节生长期间能基本上承受所有的负荷。优选的是,所述壁的长度L相当于皮层边缘的前面和后面。
可充气的部分32具有上表面36和下表面和38,用于接触相邻的脊椎终板,外围侧面40,用于连接所述上表面36和下表面和38,以及外围侧面40上的开口42。在流体通过开口42从套管18中流入时,可充气的部分32膨胀,并且表面36,38和40被推开足够远,以便限定适合容纳骨生物学成分的内部间隙。由于保留在该间隙中的所述骨生物学成分优选至少是半透性的,以便提供骨融合,可充气的部分32的上表面36和下表面和38优选不起着骨融合的屏障的作用。因此,所述上表面36和下表面和38优选是多孔的(优选的是,半透性的)或快速可再吸收的。优选的是,所述上表面36和下表面和38是用能在7天,优选3天,优选1天内吸收的材料制成的。快速吸收的材料的例子包括变性的胶原,多糖型材料如淀粉和氧化再生的纤维素,以及羟基化丙交酯-乙交酯共聚物。在某些实施方案中,侧表面40上的开口是紧靠结构壁34限定的,位于脊椎终板前面。
在某些实施方案中,该实施方案的充气装置30具有被设计成与盘间隙的几何形状吻合的结构,并且选自下列一组前腰体间融合(ALIF)结构,后腰体间融合(PLIF)结构,椎骨体置换(VBR)结构以及前腰椎间盘切除术和融合(ACDF)结构。
通过降低装置30的有效尺寸,本发明的该实施方案优选减少了插入椎骨间器械所需要的进入窗口。通过提供解剖学上合适的结构壁34,装置30提供了适合肌肉骨骼生长因子发育的稳定环境。
参见图9(a)和(b),示出了本发明的充气装置的一种实施方案。装置60包括外侧-壁部件62,内侧-壁部件64,和位于所述内侧壁和外侧壁壁部件之间并且与它们连接的气囊66。所述内侧壁和外侧壁的短的头-尾高度使得能够将所述器械插入盘间隙,而在插入之前不用张开盘间隙。在随后用原位可硬化的承重材料填充所述气囊之后,导致所述气囊膨胀,超出所述侧壁的头尾,因此提供了盘间隙的必要的张开。另外,所述侧壁避免了所述气囊的膨胀,使得所述气囊的厚度在充气时最小化。最小化的壁厚对于确保在相邻的椎骨之间的骨生长(融合)的最大面积来说是重要。在某些实施方案中,所述外侧和内侧壁部件62和64的覆盖区相当于两个同心圆周的基本上相等的圆弧。这使得可以沿脊椎终板8的前部14的周边放置装置60,并且用承重材料材料填充里面的间隙。
在装置60的某些实施方案中,外侧壁和内侧壁62和64是用柔性塑料制成的,如聚(对苯二甲酸乙二醇酯),超弹性金属,如镍钛金属互化物,或柔性材料/几何形状组合,以便每一个壁能够变形到较长的形状,以便通过套管18输送到盘间隙。该壁具有足够的刚性,以便将所述器械导入盘间隙的理想位置。但是又具有足够的柔韧性,以便可以通过所述套管输送。参见图9(c),在插入装置60期间,在从套管18中释放时,部件62和64随后可以限定理想的弓形形状。参见图9(d),在插入之后,通过将承重成分,骨生物学成分或它们的组合注入由部件62,64,和66构成的间隙膨胀装置60。可以使用任何合适的注入装置,例如,注射泵70。
部件62和64的上述特征保证了在侧壁62,64之间产生的间隙可以填充,以便装置60将盘间隙张开,并且还可以产生楔形形状,以便产生或恢复脊柱的健康的曲线。
在图10(a)和(b)示出了本发明的充气装置的另一种实施方案。装置260包括上壁部件266和下壁部件268,它们是通过可充气的气囊270连接的。在某些实施方案中,上壁部件266和下壁部件268的覆盖区基本上相当于两个同心圆周的相等的圆弧。这使得可以沿脊椎终板8的前部14的周边放置装置260,并且用承重材料填充它里面的间隙。
在装置260的某些实施方案中,上壁部件266和下壁部件268是用超弹性材料,如镍钛金属互化物,或柔性材料/几何形状的组合制成的,以便每一个壁可以变形成较长的形状,以便通过套管18输送到盘间隙。装置260在操作上类似于装置60。装置260的插入可以以类似于图9(c)所示方式完成。在从套管18中释放之后,部件266和268可以限定理想的弓形形状。在插入之后,通过承重成分,骨生物学成分或它们的组合注入气囊260使装置260膨胀。可以使用任何合适的注入装置,例如,注射泵。
优选的是,气囊270是半透性的。在优选实施方案中,气囊270是用能快速吸收的材料制成的,以便使所容纳的骨生物学材料接触从脱皮的终板中流出的血液。
一般,所述支柱可以通过内径为3mm-18mm,优选为4mm-12mm,更优选为5mm-10mm的套管输送。
在某些实施方案中,其中,在外科医生希望降低切口的尺寸的实施方案中,所述支柱优选是通过内径为0.5mm-6mm,优选为1mm-4mm,更优选为2mm-3mm的套管输送的。
优选的是,所述上壁和下壁的所述上表面和下表面分别具有齿,它能在植入之后阻止所述支柱的过度运动。
参见图11(a)和(b),装置80包括四个导轨部件82,其中,所述导轨部件82的覆盖区基本上相当于两个同心圆周的相等的圆弧。部件是通过可充气的气囊84连接的,以便所述装置能够以图11(b)所示的收缩状态插入,并且随后一旦用承重材料填充就膨胀成图11(a)所示状态,以便增加盘高度,并且提供承重支撑的厚度。
在本发明的一种实施方案中,装置80如图12(a)和(b)所示。在本实施方案中,装置80是以基本上的菱形形状输送的,如图12(a)的平面示意图和图12(b)的侧视图所示。在本实施方案中,上下导轨82会导致椎骨体终板略微下沉,因此,提供了所述植入装置的稳定性。
参见图13(a)-(d),示出了本发明方法的优选实施方案。如图13(a)和13(b)所示,将套管18插入椎骨间隙。然后,通过套管18将具有基本上的环形形状的可充气的气囊12插入椎骨间隙。通过将承重成分导入所述气囊使气囊12膨胀。参见图13(c),在气囊膨胀之后,将骨生物学成分20注入由所述气囊12的外表面限定的开口腔。优选的是,所述骨生物学成分包括水溶性成分。然后,所述水溶性成分溶解,因此形成了图13(d)所示出的多孔基体。
在本发明的一种实施方案中,通过气囊输送所述承重成分,并且骨形成成分提供在所述骨生物学成分的水凝胶相中。下面提供了合适的水凝胶的例子。
在其他实施方案中,将所述支柱的固体部件经皮插入身体,并且原位组装以便形成所述支柱。在某些原位实施方案中,所述支柱是通过两个可粘结的部件的结合形成的。优选的是,所述可粘结的材料选自下列一组热可粘结的材料,如聚己酸内酯,和可聚合的材料,如聚(丙烯富马酸酯),以及polyoxaesters,包括光-可固化的材料,如聚酸酐。
在其他实施方案中,将球形形式的承重材料输送到所述充气装置中,并且包装在该装置中,以便限定具有开放间隙空隙度的稳定支柱。在某些实施方案中,所述球可以在不进行随后稳定的条件下包装,而不是密封所述气囊的开口。在这些实施方案中,所述球优选是聚芳醚酮(PAEK),更优选聚醚醚酮(PEEK)与切碎的碳纤维。
在某些实施方案中,随后使粘结材料流入所述间隙,以便进一步稳定所述包装的球。优选的是,该粘结材料包括脂肪族聚酯,如聚己酸内酯(PCL)。所述粘结材料可以是可再吸收的,并且可以包括骨发生添加剂,如生长因子和干细胞。
在所述装置的某些球实施方案中,所述承重材料的球是用可加热粘合的材料制成的,如聚己酸内酯。当所述球是如此构造的时候,可以将热量输送到所述包装中,并且软化所述球的接触表面。在随后冷却到体温时,所述接触表面固化,以便进一步稳定所述包装结构。在某些实施方案中,所述热量是从外部提供的。在其他实施方案中,所述热量是通过患者的体热(~37℃)提供的。
参见图14(a)-(d),本发明装置的另一种实施方案300包括至少两个可粘结的部件310和320,它们以未组装的形式输入盘间隙,是彼此紧密相邻地放置,并且随后粘接在一起,优选通过加热粘接。
参见图14(b),示出了图14(a)所示装置的侧视图,沿箭头A的方向观看,并且参见图14(d),它相对于装置300的透视图,在一种实施方案中,装置300包括第一和第二部分310和320。第一部分310具有下支撑壁312,上倾斜壁314,以及前壁316和后壁318。第二部分320具有上支撑壁322,下倾斜壁324以及前壁326和后壁328。该组装的部分的组合高度H超过了盘间隙的高度。所述倾斜壁构成了相同的角度,以便第二部分的前缘可以通过破道通向第一部分的倾斜壁。
在使用时将第一部分310放入盘间隙。由于第一部分的高度小于盘间隙,第一部分310很容易放置在盘间隙内的任何位置。然后,将第二部分320导入盘间隙,并且向上倾斜道第一部分的倾斜壁。在所述第一和第二部分的倾斜壁上提供了相应的导轨和槽,以便沿第一部分的长壁引导第二部分(参见下文)。由于第二部分仅接触第一部分的下部,第二部分320的上壁322在沿斜面运动期间不会接触相邻的终板,并且所述坡道运动是很容易的。只有当所述坡道运动基本上结束时,第二部分的上壁还接触相邻的上终板。优选的是,所述坡道的总高度H略大于盘间隙的高度,以便在第二部分前缘达到第一部分前缘时实现张开。
参见图14(c),在一种实施方案中,图14(a)示出了所述装置的沿箭头B的剖视图。如图14(c)所示,第一部分310的倾斜壁314包括槽330,而第二部分320的倾斜壁324包括隆起332,它被设计成接合到滑动的槽330。在某些实施方案中,隆起332还包括金属长丝334。
可以理解的是,槽330和隆起332的定位可以是相互交换的,以便位于上部310和下部320的倾斜壁314和324之间。
优选的是,所述坡道的导轨和槽特征是Morse锥度,以便当第二部分前缘到达第一部分前缘时,将所述坡道锁定在它的组装形式下。
一旦两个坡道部分就位,电流或热量就通过穿过第一部分的导轨长度的导线。所导致的接触部位的局部加热,使该部位软化,而又不改变所述坡道的尺寸。在冷却时,得到了高度稳定的,加热粘合的坡道。
由于本实施方案的所述坡道不流入盘间隙,并且加热是非常局部的,非常牢固的高温材料,如PEEK可用作制造材料。在某些实施方案中,所述坡道是用高温可再吸收的材料制成的。在某些实施方案中,所述高温可吸收的材料是非晶态的并且具有高于100℃的玻璃转变温度。优选的是,所述非晶态可吸收的聚合物是PLA。在某些实施方案中,所述高温可吸收的材料是晶体,并且其熔点高于100℃。优选的是,所述晶体可吸收的材料是对二噁烷酮。
在某些坡道实施方案中,导线是通过所述坡道导向装置的中央导向的。所述导线允许将所述坡道插在所述导线上。所述导线可以通过IGS或等同的设备遥控就位。并且所述坡道然后可以通过所述导线进入位置。所述坡道可以是半-刚性的,这使得它们可以沿着所述导线在所述导线上通过柔软的组织。
在其他坡道实施方案中,提供了″I″-梁坡道笼子。上述坡道笼子可以与组件顶部和底部整合或配合。所述顶部和底部具有轨道,它可以锁定在固定于所述坡道上的导向装置上(或所述导向装置可以位于组件顶部,而轨道位于所述坡道上),这有助于插入并且确保所述坡道与这些组件顶部和底部接触。所述组件顶部和底部表面可以在所述坡道和椎骨体之间运动,以便在组装时,所述坡道/顶部/底部组件的截面类似于″I″-梁。这使得能够插入较薄的坡道,以便有利于通过MIS技术或等同技术插入,并且所述组件顶部和底部提供了足够的表面积,以便防止进入椎骨体的植入物的下沉。所述坡道和组件顶部的能够以若干种形状成型,插入组装,或在盘间隙组装。
在其他实施方案中,提供了袋子形状的坡道,它具有纵向通孔。通过所述袋子的中部插入螺杆,以便在转动所述螺杆时,所述袋子可自身折叠,增加它在盘间隙内的高度。这种″可折叠″性,可以通过其他方法实现,如弹簧,电缆等。
参见图15,示出了使用图14(a)-(d)所示出的装置300的方法的实施方案。在本实施方案中,第一和第二坡道部分310和320是横向导入的,以便形成一个基本上垂直于盘间隙拉伸分布的单一坡道。这种设计的优点是,在用于后外侧通道时,由于该通道利用了位于通道附近的肌肉平面允许植入物以较小侵害性方式输入这一事实,在它的某些实施方案中,所述坡道的中间部分的高度大于侧面部分的高度。这一特征提供了凸起,它在图16所示出的体间融合中是有利的,在图14(a)-(c)中示出了使用装置300的方法的另一种实施方案。在本实施方案中,本发明的坡道可优选用于PLIF方法。具体地讲,可以在现场制作两个坡道,以便形成类似于Steffee支柱的双面支柱。
因此,根据本发明,提供了包括支柱的椎间融合器械,包括a)第一部件,包括i)适合支撑下脊椎终板的下支撑表面,和,ii)上表面,包括前端,倾斜的中部和尾端;和b)第二部件,包括i)适合支撑上脊椎终板的上支撑表面,和,ii)上表面,包括前端,倾斜的中部和尾端,其中,第一部件的倾斜部分与第二部件的倾斜部分配合。
在本发明的某些实施方案中,所述支柱是完全密集的。这种特征增强了所述支柱的强度,并因此是承重所需要的。在其他实施方案中,所述支柱具有开口,其大小使得可以通过它发生骨融合。在某些实施方案中,所述上壁和下壁具有被设计成促进从所述上终板到所述下终板的骨融合的开口。在其他实施方案中,所述支柱的侧壁也具有这样的开口在某些实施方案中,所述开口的直径至少为2mm。在其他实施方案中,所述开口在50-500μm范围内,更优选为100-300μm,优选为100-250μm。上述优选的开口尺寸被认为更适合骨生长。
适用于本发明的材料和方法下面提供了本发明的承重组合物和骨生物学成分的各种特征的列表
在本文中,术语″第二相″表示能增强所述材料性能的添加剂,例如碳纤维能增强所述材料的强度,而磷酸钙颗粒能增强所述颗粒的骨传导性。在本文中,术语″水相″表示能够保持细胞生活力的所述材料的成分,例如,藻酸盐水凝胶。
能满足上述表格的承重成分的例子包括选自下列的至少一种成分聚(乳酸),聚(乙醇酸),对二噁烷酮纤维,聚芳基乙基,聚甲基丙烯酸甲酯,聚氨酯,氨基酸衍生的聚碳酸酯,聚己酸内酯,脂肪族聚酯,磷酸钙,不饱和线性聚酯,乙烯吡咯烷酮和聚丙二醇富马酸酯二丙烯酸酯或它们的混合物。
能满足上述表格的骨生物学成分的例子包括选自下列的至少一种成分间充质干细胞,生长因子,松质骨碎片,羟磷灰石,磷酸三钙,聚乳酸,聚乙醇酸,聚半乳糖醛酸(polygalactic acid),聚己酸内酯,聚环氧乙烷,聚环氧丙烷,聚砜,聚乙烯,聚丙烯,透明质酸,生物玻璃,明胶,胶原和聚合纤维。
由于通过添加或排出添加剂,如纤维,颗粒,交联剂和水相使得所述承重和骨生物学成分的总体机械性能有很大的改变,在某些场合下可以使用某些基体成分,如将所述基体用于所述承重成分,以及在其他场合下将所述基体用于所述骨生物学成分。例如,聚己酸内酯可用于与对二噁烷酮强化纤维组合,作为承重成分的基体,并且还可用于与聚乳酸和羟磷灰石组合,作为骨生物学成分的基体。
对本发明来说,术语″可硬化的″表示能够以粘性形式通过套管输入盘间隙的材料。在一种实施方案中,材料可以通过内径至少大约6mm的套管输送。在另一种实施方案中,套管的直径不超过大约6mm。
一般,本发明的可流动的承重组合物和骨生物学成分是可流动的,这意味着它们具有足够的粘性,以便使得它们可以通过内径为大约2mm-大约6mm的套管输送,并且优选大约3mm-大约5mm内径。所述生物材料同样是可硬化的,这意味着它们可以在组织部位原位固化,以便保持理想的状态和形状。
在某些场合下,所述可硬化的材料仅仅是熔点(对于晶体材料而言)或玻璃转变温度(对于无定形材料)低于100℃的材料(如低温聚合物),并且在体温(37℃)下是固体。在某些实施方案中,所述低温材料简单地被加热到成为粘性的并且可流动的点,然后注入盘间隙。然后将所述粘性材料冷却到体温,然后使它们固化。因为所述材料不需要在原位反应,这对于它们的相对惰性来说是理想的。因此,在某些实施方案中,它们可以自由地注入盘间隙,而不使用保护性气囊。
在某些场合下,所述可硬化的材料包括可交联的成分(或″交联剂″)。这种材料是理想的,因为交联增强了所得到的材料的强度。因此,在某些实施方案中,所述承重成分包括交联剂。在这些实施方案中,希望通过气囊将所述交联剂输入盘间隙,以便所述气囊可以保护周围的组织在反应期间不与活性成分起反应。
在某些实施方案中,所述承重成分包括交联剂。在某些实施方案中,所述骨生物学成分包括交联剂。
在某些实施方案中,所述可硬化的材料包括聚合物和交联剂。在某些实施方案中,所述可硬化的材料还可以包括单体。在某些实施方案中,所述可硬化的材料还可以包括引发剂。在某些实施方案中,所述可硬化的材料还可以包括促进剂。
优选的是,所述交联成分是用包括单体和交联剂的两部分的组合物制备的。
在某些实施方案中,所述交联组合物在37℃-40℃的温度下是可流动的。
在优选实施方案中,所述可交联的成分是可再吸收的。对本发明来说,可再吸收的材料在植入之后在不超过两年时间内使它的起始强度降低了50%。
提供了可再吸收的可交联的成分是理想的,因为它不仅提供了在椎骨间融合用途中支持盘间隙所需要的高的起始强度,而且还使得可以通过骨融合最终置换。
在某些优选实施方案中,所述可再吸收的可交联的成分包括由Wise披露于美国专利号6,071,982中的可交联的成分,所述文献的完整内容被收作本文参考。
在优选实施方案中,所述可交联的成分是UV可固化的。UV可固化的可交联的成分的例子披露于以下文献中Biomaterils(2000),212395-2404和Shastri的美国专利号5,837,752,所述文献的完整内容被收作本文参考。
在某些实施方案中,所述可交联的成分是水可固化的。在这种场合下,所得到的物体通常是稍微脆弱的,并且因此,优选的是,将所述水可固化的可交联的化合物用作所述骨生物学成分的基体。
在某些实施方案中,所述支柱是用不-可再吸收的材料制成的。由于所述不-可再吸收的材料不会随着时间而降解,所述不-可再吸收的材料的使用给外科医生提供了安全措施,并且在所述骨生物学组合物不能产生融合的条件下防止盘间隙崩溃。
优选的是,所述不-可再吸收的材料是聚合物。聚合物的选择使得所述材料可以流动到使用部位。
在某些实施方案中,所述承重聚合物是聚芳基乙基酮(PAEK)。更优选的是,所述PAEK选自下列一组聚醚醚酮PEEK,聚醚酮酮PEKK和聚醚酮PEK。在优选实施方案中,所述PAEK是聚醚醚酮。
一般,尽管它们具有高的强度,PAEK-型聚合物具有非常高的熔点(例如,250℃),并因此不能够在理想的温度下流动。因此,用PAEK作为所述承重组合物的本发明的实施方案通常以固体形式输送PAEK,如球的形式或作为预先制作的成分,然后在盘间隙中,在非常高的温度(例如,250℃)下组装并且结合盘间隙中的成分。所述高温需要使用高度绝缘的膨胀的装置。
在某些实施方案中,所述支柱是复合物,包括碳纤维。包括碳纤维的复合支柱的优点在于,它们的强度和硬度通常优于纯聚合物材料的,如聚芳基乙基酮PAEK。
在某些实施方案中,所述纤维,优选碳纤维占体积的100%-60%(vol%)。更优选的是,所述纤维占所述复合物体积的10vol%-50vol%。在某些实施方案中,所述聚合物和碳纤维是均匀地混合的。换言之,所述复合支柱是层压物。在某些实施方案中,所述碳纤维是以切碎的状态出现的。优选的是,所述切碎的碳纤维的中间长度为1mm-12mm,更优选为4.5mm-7.5mm。在某些实施方案中,所述碳纤维是以连续的长条形式存在的。
在特别优选的实施方案中,所述复合支柱包括a)大约40%-大约99%(更优选的是,大约60%-大约80vol%)聚芳基乙基酮PAEK,和b)大约1%-大约60%(更优选的是,大约20vol%-大约40vol%)碳纤维,其中,所述聚芳基乙基酮PAEK选自下列一组聚醚醚酮PEEK,聚醚酮酮PEKK和聚醚酮PEK。
在某些实施方案中,所述复合支柱主要包括PAEK和碳纤维,更优选的是,所述复合支柱包括大约60wt%-大约80wt%PAEK和大约30wt%-大约40wt%碳纤维。更优选所述复合支柱包括大约65wt%-大约75wt%PAEK和大约35wt%-大约35wt%碳纤维。
对于弓形可充气的容器来说,为了用作本发明承重组合物的容器,所述可流动的承重成分的物理要求取决于所述弓形的长度和直径,以及由植入部位所提出的物理要求。对某些实施方案来说,某些承重组合物可能具有或不具有足够的物理特性。所述承重成分的物理特性还可以通过添加多种强化材料中的任意一种改变,如碳纤维,KevlarTM或钛棒,织物或激光蚀刻金属管扩张器,或其他强度增强装置,正如本领域所了解的。
包埋在粘结剂,如聚己酸内酯中的某些复合材料,如碳纤维被认为特别适用于制备本发明的承重成分。例如,提供了束状(纤维束)的直径为大约0.003-大约0.007英寸的石墨(碳纤维),它是由3,000-大约12,000根纤维组成的。用于这一目的的一种典型的纤维是通过Hexcel碳纤维生产的,Salt Lake City,Utah,Part No.HS/CP-5000/IM7-GP 12K。优选的是,所述纤维束的抗张强度为大约5,000-大约7,000Mpa。纤维束拉伸模量为大约250-大约350Gpa。将上述碳纤维的大约30-大约60个纤维束包装在收缩的气囊中,选择性地与直径为8mm,长度为8cm的Ni-Ti扩张器一起包装。尽管可以使用多种扩张器中的任意一种,一种有用的结构类似于Smart扩张器(Cordis),并且有助于保持其结构完整性,并且还增加了所述植入结构的结构强度。
在其他实施方案中,将大约15-大约45度的编织形式的碳纤维用于所述充气装置中,以便加强所述承重材料。所述编织物可以是平纹组织形式的,并且可以,例如,从Composite StructuresTechnology(Tehachapi,Calif.)获得。将0.5英寸直径的45度编织形式的碳纤维套筒放置在所述气囊中。这种编织形式的套筒在尺寸上与所述气囊的内径一致。还可将0.3英寸的编织的碳套筒放置在所述气囊中央,位于所述外部编织的碳纤维套筒里面。然后将单向纤维导入内部编织的碳套筒的ID里面。还要将单向纤维导入两个编织的套筒之间的环形间隙。每体积气囊的纤维体积通常为大约40%-大约55%。在将上述结构放入螺杆的入口之后,在10个大气压的压力下将粘性为100cps-大约500cps的本发明的可流动的承重材料注入所述气囊。编织的套筒的使用,产生了对由于扭转载荷产生的偏转应力的更高的结构承受力,加上一直以均匀形式将单向纤维分布在所述气囊中的能力。
在某些实施方案中,所述聚合物包括聚甲基丙烯酸甲酯(PMMA)。在优选实施方案中,所述基体包括无线电阻断剂。二尿烷二异丁烯酸酯(DUDMA)和三甘醇二甲基丙烯酸酯(TEGDMA)的混合物,它适用于所述承重支柱,所述材料披露于WO 03/005937中,所述文献的完整内容被收作本文参考。
在某些实施方案中,所述承重组合物包括聚氨酯。
在某些实施方案中,所述聚氨酯材料披露于Felt的美国专利号6,306,177中(以下称之为″Felt″),它的内容被以与本说明书的其余部分不一致的程度收作本文参考。
可以对聚氨基甲酸酯进行定制,以便通过调整聚合物中柔软片段与坚硬片段的比例优化硬度。另外,聚氨基甲酸酯可以作为两个部分的系统制备,在它们混合之后会固化。优选的聚氨基甲酸酯,例如,热塑性聚氨基甲酸酯(″TPU″)通常是使用三种反应物制备的异氰酸盐,长链雌二醇,和短链二醇增链剂。异氰酸盐和长链二醇构成了“柔软的”片段,而异氰酸盐和短链二醇构成了“坚硬的”片段。所述坚硬片段构成了通过氢键结合保持在一起的有序的结构域。这些结构域起着与线性链交联的作用,使得所述材料类似于交联的橡胶。正是柔软片段和坚硬片段之间的相互作用,决定并且提供了具有橡胶样特性的聚合物。
在某些实施方案中,所述支柱包括光可固化的材料。在某些光可固化的实施方案中,所述材料包括有机磷化合物。
上述材料是优选的,因为所产生的产物是磷酸钙型的,并因此是生物兼容的和可再吸收的。
在某些实施方案中,所述支柱具有可再吸收的基体材料。可再吸收的基体材料是优选的,因为它最终会被身体吸收,并因此被骨骼所取代。
在某些实施方案中,所述可再吸收的支柱是高温材料。对本发明来说,高温材料在高于100℃的温度下流动。在这种场合下,所述高温可吸收的材料作为固体形式的多种成分进入盘间隙。所述成分然后接触盘间隙,并且施加热量,以便在不改变组装形状的情况下粘接所述成分。
在某些实施方案中,所述承重组合物包括包含氨基酸衍生的聚碳酸酯的基体。
在某些实施方案中,所述骨生物学成分包括包含生物可降解的聚氨酯的基体。
在某些实施方案中,所述骨生物学成分包括包含非晶态聚合物的基体,并且玻璃转变温度低于100℃。优选的是,所述非晶态可吸收的聚合物是D,L-聚乳酸(PLA)。
一般,对聚乳酸聚合物进行小的修饰是可行的,因为在它的侧链上没有其他官能团,只有乳酸残基的甲基。改变所述聚合物的特性的一种可能性是形成具有更具多样性的侧链结构的共聚物,例如,赖氨酸。
用包括精氨酸-甘氨酸-天冬氨酸(RGD)序列官能化的聚(丙交酯-共-赖氨酸)是通过除去赖氨酸残基上的苯甲酸基羰基保护基和肽结合制备的。发现大约3.1mmol/g的肽浓度可以转化为310fmol/cm2的肽表面密度。以前业已确定了低于1fmol/cm2的RGD肽的表面密度能促进细胞附着在其他非附着表面上(Massia和Hubbell,1991)。
因此,通过仔细处理所述共聚物,可以用丙交酯和赖氨酸的共聚物制备具有细胞附着特性的生物可降解的薄膜。
业已将其他方法用于拓宽聚丙交酯的特性。例如,业已作为丙烯酸大型单体合成了聚乳酸(PLA),并且随后与极性丙烯酸单体(例如,2-羟乙基异丁烯酸酯)共聚化(Barakat等,1996)。业已作为两性嫁接共聚物研究了所述聚合物的药物输送用途。可以通过聚乳酸嫁接长度和共聚物长链控制所述聚合物的表面特性,并且可潜在地用于控制药物释放特征和生物分布。该方法的其他例子包括嵌在香叶醇和孕烯醇酮上的嫁接的聚乳酸(Kricheldorf和Kreiser-Saunders,1996)。
在某些实施方案中,所述高温可再吸收的材料是半晶体,并且具有高于100℃的熔点。优选的是,所述半晶体可吸收的材料选自下列一组对二噁烷酮,L-聚乳酸和聚(乙醇酸)(PGA),和它们的混合物。
在某些实施方案中,所述支柱包括至少90wt%的脂肪族聚酯。优选的是,所述脂肪族聚酯是聚己酸内酯(″PCL″)。
聚己酸内酯(PCL)是通过打开所述单体ε-己内酯线性聚酯。聚己酸内酯的环形成的线性聚酯。聚己酸内酯是半晶体热塑树脂,它能够在中等温度下方便地模制,以便产生坚硬的透明的产品。它的晶体熔点为大约60℃,它体现了用于本发明的理论温度上限。在高于它的熔点的温度下,所述材料以高度的一致性和可加工性为特征。
其他聚合物,如聚(十二烯-1)和反式聚甲基丁二烯也可用于本发明。这些聚合物以在室温下是晶体,在大约70℃的温度下为非晶体并且在冷却到体温时具有较快的结晶化速度为特征。这些聚合物不会像简单的化合物那样结晶化,因此在所述聚合物达到室温之后,结晶完成之前存在合理的时间延迟。这使得有足够的时间将所述可流动的组合物放入盘间隙,同时所述聚合物仍然是柔软的。
在某些实施方案中,提供了包含由选自下列的脂肪族内酯单体形成的聚合物的可吸收的成分对二噁烷酮,环丙烷碳酸酯,ε-己内酯,乙交酯,丙交酯(1,d,d1,间),δ-戊内酯,β-丁内酯,ε-癸内酯,2,5-二酮基吗啉,新戊内酯,α,α-二乙基丙内酯,碳酸乙二酯,草酸乙二酯,3-甲基-1,4-二噁烷-2,5-二酮,3,3-二乙基-1,4-二噁烷-2,5-二酮,γ-丁内酯,1,4-二氧杂环庚烷-2-酮,1,5-二氧杂环庚烷-2-酮,1,4-二噁烷-2-酮,6,8-二氧双环辛烷-7-酮,和它们的组合。
在一种优选实施方案中,所述支柱包括承重组合物,它主要包括聚己酸内酯。根据Walsh,Biomaterials(2001),221205-1212,基本上为固体的聚己酸内酯的耐压强度为大约15MPa,并且它的压缩模量为大约0.5Gpa。
一般,分子量越高的聚己酸内酯(PCLs)越优选,因为它们倾向于具有更高的强度并且降解的更缓慢。优选的是,聚己酸内酯的分子量至少为30,000道尔顿。更优选的是,聚己酸内酯的分子量至少为40,000道尔顿。
在一种优选实施方案中,所述支柱包括交联的聚己酸内酯的承重组合物。所述聚己酸内酯的交联能够增强它的强度。更优选的是,所述承重组合物包括自身-互相贯通的网络(S-IPN),包括主要聚己酸内酯和交联的聚己酸内酯的网络。根据Hao,Biomaterials(2003),241531-39,该文献的完整内容被收作本文参考,在它以S-IPN的形式生产时,聚己酸内酯的某些机械特性提高了大约3倍。在至少15wt%HAP时,拉伸模量与常规聚己酸内酯相比提高了6倍。根据Hao的报导,如果将某些机械特性的3倍的增加,还可以通过耐压强度和压缩模量实现,那么聚己酸内酯的S-IPN的耐压强度可大约为45MPa,并且它的压缩模量可大约为1.5Gpa。
在某些实施方案中,对所述聚己酸内酯进行热处理,以便提高它的结晶性,并且进一步增强它对降解的抗性。
在本发明的另一方面,本发明的上述聚合物可以是液体或低熔点,低分子量聚合物,有或没有光可固化的基团。所述液体或低熔点聚合物具有足够低的分子量,具有大约0.05-大约0.5dL/g的固有粘性,以便在加热或不加热的条件下产生容易流动的材料,可以通过诸如注射器或套管的小直径输送装置输送,使用或不使用机械辅助装置,填缝枪,柔软的-支管等。
用于实施本发明的脂肪族聚酯通常是通过常规技术使用常规方法合成的。例如,在开环聚合中,所述内酯单体是在存在有机金属催化剂和引发剂的条件下在高温下聚合的。所述有机金属催化剂优选是锡型的,例如,辛酸亚锡,并且以单体与催化剂的摩尔比为大约10,000/1-大约100,000/1的比例存在于所述单体混合物中。所述引发剂通常是烷醇,乙二醇,含氧酸,或胺,并且以单体与引发剂的摩尔比为大约100/1-大约5000/1的比例存在于所述单体混合物中。聚合通常是在大约80℃-大约220℃,优选大约160℃-大约200℃的温度下进行,直到获得需要的分子量和粘性。
在上述条件下,脂肪族聚酯的均聚物和共聚物通常具有大约5,000克/摩尔-大约200,000克/摩尔,更优选大约10,000克/摩尔-大约100,000克/摩尔的平均分子量。具有这种分子量的聚合物具有大约0.05-大约3.0分升/克(dL/g)的固有粘度,并且更优选大约0.1-大约2.5dL/g,该粘度是在六氟异丙醇(HFIP)或三氯甲烷的0.1g/dL的溶液中在25℃下测定的。
用于本发明的基体的合适的内酯单体可选自下列一组乙交酯,丙交酯(1,d,d1,间),对二噁烷酮,环丙烷碳酸酯,E-己内酯,δ-戊内酯,β-丁内酯,ε-癸内酯,2,5-二酮基吗啉,新戊内酯,α,α-二乙基丙内酯,碳酸乙二酯,草酸乙二酯,3-甲基-1,4-二噁烷-2,5-二酮,3,3-二乙基-1,4-二噁烷-2,5-二酮,γ-丁内酯,1,4-二氧杂环庚烷-2-酮,1,5-二氧杂环庚烷-2-酮,1,4-二噁烷-2-酮,6,8-二氧双环辛烷-7-酮以及它们中两种或两种以上的组合。优选的内酯单体选自下列一组乙交酯,丙交酯,对二噁烷酮,环丙烷碳酸酯和ε-己内酯。
最优选的是,用于本发明的基体的脂肪族聚酯包括聚(ε-己内酯),聚(对二噁烷酮),或聚(环丙烷碳酸酯)的均聚物或共聚物或它们的混合物,或对二噁烷酮或环丙烷碳酸酯和乙交酯或丙交酯或它们的混合物的共聚酯,并且,具体地讲,对二噁烷酮/乙交酯,对二噁烷酮/丙交酯,环丙烷碳酸酯/乙交酯和环丙烷碳酸酯/丙交酯的共聚酯,或ε-己内酯和乙交酯的共聚酯或它们的混合物,或ε-己内酯和丙交酯的均聚物的混合物。
在本发明的具体实施方案中,生物兼容的,不可吸收的,可流动的聚合物的熔点为大约45℃-大约75℃,并且它在低于42℃的体温下是刚性固体,它被放入直径为35mm并且具有大约50-100毫升的合适容量的标准Toomey型一次性注射器中。将填充过的注射器放入分开的包装中,以便无菌输送,并且通过骨注射或加热消毒,前者是优选的。另外,可以将所述聚合物放入具有合适的容量并且具有细长的开口的塑料挤瓶中。
在某些实施方案中,所述支柱包括至少90wt%磷酸钙。根据Hitchon等J.Neurosurg.(Spine2)(2001),95215-220,该文献的完整内容被收作本文参考,羟磷灰石的耐压强度为大约65Mpa,并且羟磷灰石的抗张强度为大约10.6Mpa。本发明人认为,这些值应当满足了典型的支柱负荷要求。
在某些实施方案中,所述基体是用可交联的化合物制成的。一般,可交联的化合物在原位交联,并且提供了比加热-可流动的聚合物(通常为1-20MPa)高的耐压强度(通常为20-120MPa)。
在某些实施方案中,所述可交联的化合物包括不饱和线性聚酯。
在某些实施方案中,所述不饱和线性聚酯包括富马酸双键,并且更优选包括聚丙二醇富马酸酯。
在某些实施方案中,所述可交联的化合物是通过单体交联的,优选乙烯基单体,更优选乙烯吡咯烷酮。
在某些实施方案中,所述交联剂产生的交联是生物可降解的。它的优选实施方案包括聚丙二醇富马酸酯-二丙烯酸酯。
在某些实施方案中,所述交联反应是借助于引发剂进行的。在优选实施方案中,所述引发剂是过氧化苯甲酰。换言之,将光线用作光引发剂。
在某些实施方案中,所述交联反应是借助于促进剂进行的。在优选实施方案中,所述促进剂是N,N-二甲基-对甲苯胺。
据信,末端官能团影响所述交联的基体的强度和降解阻力。在某些实施方案中,所述交联的化合物以选自下列的端基为末端双环氧化物,或二丙烯酰基官能团。在优选实施方案中,端基是双环氧化物官能团。业已证实这些末端官能团与末端为二乙烯基的聚丙二醇富马酸酯相比具有更高的降解抗性(Domb 1996)。
在某些实施方案中,将诸如NaCl或起泡剂的成孔剂添加到所述可交联的组合物。优选的是,所述成孔剂是水溶性的,更优选它是水溶性盐或蔗糖。
在某些实施方案中,将磷酸钙型化合物,如羟磷灰石或磷酸三钙添加到所述可交联的组合物。这种化合物是优选的,因为它们可以提供骨生长的骨传导性通道,它们可以中和由所述聚合物基体水解所产生的任何酸,并且提供加强作用。优选的是,所述磷酸钙是纳米高级羟磷灰石。
在某些实施方案中,本发明的支柱包括承重组合物,它含有与包括聚丙二醇富马酸酯-单位,如聚丙二醇富马酸酯-二丙烯酸酯的交联剂交联的富马酸-型聚合物(如聚丙二醇富马酸酯)。典型的组合物披露于以下文献中Timmer,Biomaterials(2003)24571-577,所述文献的完整内容被收作本文参考。该组合物具有以下特征高的起始耐压强度(大约10-30MPa),该强度通常在前12周时间提高,对水解降解的高的抗性(大约20-50,52周),以及用作支柱的可接受的模量(0.5-1.2GPa)。
在优选实施方案中,聚丙二醇富马酸酯聚丙二醇富马酸酯-二丙烯酸酯双键的比例为大约0.1-大约3。在更优选的实施方案中,聚丙二醇富马酸酯-二丙烯酸酯双键的比例为大约0.25-大约1.5。
在更优选的实施方案中,所述承重组合物包括聚丙二醇富马酸酯-二丙烯酸酯交联的聚丙二醇富马酸酯,还包括磷酸三钙(TCP),其用量优选为大约0.1wt%-大约1wt%。该组合物具有以下特征高的起始耐压强度(大约30MPa),它通常在前12周提高(大约45MPa),和高的水解降解抗性(大约45MPa,52周),以及用作支柱的可接受的模量(1.2Gpa,52周)。
在某些实施方案中,所述支柱或承重组合物包括两种可交联的聚合物组合物。在接触合适的交联剂时,每一种所述可交联的组合物可自身交联,但不会与其他交联的聚合物交联。其结果是包括两种交联的聚合物的基体。这种基体被称作″互相贯通的网络″(″IPN″)。
在其他实施方案中,所述支柱或承重组合物包括第一可交联的聚合物组合物和第二种不可交联的聚合物组合物。在接触适合的交联剂时,第一种可交联的化合物自身交联,而第二种聚合物保持不变。其结果是包括第一种交联的聚合物和第二种非交联的聚合物的基体。这种基体被称作″半-互相贯通的网络″(″S-IPN″)在某些实施方案中,所述S-IPNs包括第一生物可降解的聚合物,它在水解降解时能够产生酸性产物;第二生物可降解的聚合物,它优选通过交联,提供生物聚合物支架或内部强化结构;以及选择性地包括缓冲化合物,它能将酸性产物缓冲到理想的pH范围内。在优选实施方案中,第二生物可降解的聚合物包括聚丙二醇富马酸酯(PPF),它是交联过的,优选通过乙烯基单体,如乙烯吡咯烷酮(VP)交联,以便形成生物聚合物支架,它提供了具有需要的尺寸和骨骼形状稳定性的半-IPN。这种材料的有利的最终用途是内部固定器械形式的(IFDs),如骨骼支持物,板,和销,和/或骨接合剂,用于骨修饰,它是由本文所披露的半-IPN合金制成。
在某些实施方案中,所述S-IPN包括骨接合剂,它含有生物可降解的聚合物半-IPN合金,它包括在水解降解时能够产生酸性产物的第一生物可降解的聚合物(如PLGA);和第二生物可降解的聚合物(如聚丙二醇富马酸酯),它提供了生物聚合物支架或内部强化结构,其中,所述第二生物可降解的聚合物是在体内聚合的,以便提供硬化的,半-IPN合金骨接合剂。本文的说明书所披露的骨接合剂和尺寸和几何形状稳定的IFDs还可优选包括其他制剂,如骨修复蛋白(BRPs)和抗生素,以便,例如,有效促进骨生长,并且抑制在放入骨接合剂或IFD时防止感染。
在某些实施方案中,本发明的S-IPNs包括至少两种成分。第一种成分是线性的,疏水性生物可降解的聚合物,优选均聚物或共聚物,它包括含氧酸和/或酸酐键或线性的,非-生物可降解的亲水性聚合物,优选聚环氧乙烷或聚乙二醇。第二种成分是一个或多个可交联的单体或大裂球。所述单体或大裂球中的至少一种包括可降解的连键,优选酸酐键。所述线性聚合物优选占组合物重量的10-90%,更优选占组合物重量的30-70%。所述交联聚合物优选占半-互相贯通的网络组合物重量的大约30-70%,更优选的占该组合物重量的40-60%,平衡物为赋形剂,治疗剂,和其他成分。在混合上述成分并且可交联的成分发生交联时,所述组合物形成了半-互相贯通的聚合物网络。半-互相贯通的网络被定义为组合物,它包括两种独立的成分,其中一种成分是交联聚合物,而其他成分是非-交联聚合物。
在粘性液体的任何地方发生交联之前,所述S-IPN组合物可以具有适合注射到可模制的,糊状灰泥中的粘性。所述粘性可以通过添加反应性稀释剂和/或通过添加合适的溶剂调节。不过,在交联时,所述组合物是固体半-互相贯通的网络,它能够支持骨生长和修复。
线性聚合物被定义为均聚物或嵌段共聚物,它们不是交联的。疏水性聚合物为本领域技术人员所公知。
生物可降解的聚合物是那些在生理学条件下具有大约2小时-1年,优选少于6个月,更优选少于3个月的半衰期的聚合物。合适的生物可降解的聚合物的例子包括聚酸酐,聚原酸酯,多羟基酸,聚二噁烷,聚碳酸酯,和聚氨基碳酸盐。优选的聚合物是多羟基酸和聚酸酐。聚酸酐是最优选的聚合物。
线性的,亲水性聚合物为本领域技术人员所公知。非-生物可降解的聚合物的半衰期在生理学条件下长于大约1年时间。合适的亲水性非-生物可降解的聚合物的例子包括聚(乙二醇),聚(环氧乙烷),部分或完全水解的聚(乙烯醇),聚(环氧乙烷)-共-聚(环氧丙烷)嵌段共聚物(泊洛沙姆和泊洛沙姆)和四聚醇胺。优选的聚合物是聚(乙二醇),四聚醇胺,泊洛沙姆和泊洛沙姆。聚(乙二醇)是最优选的聚合物。
所述组合物包括一个或多个单体或大裂球。不过,所述单体或大裂球中的至少一个包括酸酐键。可以使用的其他单体或大裂球包括生物兼容的单体和大裂球,它包括至少一个自由基和可聚合的基团。例如,可以使用包括烯键不饱和基团的聚合物,它可以是光化学交联的,正如由Board of Regents在WO 93/17669中所披露的,University of Texas System,该文献的完整内容被收作本文参考。
在某些实施方案中,所述S-IPN的交联聚合物包括富马酸,优选聚丙二醇富马酸酯。
对本发明来说,所述S-IPN的不-可交联的聚合物还可以被称作主聚合物。在某些实施方案中,用于S-IPN的主聚合物选自下列一组聚乳酸,聚乙醇酸,以及它们的共聚物。
本发明人业已发现,由Hao和Timmer报导的明显更强的机械特性和对降解的抗性,在主聚合物是通过单体交联的时候,与所述主聚合物具有相同的重复单位。
在某些实施方案中,所述S-IPN上的可交联的化合物是通过N-乙烯吡咯烷酮,聚乙二醇二甲基丙烯酸酯(PEG-DMA),二甲基丙烯酸乙酯(EDMA),2-甲基丙烯酸羟(HEMA)或异丁烯酸甲酯(MMA)交联的。
在某些实施方案中,将光敏聚合的酸酐用作所述基体材料。所述材料的特征是坚固(耐压强度30-40MPa),并且相对坚硬(拉伸模量为大约600MPA-大约1400MPa)。
A.K.Burloth,Biomaterials(2000)212395-2404,该文献的内容被收作本文参考,披露了多种光敏聚合的酸酐适合整形外科用途。所述酸酐的重复单位包括一对通过酸酐键连接的二价酸分子,它容易发生水解。由于所述二价酸分子是疏水性的,具有有限的水扩散到所述聚合物中,并且所述聚合物只会发生表面降解(而不是总体降解)。这一点是有利的,因为所述聚合物的强度主要与该聚合物的质量相当。
在某些实施方案中,所述光敏聚合的酸酐选自下列一组异丁烯酸化的癸二酸(MSA)的聚合物,异丁烯酸化的1,6-二(对羧基苯氧基)己烷(MCPH),1,3-二(对羧基苯氧基)丙烷(CPP),异丁烯酸化的胆固醇(MC),异丁烯酸化的硬脂酸(MstA)以及它们的混合物和共聚物。
在某些实施方案中,所述光致聚合作用是通过将光源调整到进入盘间隙的输送套管的远端进行的。在其他实施方案中,将光缆用于将光能传输到业已放置在盘间隙中的前体成分中。在其他实施方案中,光线是通过皮肤传输的(即,经皮传输)或通过纤维环传输的。在它的某些实施方案中,使用了光漂白起始系统。
在某些实施方案中,首先将线性聚酸酐溶解在单体中,然后光敏聚合,以便形成光敏聚合的酸酐的S-IPN。在需要提高对水解的抗性时是特别理想的。因此,在某些实施方案中,本发明的所述承重组合物包括含有光敏聚合的酸酐的S-IPN。
在某些实施方案中,使用了聚(1,6-二(对羧基苯氧基)己烷(PCPH)。该聚合物具有大约496天的降解时间,因此适合用作本发明支柱中的承重组合物。
聚合优选是通过使用光引发剂启动的。在接触紫外线时能产生活性物质光引发剂为为本领域技术人员所公知。活性物质还能够以相对温和的方式通过某些染料和化合物的光子吸收产生。
所述基团可以使用光引发剂聚合,它在接触紫外线,或优选的是使用长波长紫外线(LWUV)或可见光时能产生活性物质。LWUV和可见光是优选的,因为与紫外线相比,它们能导致对组织和其他组织生物学材料更小的损伤。有用的光引发剂是这样的引发剂,可将它们用于启动大裂球的聚合,而又没有细胞毒性,并且在短的时间内完成,最多几分钟,并且最优选几秒钟。
让染料和助催化剂,如胺接触可见光或LW紫外线可产生活性物质。染料对光线的吸收导致所述染料呈现出三重态,并且这三重态随后与胺起反应,以便形成活性物质,由此启动了聚合作用。聚合作用可以通过用波长为200-700nm,最优选长波长紫外线范围内或可见光范围,320nm或更长,以及最优选为大约365-514nm的波长的光线辐射启动。
可以将多种染料用于光致聚合作用。合适的染料为本领域技术人员所公知。优选的染料包括藻红,根皮红,孟加拉玫瑰红,thonine,樟脑醌,乙基曙红,曙红,亚甲蓝,核黄素,2,2-二甲基-2-苯基乙酰苯,2-甲氧基-2-苯基乙酰苯,2,2-二甲氧基-2-苯基乙酰苯,其他乙酰苯衍生物,和樟脑醌。合适的助催化剂包括胺,如N-甲基二乙醇胺,N,N-二甲基苄胺,三乙醇胺,三乙胺,二苄胺,N-苄基乙醇胺,N-异丙基苄胺。三乙醇胺是优选的助催化剂。
所述聚合物溶液的光致聚合作用是基于以下发现聚合物和光引发剂的组合(其浓度对细胞无毒,重量百分比低于0.1%,更优选为0.05-0.01%重量百分比的引发剂)在接触光线时会发生交联。所述光线相当于施加在裸鼠皮肤上的1-3mWatts/cm2。
在某些实施方案中,所述基体包括具有形状记忆特性的共聚物。在优选实施方案中,所述形状记忆聚合物包括第一可交联的单体和具有形状记忆特性的第二单体。优选的是,分子量至少为10,000的线性聚酯。
优选的是,第一单体是线性聚酯。优选的是,第二形状记忆单体是n-丙烯酸丁酯。优选的是,交联是在不使用引发剂的条件下诱导的。
优选的是,所述形状记忆聚合物包括大约70wt%-大约90wt%的第一可交联的单体,和10-30wt%的具有形状记忆特性的第二单体。
优选的是,所述形状记忆聚合物基体具有至少15MPa的耐压强度。这使得它可以用于支柱中承重组合物的合适的候选物。
典型的形状记忆基体披露于以下文献中Lendlein,PNAS,98(3),Jan.30,2001,pp.842-7,所述文献的完整内容被收作本文参考,该文献披露了用聚己酸内酯作为第一线性聚酯。在其他实施方案中,聚乳酸是第一线性聚酯。据信,聚乳酸能提供坚固的,坚硬的基体,更适合用作本发明的支柱的承重组合物。
在一种实施方案中,所述S-IPN包括a)第一部分包括第一生物可腐蚀的聚合物能够产生酸性产物在水解降解时,和b)第二部分包括第二生物可腐蚀的支架聚合物,它在交联时能产生所述S-IPN的生物聚合物支架或内部强化结构,以及用于第二生物可腐蚀的支架聚合物的交联剂。
在更优选的实施方案中,所述S-IPN包括a)第一部分包括第一生物可腐蚀的聚合物,它在水解降解时能够产生酸性产物,交联引发剂,并且优选的是,治疗有效量的生物学活性或治疗剂以及柠檬酸和碳酸氢钠的组合;和
b)第二部分包括第二生物可腐蚀的支架聚合物,在它交联时,提供了所述S-IPN的生物聚合物支架或内部强化结构,以及用于第二生物可腐蚀的支架聚合物的交联剂。
一般,很多可再吸收的材料都被认为只具有中等的强度和硬度。因此,需要通过在所述基体中添加强化材料提高所述支柱的基体材料的强度和硬度。尽管纤维可以用不-可再吸收的材料(如切碎的碳纤维)制成,优选的是,所述强化材料是用同样可再吸收的材料制成。
在某些实施方案中,所述纤维包括碳纤维,优选的是,碳纤维占所述承重组合物的大约1vol%-大约60vol%(更优选的是,占大约10vol%-大约50vol%)。在某些实施方案中,所述聚合物和碳纤维是均匀地混合的。换言之,所述材料是层状物。在某些实施方案中,所述碳纤维是以切碎的状态出现的。优选的是,所述切碎的碳纤维的中间长度为1mm-12mm,更优选为大约4.5mm-大约7.5mm。在某些实施方案中,所述碳纤维是作为连续的丝存在的。
生物可降解的聚合物是已知的,通过商业渠道获得的,或者可以使用公知的和公开的方法合成纤维。可用于本发明的聚合物的例子包括聚(L-乳酸),聚(D,L-乳酸),聚(D,L-乙酸-共-乙醇酸),聚(乙醇酸),聚(ε-己内酯),聚原酸酯,和聚酸酐。所述聚合物可以获得或通过本领域公知的方法制备成作为所述基体聚合物或成孔聚合物所需要的分子量和分子量分布。优选的聚合物是聚(α-羟基酯)。合适的溶剂系统为本领域所公知,并且在标准教科书和出版物中公开。例如,参见Lange′s Handbook of Chemistry,ThirteenthEdition,John A.Dean,(Ed.),McGraw-Hill Book Co.,New York,1985,所述文献的完整内容被收作本文参考。可以通过标准生产工艺将所述聚合物制成纤维和织物,包括熔体挤出和旋转铸造,并且能够以织造或非-织造形式从商业渠道获得。
在某些实施方案中,将对二噁烷酮纤维用作所述支柱的强化相。所述纤维是优选的,因为对二噁烷酮的高的熔点能承受在注入盘间隙期间所述纤维的任何降解。
在某些优选实施方案中,所述支柱组合物包括用对二噁烷酮纤维强化的脂肪族聚酯。在更优选的实施方案中,选择了由由Yuan披露于美国专利号6,147,135(以下称之为″Yuan″)中的组合物,它的内容被收作本文参考。
在某些实施方案中,所述骨生物学组合物和所述支柱是生物可再吸收的。选择生物可再吸收的支柱是有利的,因为它减少了留在身体内的外源身体的数量。
在某些实施方案中,承重成分是单独使用的。
如果需要,所述支柱材料还可以包括骨生长材料,如生长因子和干细胞,在最终吸收了所述可再吸收的支柱之后能促进骨生长。不过,由于干细胞通常必须存在于水相(如水凝胶)中,干细胞的使用可能需要在所述支柱上导入空隙,这可能明显降低所述支柱的强度。由于所述支柱的主要目的是支撑盘间隙,而所述骨形成组合物的主要目的是促进融合,将干细胞添加到所述支柱组合物可能在所述场合下都是不完全必要的。因此,在优选实施方案中,只将生长因子添加到所述支柱组合物中。
在一种实施方案中,所述生长因子首先是以水溶液形式提供的,并且将所述可再吸收的支柱材料的颗粒添加到所述溶液中。所述生长因子附着在所述颗粒的外表面。然后,所述生长因子-负载颗粒与所述生长因子溶液分离。然后,将生长因子-负载颗粒添加到所述粘性可再吸收的材料中。
在某些实施方案中,本发明的装置具有下列特征中的至少一种
在某些实施方案中,构成本发明支柱的材料具有至少一种下列内在特性
在某些实施方案中,本发明的支柱装置具有以下机械性能特征中的至少一种
在图2(f)和(g)中示出了本实施方案的理想例子。所述弓形形状的厚度(t)为3mm,内径(ri)为22mm,外径(ro)为25mm-平均高度为15mm。当该装置是用光敏聚合的聚酸酐生产时,内在的耐压强度为30Mpa,压缩模量为1GPa,破坏该装置所需要的静态压缩负载为6.6kN,并且压缩硬度为15kN/mm。
在某些实施方案中,本发明的新型支柱和使用常规骨生物学材料,如富含血小板的血浆(PRP),同种异体移植物颗粒(如脱矿物质的骨骼基体(DBM)和松质骨碎片)和自体移植物。
在优选实施方案中,本发明的骨生物学成分以类似于椎骨体的松质骨核心的方式起作用。所述支柱的骨生物学组合物的理想特征如下a)类似于松质骨的强度;b)类似于松质骨的硬度(或者,在较大覆盖区的实施方案中,可以是皮层-松质骨的硬度);c)中等的降解抗性(例如,以允许通过它的骨生长的方式降解;和d)可再吸收。
如上文所述,在优选实施方案中,所述原位成型的骨生物学组合物包括a)基体材料(优选的是,在40℃-80℃下可流动的聚合物;线性酸酐,或富马酸,b)骨形成成分(优选的是,以浓缩的量存在的间充质干细胞),和c)骨诱导性因子(优选的是,骨形成蛋白)。
可用于所述骨生物学成分中的基体的例子包括含有磷酸钙的陶瓷,例如,羟磷灰石或磷酸三钙,聚乳酸,聚乙醇酸,聚半乳糖醛酸,聚己酸内酯,聚环氧乙烷,聚环氧丙烷,聚砜,聚乙烯,和聚丙烯,透明质酸,它可以是纯化的,有或没有交联,生物玻璃,明胶和胶原。
优选的是,所述基体是可再吸收的组合物,它可在原位成型之后在2-4个月时间内吸收,并且包括a)在40℃-80℃的温度下流动或软化的聚合物相(更优选的是,包括脂肪族聚酯,如聚己酸内酯),并且优选是以占所所述骨生物学组合物的50vol%-70vol%的用量使用的,和b)骨传导性磷酸钙相(更优选羟磷灰石),其用量优选占所述骨生物学组合物的10vol%-30vol%。
可选择性地使用加强相(优选的是,可再吸收的聚合物切碎的纤维),其用量优选大约为所述骨生物学组合物的10vol%-大约30vol%。
优选的是,所述骨形成成分包括水相(优选水凝胶相),具有以浓缩数量存在于它里面的活的骨祖细胞(优选间充质干细胞)。优选的是,所述水相是以相互连接的相存在于所述骨生物学组合物中的,并且,其用量为所述骨生物学组合物的大约25vol%-大约35vol%,并且平均直径为100-250μm。
优选的是,所述骨诱导性因子选自下列一组骨形成蛋白和转化生长因子。更优选的是,所述骨诱导性因子是骨形成蛋白。所述骨形成蛋白可存在于所述骨生物学组合物的任何相中。在需要直接输送所述骨形成蛋白时,所述骨形成蛋白存在于水凝胶相中。在需要间接输送所述骨形成蛋白时,所述骨形成蛋白存在于聚合物相中。当需要长期输送所述骨形成蛋白时,所述骨形成蛋白存在于陶瓷相中。优选至少为骨形成蛋白的自身含量的2倍,并且更优选的是,至少为骨形成蛋白自身含量的10倍。
在一种优选实施方案中,所述基体包括基体包括熔点为大约42℃-大约95℃的材料(优选大约42℃-大约90℃),使得它能够流入盘间隙,而不造成组织坏死,并且随后原位固化,以便提供必要的结构支持。所述支架材料还包括成孔剂,这使得可以通过常规滤取技术制成多孔支架。最后,生长因子和骨祖细胞,如间充质干细胞可以通过所述支架的开口空隙流动,以便诱导通过所述支架的骨生长。
在另一种优选实施方案中,间充质干细胞是从患者体内吸出的骨髓中分离的,并且结合成能保持所述细胞生活力的可再吸收的颗粒,如水凝胶。优选的是,所述水凝胶能快速吸收,以便释放细胞,以便形成骨骼。然后所述颗粒与第一种液体形式的支架材料混合,它在植入之后会固化。优选的是,所述支架材料能缓慢吸收,以便可以在所述支架降解之前通过所述孔隙形成骨骼。优选的支架材料是可以溶解在对细胞无害的溶剂,如二甲亚砜(DMSO)中的聚合物,一旦植入体内之后,它将会被滤去导致所述聚合物从溶液中沉淀出来,并且形成固体支架。优选的是,使用生长/营养因子混合物将诱导所述骨祖细胞,以便形成骨骼,并且继续支持骨骼形成过程的生长/营养因子混合物整合到接种细胞的水凝胶和支架材料中。在盘间隙制备之后,将所述系统注入盘间隙,并且不需要其他手术步骤。
在本发明的某些方面,提供了原位成型的(并且优选可注射的)椎间融合器械,包括a)具有适合新骨形成的孔隙度的多孔支架,b)活的骨祖细胞,和c)给所述骨祖细胞发送信息,以便形成新骨所需要的骨诱导性因子。
在通过最低侵害性的手术方法注入时可以形成的多孔支架可以用选自下列的材料制成交联的和天然合成的聚合物,低熔点聚合物,溶解在生物兼容的溶剂中的聚合物,以及定型陶瓷。适用于本发明的多孔支架披露于以下文献中美国专利号6,280,474和6,264,695(可膨胀的聚合物),美国专利号5888220(聚己酸内酯/聚氨酯),美国专利号6,224,894(可吸收的polyoxaester水凝胶和美国专利号6,071,982,以上美国专利的完整内容被收作本文参考。
在很多实施方案中,在上面说明所述支架时所披露的所述可再吸收的聚合物,磷酸钙加强相可以使用,以便形成所述优选的基体。一般,所述基体明显比所述支柱更热(由于存在开口空隙或相互连接的水凝胶相),并且会迅速地水解。
在本发明的一个方面,所述基体具有第一可再吸收的相,它占以下任何脂肪族的重量的大约1-99%ε-己内酯的均聚酯的均聚酯,对二噁烷酮,或环丙烷碳酸酯或共聚物或它们的混合物,其余的可再吸收的相包括骨传导性或骨诱导性钙,含有非纤维状、粉末状化合物,优选磷酸钙如羟磷灰石,磷酸三钙或磷酸四钙,或生物活性玻璃,或它们的混合物。
在本发明的另一个方面,所述基体具有第一可再吸收的相,它占以下脂肪族共聚酯重量的大约1-99%对二噁烷酮或环丙烷碳酸酯,和乙交酯或丙交酯或它们的混合物,并且具体地讲,对二噁烷酮/乙交酯,对二噁烷酮/丙交酯,环丙烷碳酸酯/乙交酯和环丙烷碳酸酯/丙交酯的共聚物,其余的可再吸收的相包括骨传导性或骨诱导性钙,含有非纤维状、粉末状化合物,优选磷酸钙如羟磷灰石,磷酸三钙或磷酸四钙,或生物活性玻璃,或它们的混合物。
在本发明的另一个方面,所述基体具有第一可再吸收的相,它占以下脂肪族共聚酯重量的大约1-99%ε-己内酯和乙交酯或它们的混合物,或ε-己内酯和丙交酯的均聚物的混合物,其余的可再吸收的相包括骨传导性或骨诱导性钙,包括非纤维状、粉末状化合物,优选磷酸钙,如羟磷灰石,磷酸三钙或磷酸四钙,或生物活性玻璃,或它们的混合物。
上述基体包括足够数量的所述可吸收的聚合物相和足够数量的所述可再吸收的第二骨再生相,以便有效发挥骨接合剂或骨代用品的作用。通常,所述复合物包括重量百分比为大约1-99%的聚合物相,并且更优选为大约5-95%。所述复合物通常包括占骨再生相重量大约1-99%,并且更优选为大约5-95%。
本领域技术人员可以理解的是,上述基体中第一可再吸收的相的聚合物相与第二可再吸收的相的相对数量取决于多种参数,特别包括强度水平,硬度水平,以及其他物体和热特性,吸收和再吸收速度,定型和硬化速度,输送能力等,这些参数是必须的。本发明的复合物的理想特性,以及它们的必需的水平,取决于需要需要骨接合剂或替代物的身体结合部位。因此,本发明的复合物通常包括重量百分比为大约1-99%,并且更优选大约5-95%的脂肪族聚酯的均聚物或共聚物,或它们的混合物。
本发明的另一个方面是制备所述骨生物学组合物的所述基体成分的方法。所述基体可以通过一个步骤或两个步骤的方法制备,其中,在反应容器中将骨再生材料与刚形成的聚合物混合(一个步骤的方法),或者与在独立容器中预先形成的聚合物混合(两个步骤的方法)。
本发明的复合物可以通过以下两个步骤的方法生产。将预先成型的聚合物和骨再生材料分别填充到具有常规混合装置的常规混合容器中,在它里面安装有叶轮。然后,在大约150℃-大约220℃,更优选大约160℃-大约200℃的温度下混合所述聚合物和骨代用品大约5-大约90分钟,更优选大约10-大约45分钟,直到获得均匀分散的复合物。然后,对该复合物作进一步的处理,包括将它从混合装置中取出,冷却到室温,研磨,并且在低于大气压的压力下,在高温条件下干燥一段时间。除了上述生产方法之外,所述复合物还可以通过一个步骤的方法制备,包括将骨再生材料填充到装有刚形成的聚合物的反应容器中。然后,在大约150℃-大约220℃,更优选大约160℃-大约200℃的温度下混合所述聚合物和骨代用品大约5-大约90分钟,更优选大约10-大约45分钟。直到获得均匀分散的复合物。然后对该复合物作进一步处理,包括将它从混合容器中取出,冷却到室温,研磨,并且在低于大气压的压力下,在高温条件下干燥一段时间。
在其他实施方案中,本发明的基体包括骨植入物材料,它可以在大约60℃或低于该温度的特定温度下方便地模塑。所述材料是作为硬填料颗粒和粘合剂的附着性混合物生产的,包括生物兼容的,生物可降解的热塑性聚合物,在大约60℃或低于该温度的特定温度下具有流体流动特性。
包括自身骨骼碎片在内的任何坚硬的生物兼容的填料颗粒都可用于本发明。不过,羟磷灰石是优选的填料,因为它的性能和生物学特征。磷酸三钙和玻璃颗粒也可以单独使用或与羟磷灰石组合使用,特别是在填料中需要某种程度的吸收的话更是如此。
所述粘合剂在所述特定温度下优选具有高粘性流体至灰泥样半固体之间的流体特性(流动性)。如果粘合剂粘性太低,所述植入物材料存在与松散的颗粒植入物相同的问题一旦模制具有差的形状保持能力,以及差的粘接力,导致在组织向内生长之前或期间颗粒脱落。在优选实施方案中,所述聚合物包括分子量为大约400-大约5,000道尔顿的聚乳酸。
所述粘合剂优选占所述材料的总的固体体积的不超过大约1/3,在所述材料中留下空隙,这些空隙可用于组织向内生长。最少量的粘合剂对于提供方便的可成型性和在组织向内生长期间提供足够的颗粒粘着性和形状保持能力来说是必要的。
通过类似方法,制备了具有从大约2,000-大约5,000道尔顿的逐渐加大的分子量的聚乳酸,并且在用羟磷灰石颗粒制备时测试了粘合剂特征。当分子量高于大约2,000道尔顿时,所述植入物材料是相当坚硬的,并且在40℃下难于通过手工模制,并且当分子量为5,000道尔顿时,要获得可模塑性需要大约60℃的温度。
为了形成本发明的植入物材料,将上述粘合剂与羟磷灰石颗粒混合,并且充分混合其组成成分。优选的是,所述材料包括某些空隙,以便允许组织向内生长,这种生长独立于聚合物降解。由于球形颗粒的空隙占颗粒总体的大约1/3,植入物材料优选包括低于粘合剂体积1/3的体积。为了优化所述空隙,需要最低数量的粘合剂,以便产生良好的颗粒附着性,通常添加材料总固体体积的大约5%-20%。在一种实施方案中,制备了这样的植入物材料,它包括80%羟磷灰石颗粒(平均粒度为大约650微米),和20%的聚乳酸聚合物,平均分子量为大约1,100道尔顿。在50℃下,所述材料很容易通过手工模制,并且在37℃下表现出良好的附着性和形状保持能力。
在实施本发明时,提供了可模制的羟磷灰石骨植入物材料。如上文所述,通过调整组合物和所述材料中粘合剂的用量,可以提供具有一定范围的模制温度和生物降解能力的植入物材料具有较高模制温度,例如大约40℃-大约60℃的材料通常是优选的,其中,在组织向外生长过程中,所述植入物需要处在相对刚性的条件下,例如,以便阻止明显的形状变形。在这里使用了所述材料,并且在加热状态下在骨骼部位成型;在冷却之后,它呈现出需要的刚性状态。
所述材料可以用具有各种组成和分子量的热塑性聚合物配制,以便获得特定的模制温度,在所述骨骼部位的刚性,以及粘合剂降解速度。通过改变粘合剂和颗粒的相对比较,所述材料的空隙空间和粘着性的特定变化是可行的。
还可以通过以下方法生产基体支架聚合物,首先将所述聚合物溶解在生物兼容的,水溶性溶剂中。将所述材料注入盘间隙,然后让进入身体的聚合物中的溶剂滤去,以便导致所述聚合物在体内固化。与所述溶剂兼容的合适的聚合物包括,但不局限于,聚(乳酸),聚(乙醇酸)和它们的共聚物。合适的生物兼容的,水溶性溶剂包括二甲亚砜(DMSO)。优选的是,聚合物与溶剂的体积比例至少为1∶5,更优选至少1∶2。通过加大聚合物/溶剂注射中聚合物的用量,增加了在身体中固化的结构材料的量,同时减少了由身体分泌的溶剂的量。
还可将可注射的陶瓷用作所述骨生物学成分中的所述基体的成分。优选的可注射的,可再吸收的陶瓷是非晶态的磷酸钙或羟磷灰石(参见美国专利6,214,368和6,331,312,所述文献的完整内容被收作本文参考)。
在本发明的某些实施方案中,在所述基体中产生多孔性,以便产生孔隙支架材料。一旦在所述骨生物学组合物中产生了原位孔隙,外科医生就可以将骨形成成分(如间充质干细胞)或骨诱导性成分(如骨形成蛋白)注入所述孔隙,以便增强所述组合物的骨生物学性质。
原位提供孔隙使得所述骨生物学组合物的所述基体包括材料,如只能在远远高于体温的问题下流动的聚合物。例如,很多聚合物,如聚己酸内酯在大约60℃下流动,这一温度可能明显破坏所述可流动的聚合物中所包含的间充质干细胞的生活力。。
因此,在本发明的某些实施方案中,在高于45℃的温度下可流动的聚合物材料,首先通过将它们的温度提高到至少45℃使它们可流动,然后将所述可流动的聚合物注入盘间隙,然后使所述原位成型的材料成为多孔状,并且然后用间充质干细胞注入所述多孔材料。
在本发明的某些实施方案中,原位孔隙是通过以下方法获得的首先将所述基体材料以球形输入盘间隙,然后将所述球紧密包装在盘间隙中,然后粘合所述球,优选通过加热粘合,形成稳定的结构。
在本发明的某些实施方案中,在所述基体中产生了孔隙,以便在所述基体材料中包括起泡剂。
根据其他实施方案,多孔性可注射的嫁接材料可选择性地通过添加可降解的气体产生化合物制备。在所述气体产生化合物产生气泡时,在骨骼样材料上形成了孔。孔的大小优选是通过调整气体产生化合物的用量和用于混合所述材料的流体中矿物基体的粘性控制的。在具体实施方案中,将碳酸氢钠和/或碳酸氢钙添加到所述可流动的基体材料中,并且将精确数量的酸(例如柠檬酸,甲酸,乙酸,磷酸,盐酸)添加到所述混合流体中。所述混合流体的酸性导致二氧化碳从所述碳酸氢钠中释放出来,其中,所述二氧化碳最终在所述基体材料中形成了孔。在其他实施方案中,过氧化氢与嫁接材料中的过氧化物酶组成。过氧化物酶从过氧化氢中释放氧气,它具有对受伤部位消毒的额外的优点。
在本发明的某些实施方案中,可以在包括成孔剂的所述基体材料与所述基体材料中产生原位孔隙,然后原位滤去所述成孔剂。优选的是,成孔剂是水溶性材料。生物可降解的材料是能够编织成三维解剖学形状的具有类似于或超过天然骨骼的承重性能的材料。所述骨生物学成分的基体成分具有成孔的能力,并且可用于促进骨融合。在这些实施方案中,所述骨生物学组合物可以在不首先形成它的多孔状态的条件下植入。孔隙可以在植入之后获得,通过所述骨生物学成分的成孔成分的比较快速的生物降解,相对所述骨生物学成分的所述基体成分的较缓慢的降解速度而形成。所述多孔的骨生物学成分具有足够的耐压强度和模量,以便用作骨骼置换假体,在此期间,其中,所述身体在所述骨生物学成分中再生成新的天然骨骼并且具有所述骨生物学成分的形状。最后,随着所述骨生物学成分的降解,所述骨生物学成分被天然成分所取代,并且通过这种过程,通过天然方法从身体内置换或消除。
在这些实施方案中,所述骨生物学组合物包括至少两种成分,一种连续的基体成分,和诱导性的成孔成分。所述基体成分包括生物可降解的材料,它的降解速度至少与身体再生天然骨组织的速度吻合。所述成孔成分是这样一种材料,它与所述基体材料不同,以便它可以与所述基体成分区分,并最终通过不同的溶解或生物降解从身体中排除,以便在植入之前或之后在假体模板上形成孔隙。
除了在植入之前从所述植入物的所述基体聚合物中除去,所述成孔聚合物的分子量,分子量分布和结晶度也是重要因素。
一般,所述成孔聚合物的生物降解和/或生物再吸收的速度应当至少为所述基体聚合物降解速度的4倍。另外,所述成孔聚合物的多分散指数应当至少为3,以便提供在一定时间内的受控制的降解,它能避免由于它的副产物的降解而导致的无法忍受的局部pH浓度。
所述实施方案的骨生物学组合物可以包括较高的最终孔隙容量。就是说所述骨生物学组合物是以这种方式生产的,它使得骨生物学成分能够在植入之前具有高孔隙度。例如,所述基体可以制成在周围包括颗粒或纤维,随后通过溶剂分解或其他降解方法将颗粒或纤维从所述基体中排除,留下高度多孔的基体支架结构。另外,包埋在所述成型的基体中的颗粒或纤维可以保留在所述骨生物学组合物中,以便在植入之后在原位分解或降解。另外,可以在植入所述骨生物学组合物之前除去部分成孔材料,以便提供所述可植入的骨生物学成分的多种实际的至最终的孔隙度。
最终孔隙容量可以定义为在至少90%的成孔材料业已从体外或体内从所述模板中排出之后,所述基体的百分孔隙。在本发明中,优选的是,所述生物可降解的/生物可再吸收的骨生物学成分的最终孔隙容量在所述骨生物学成分的体积的大约20%-大约50%范围内。
例如,本发明的生物可降解的本发明的骨生物学组合物是通过以下方法生产的,具有上述成孔剂特征,包括置换承重骨骼所必须的高机械强度,高的最终孔隙容量,以便可以通过它发生骨融合,以及基本上与新组织生长速度一致的降解速度。在它的最简单的方法中,本发明的骨生物学组合物是通过将成孔物质(或″成孔剂″)分布在聚合物基体中生产的。无论用于形成所述骨生物学组合物的方法如何,所述产物都包括三维的,解剖学形状的骨生物学组合物,由于分散在所述基体中的成孔物质的存在,具有高的最终孔隙容量。
例如,所述成孔物质可以用盐,多糖,蛋白,除了所述基体聚合物之外的聚合物,或其他无毒材料,如明胶制成,例如,所述材料可以溶解在不能溶解所述基体聚合物的溶剂中;在比所述基体聚合物更高的玻璃转变温度(Tg)或熔化温度(Tm)下形成流体;或以其他方式区分不同于所述基体聚合物,以便保留来自聚合物基体的独立结构。在随后除去之后,在所述基体中形成了理想的孔。
使聚合物流化的温度是这样的,它使得聚合物链能够不受妨碍地流动。对于非晶态聚合物来说,该″流动温度″是玻璃转变温度(Tg)。不过,对于半-晶体聚合物来说,该″流动温度″是熔化温度(Tm)。在本文中,流动温度表示允许聚合物链不受妨碍地流动的温度,并且,如果需要的话,包括对于非晶态聚合物来说的Tg,和对于至少半-晶体聚合物来说的Tm。
所述成孔物质可以是颗粒形式的,如盐,在它形成基体之后,在它里面含有所述颗粒,所述颗粒从所述基体中滤去或以其他方式除去,留下具有高孔隙的聚合物基体。所述成孔物质可以是纤维形式的,如聚合纤维,或者是分散在所形成的聚合物基体中的网。所述分散的纤维和周围的基体具有不同的降解速度,纤维的降解速度比所述基体的降解速度更快,以便从所述骨生物学组合物中排除,并且形成高孔隙度的聚合骨生物学组合物。
所述含有成孔剂的骨生物学组合物可以通过将成孔物质分散在粉末状聚合物体中形成。优选的是,所述成孔物质是分散在粉末状第二聚合物中的纤维或网状形式的第一聚合物。第二聚合物具有较低的流动温度(Tf),以便当将该分散物加热到高于所述粉末的流动温度时,所述粉末是流体,但分散的纤维不是。然后使所述流体聚合物固化,例如,通过让所述分散液恢复到环境温度,得到了具有滞留在它里面的成孔物质的聚合物基体。
在优选实施方案中,使用了第一聚合物,以便形成所述基体,并且使用了第二聚合物,以便形成分散在第一聚合物中的成孔物质。第一和第二聚合物都是生物可降解的,不过第二聚合物的降解速度比第一聚合物的降解速度更快,例如,大约快2-8倍,并且优选快大约4倍,以便产生理想的多孔物体,用于细胞向内生长和繁殖。例如,可以将聚(乙醇酸)(PGA)纤维网分散在聚(L-乳酸)(PLLA)中。在所述PLLA基体固化时,所述PGA纤维网就包埋在PLLA基体中。PGA纤维的生物降解速度以PLLA的更快,因此形成了具有高的最终孔隙容量的模板。
成孔物质可以用低分子量聚合物制成,而所述基体可以用高分子量聚合物制成。由于低分子量聚合物的降解速度比高分子量聚合物的降解速度更快,可以制成成孔物质和所述基体的各自具有理想的降解速度的植入物。
成孔物质的体内降解速度比模板基体的更快,如PGA纤维在植入PLLA基体中几个月之内降解,而基体的降解需要一年以上的时间,使得成孔物质逐渐被生长的骨细胞所取代。所述再吸收的成孔物质被新形成的骨组织逐渐取代,维持了机械上牢固的骨假体。然后,降解更缓慢的聚合物基体被吸收,并且被从业已存在于假体模板中的生长的组织网络的骨组织繁殖所取代。
在某些实施方案中,所述基体具有足够数量的孔或通道,以便所述基质的总的可接触面积至少比具有相同外部尺寸的固体物体的表面积大5倍。因此,所述优选的总的表面可以通过使用这样的基质获得,它包括大量的粉末,大量的颗粒,大量的纤维,或所述基质材料的高的多孔性模块。优选的是,所述基体的平均孔度超过20μm,更优选超过50μm,更优选超过100μm。在某些实施方案中,所述孔度为100μm-250μm。
本发明的骨生物学组合物具有高的最终孔隙容量,导致了包括均匀分布的和相互连接的孔状结构的高度多孔的基体。所述多孔性骨生物学组合物的孔的体积大约为20%-90%,并且平均孔的直径为大约50-250μm。所述孔体积和直径还直接与组织向内生长和基体降解的速度相关。本发明的多孔基体适应附着在所述基体上的大量细胞,使得细胞能方便地分布在模板中,并且可以形成组织成分的有组织的网络。所述基体优选能促进细胞附着,并且允许附着的细胞保持不同的细胞功能。在某些实施方案中,所述滤出产生了开口空隙,它的平均孔度为20μm-500μm,优选50-250μm。对于骨生长来说,这一范围是优选的在某些实施方案中,所述骨生物学成分的基体是用聚合物生产的,并且是通过以下方法生产的,它使得植入物能够适合组织向内生长的多孔性,同时保留了足够的机械强度,以便适合支持盘间隙。例如,在它们的多孔状态下,本发明的骨生物学组合物的耐压强度为大约5Mpa-50Mpa,压缩模量为大约50Mpa-500Mpa,是通过Instron Materials Testing Machine,按照美国材料实验协会(ASTM)Standard F451-86的规定测定的。5Mpa的耐压强度和0Mpa的压缩模量值相当于人类脊柱骨的中等范围的值。
本发明的生物可降解的,生物可再吸收的基体优选是用聚合材料制成的,所述基体聚合物的降解速度与组织向内生长的速度吻合。所述基体聚合物的平均分子量大约为50,000-200,000。所述植入物的基体聚合物的结晶度为大约0-25%。所述基体聚合物的分子量和分子量分布与所述基体的生物降解速度相关。在具有宽的分子量分布的基体中,例如,多分散指数(Mw/Mn)大于存在于短的到长的聚合链上的2个百分点。多分散性使得降解在一段时间内是连续的,而没有突然的改变,例如,由于降解产物所产生的pH改变,有可能出现在具有窄的分子量分布的材料上。在本发明中,所述基体的多分散指数优选在3-6的范围内。
在具有原位形成的孔隙的某些实施方案中,随后将间充质干细胞(″MSCs″)输送到所述多孔基体中。
在某些实施方案中,通过简单地将含有间充质干细胞的水溶液输入所述支架,将间充质干细胞输送到所述支架的孔隙中。在某些实施方案中,可以将另一个套管放置在多孔基体附近,以便用作所述流体的出口套管的作用。
在某些实施方案中,可以使用亲水性基体材料,如聚乳酸。在这种场合下,业已发现间充质干细胞不能牢固地附着在聚乳酸的表面上。因此,在某些实施方案中,可以将诸如羟磷灰石(HA)的衬里材料用于衬在所述支架的内表面上,它是一种间充质干细胞能更牢固地附着的材料。在某些实施方案中,选择由Brekke披露于美国专利号5,133,755中的衬里,所述文献的完整内容被收作本文参考(以下称之为″Brekke″)。
在某些实施方案中,其他细胞附着分子可以结合到所述基体的内表面上,以便增强间充质干细胞对所述支架的附着。术语″细胞附着分子″统一地表示层粘连蛋白,粘连蛋白,玻连蛋白,血管细胞附着分子(V-CAM),细胞间附着分子(I-CAM),肌腱蛋白,凝血栓蛋白,骨粘连蛋白,骨桥蛋白,骨唾液酸糖蛋白,和胶原。
优选的是,所述间充质干细胞是在加压条件下通过注射输送到所述原位孔隙中。在这种场合下,用包含在外被包围所述多孔的骨生物学组合物是有帮助的,以便将所述骨形成成分包含在所述原位孔隙中,并且避免它从所述骨生物学组合物中泄露。
在某些实施方案中,所述外被是具有360度的跨度的所述支柱成分。在其他实施方案中,所述外被可以是所述骨生物学组合物的充气装置成分。
尽管可将它用于产生原位孔隙,有时候在正常注射压力下使间充质干细胞均匀地分布在所述原位产生的孔隙中是困难的。在本发明的某些实施方案中,所述间充质干细胞是在较高压力下输送到所述原位孔隙中的,它足以填充所述孔隙的90%。优选的是,所述压力高到足以完全填充所述孔隙。
因此,根据本发明,提供了输送骨形成成分的方法,包括以下步骤a)将骨生物学组合物注入盘间隙,b)在所述骨生物学成分中形成原位孔隙,和c)在至少足以填充所述孔隙的90%的压力下将骨形成成分输入所述原位孔隙。
在本发明的某些实施方案中,本发明的骨生物学成分还包括胶凝水相,其中,活的间充质干细胞位于所述水相中。
由于间充质干细胞(和很多生长因子)是高度热敏感性的,需要在体温或接近体温的温度下输送间充质干细胞和生长因子。不过,很多生物可吸收的聚合物在远远超过体温的温度下是可流动的。类似的,很多交联的聚合物在超过100℃的温度下会经历放热。尚不了解间充质干细胞和生长因子是否在长时间接触这种温度后能够保持活力。
由于磷酸钙在体温下是可以流动的,需要选择具有包括磷酸钙的基体的骨生物学组合物,同时还要选择在输送所述骨生物学组合物的所述基体成分期间将间充质干细胞或生长因子输送到盘间隙。
因此,在某些实施方案中,提供了在体温下可流动的骨生物学组合物,该组合物包括含有磷酸钙和骨形成成分的基体。
水凝胶可用于这一方面,因为它们能够适当地保护包含在它里面的骨生长。
″水凝胶″是在有机聚合物(天然的或合成的)定型或固化时形成的物质,以便形成三维的开放晶格结构,它能够滞留水或其他溶液的分子,以便形成凝胶。例如,所述固化可以通过聚合,凝固,疏水性,或交联完成。用于本发明的所述水凝胶能够迅速固化,以便将细胞保持在使用部位,以便消除细胞吞噬或细胞死亡的问题,并且增强在应用部位的新细胞生长。所述水凝胶还是生物兼容的,例如,对悬浮在水凝胶中的细胞是无毒的。
″水凝胶-细胞组合物″是包括需要的组织前体细胞的水凝胶。所述细胞可以直接从组织来源中分离或者可以从细胞培养物中获得。“组织”是包埋在它的天然基体中的特定细胞的总体或集合,其中,所述天然基体是由特定活细胞产生的。
所述水凝胶-细胞组合物形成了细胞的均匀分布,具有完善的和精确控制的粒度。另外,所述水凝胶能够支持非常大的细胞密度,例如,五千万个细胞/ml。上述因素改善了新组织的质量和强度。另外,所述水凝胶允许养分和废物扩散到所述细胞中,并且从所述细胞中扩散出来,它能促进组织生长。
适用于本发明的骨生物学组合物的水凝胶是含水的凝胶,即,以亲水性和在水中的不溶性为特征的聚合物。例如,参见″Hydrogels″,458-459页,Concise Encyclopedia of PolymerScience and Engineering,Eds.Mark等,Wiley and Sons,1990,该文献的内容被收作本文参考。尽管水凝胶的应用在本发明中是选择性的,采用水凝胶是高度优选的,因为它们倾向于产生多种理想的性能。由于它们的亲水性,含水性质,水凝胶通常可以a)容纳间充质干细胞,b)有助于固化的复合物具有固化复合物的承重能力,和c)降低在所述复合物上的摩擦力,并且增加热弹性。
合适的水凝胶通常具有以下特性的优化组合与所选择的基体聚合物的兼容性,以及生物兼容性。
当所述骨生物学组合物与支柱组合输送时,并因此不再需要承受脊柱治疗部位的大部分负荷时,所述水凝胶相优选为总体积的50-90%,更优选为大约70-85%。
在某些实施方案中,其中,所述骨生物学成分是独立存在的成分,(即,基础上没有支柱),所述骨生物学组合物优选包括水凝胶相,其浓度为所述骨生物学组合物体积的大约15-50%,优选为大约20-30%。较低水平的水凝胶相提供了在所述骨生物学成分中使用坚固基体的额外的机会。
聚合物-水凝胶复合物具有物理/化学特性的最佳组合,特别是在它们的构像稳定性,再吸收特征,生物兼容性,和物理性能方面,例如,物理性能,如密度,厚度,和表面粗糙度,以及机械性能,如承重强度,抗张强度,静态剪切强度,固定点的疲劳,冲击吸收能力,磨损特性,以及表面磨损。
一般,未支撑的水凝胶不够坚硬或牢固,不足以承受在融合过程中所经历的高的脊椎负荷。因此,在很多实施方案中,所述水凝胶不仅通过本发明的支柱成分支撑,还通过所述骨生物学成分的基体成分支撑。在这种场合下,所述水凝胶要么与所述基体成分一起输送到盘间隙中(当所述骨生物学成分的所述基体成分包括CaPO4时是优选的),要么在所述骨生物学成分的所述基体成分中业已形成了原位孔隙之后输送(作为可流动的聚合物)。
不过,在某些实施方案中,本发明的支柱成分可以跨越盘间隙的足够大的部分,并且具有足够的硬度,以便适当地支撑盘间隙并且将水凝胶相容纳在盘间隙中,而没有必要在所述骨生物学成分中补充基体。在这些实施方案中,所述支柱成分优选在盘间隙周围形成了至少200度的弧度,更优选至少270度,更优选至少350度,最优选大约360度。所述支柱如图2(a)-(e),图4(a)和(b)和图5(a)和(b)所示。
因此,根据本发明,提供了椎间融合器械,包括a)原位产生的承重支柱,具有跨越至少200度的形状,和b)骨生物学成分,主要包括-由骨形成成分组成的水相。
所述水凝胶可以包括下列任何成分多糖,蛋白,聚磷腈,聚(氧化乙烯)-聚(氧化丙烯)嵌段聚合物,聚(氧化乙烯)-聚(氧化丙烯)乙二胺的嵌段聚合物,聚(丙烯酸),聚(异丁烯酸),丙烯酸和异丁烯酸的共聚物,聚(乙酸乙烯酯),和磺化聚合物。
一般,所述聚合物至少是部分可溶于水溶液的,例如,水,或具有带电荷的侧基的含水的纯溶液,或它的一价离子盐。有很多能够与阳离子起反应的酸性侧基的聚合物的例子,例如,聚(磷腈),聚(丙烯酸),和(异丁烯酸)。酸性侧基的例子包括羧酸基,磺酸基,和卤化(优选氟化)醇基。具有能够与阴离子起反应的碱性侧基的聚合物的例子有聚(乙烯基胺),聚(乙烯基吡啶),和聚(乙烯基咪唑)。
具有带电荷的侧基的水溶性聚合物,是通过该聚合物与含有带相反电荷的多价离子的水溶液起反应交联的,如果所述聚合物具有酸性侧基的话,它是多价阳离子,如果所述聚合物具有碱性侧基的话,它是多价阴离子。用于让所述聚合物与酸性侧基交联以便形成水凝胶的阳离子包括二价和三价阳离子,如铜,钙,铝,镁,和锶。将所述阳离子的盐的水溶液添加到所述聚合物中,以便形成柔软的,高度膨胀的水凝胶。
用于与所述聚合物交联以便形成水凝胶的阴离子包括二价和三价阴离子,如低分子量二羧酸根离子,对苯二甲酸根离子,硫酸根离子,和碳酸根离子。将所述阴离子的盐的水溶液添加到所述聚合物中,以便形成柔软的,高度膨胀的水凝胶,如结合阳离子所述。
为了阻止抗体进入水凝胶的通道,但是允许养分进入,所述水凝胶中有用的聚合物大小在10,000D-18,500D范围内。较小的聚合物得到了具有较高密度的具有较小孔的凝胶。
离子多糖,如藻酸盐或壳聚糖可用于悬浮活的细胞。在一种例子中,所述水凝胶是通过交联藻酸的阴离子盐产生的,它是从海藻中分离的碳水化合物的聚合物,与离子,如钙阳离子形成的盐。所述水凝胶的强度随着钙离子或藻酸盐的浓度的提高而提高。例如,美国专利号4,352,883披露了具有二价阳离子的藻酸盐在水中,在室温下的离子交联,以便形成水凝胶基体。
将组织前体细胞与藻酸盐溶液混合,将该溶液输送到业已植入的支持结构中,然后由于生理学浓度的钙离子在体内的存在在短时间内固化。另外,在植入之前将所述溶液输送到所述支撑结构中,并且在含有钙离子的外部溶液中固化。
在某些实施方案中,所述水凝胶包括藻酸盐。藻酸盐可以在温和条件下胶凝化,使得能够以很少的损伤固定细胞。Mg2+和一价离子与藻酸根的结合,不会诱导藻酸盐在水溶液中的胶凝化。不过,藻酸盐接触可溶性钙,会导致优先结合钙,并且随后胶凝化。所述温和的胶凝化条件与在大多数材料中诱导类似的相改变通常所需要的大规模的温度或溶剂变化不同。
业已将藻酸盐用作细胞的固定化基体,作为工程化软骨组织的可注射的基体,用于治疗各种动物模型的膀胱输尿管反流,并且用作含有胰岛细胞的可注射的微囊剂,治疗糖尿病的动物模型。
所述开放的晶格结构以及在藻酸钙中孔度的较宽的分布排除了大型分子(例如,蛋白)从所述材料中的受控制的释放,并且限制了将纯的藻酸盐用于限制完整细胞或细胞器的用途。不过,可以通过掺入其他聚合物因子(例如,赖氨酸,聚(乙二醇),聚(乙烯醇)或壳聚糖)对藻酸盐薄膜进行改性。业已将这种改性的系统用于控制蛋白从藻酸盐颗粒中的释放。用藻酸钙制成的止血棉球业已在临床上用于减少在手术过程中的血液流失。藻酸盐中的钙离子通过激活血小板和凝血因子VII有助于血液凝固。
适用于本发明基体的胶原-多糖-羟磷灰石组合物业已由Liu披露于美国专利号5,972,385中,所述文献的完整内容被收作本文参考。让多糖与氧化剂起反应,以便打开所述多糖上的糖环,形成醛基。所述醛基起反应,以便形成与胶原的共价键。
可以使用的多糖的类型包括透明质酸,硫酸软骨素,硫酸皮肤素,硫酸角质素,乙酰肝素,硫酸乙酰肝素,葡聚糖,硫酸葡聚糖,藻酸盐,和其他长链多糖。在优选实施方案中,所述多糖是透明质酸。
本发明的联的胶原-多糖基体可以单独使用,以便传导组织生长;与生长因子组合使用,以便诱导组织生长。与纤维蛋白组合使用,以便将所述基体固定在具有组织缺陷的部位,或者与生长因子和纤维蛋白组合使用。
制备本发明的胶原-多糖基体的方法包括以下步骤转化外源多糖,以便形成具有醛基的修饰过的外源多糖,并且让修饰过的外源多糖在以下条件下与胶原起反应以便所述醛基能够与胶原共价反应,从而形成胶原的基体。所述方法还可以包括向所述基体中添加生长因子的步骤。生长因子可以在所述修饰过的多糖与胶原起反应的步骤之前或之后添加。
用于交联本发明的胶原-多糖基体的纤维蛋白是通过让预成型的基体与纤维蛋白原和凝血酶的来源接触,或通过在反应时合并纤维蛋白原和凝血酶与修饰过的外源多糖和胶原制备的。另外,胶原多糖基体中的纤维蛋白原和凝血酶可以添加到其他预制的胶原多糖基体中。因此,本发明还包括制备含有纤维蛋白的交联的胶原-多糖基体的方法。
在其他实施方案中,所述水凝胶包括微生物多糖。微生物多糖在自然界是普遍存在的,并且是非常丰富的生物聚合物。对它们感兴趣,是因为它们的不寻常的和有用的功能特性。所述特性中的某一些归纳如下(i)成薄膜和成凝胶,(ii)在大范围温度下的稳定性,(iii)生物兼容性(缺少有毒性金属,残余化合物,催化剂,或添加剂的释放/滤出的天然产物),(iv)不寻常的流变特性,(v)生物降解能力,(vi)在天然状态下的水溶性或如果化学修饰的话减弱了的溶解度,和(vii)对上述某些聚合物的热加工能力。应当指出的是,吉兰糖胶,一种微生物多糖,业已作为酶和细胞的固定化材料进行过研究。
在某些实施方案中,所述水凝胶是合成的水凝胶。一种合成的水凝胶是聚磷腈。聚磷腈包括无机主链,它是由位于氮和磷原子之间交替的单键和双键构成的,与大部分其他聚合物上的碳-碳主链不同。聚磷腈的这种独特性来自这种无机主链与多样性侧链官能度的组合,可对它进行修饰,以便用于不同的目的。聚磷腈的降解导致了磷酸根和胺离子与所述侧基的释放。
线性的,非交联的聚合物,如聚磷腈可以通过(NPCl2)3的热开环聚合制备,并且用胺,醇盐或有机金属制剂取代氯基团,以便形成水解稳定性的,高分子量聚(有机磷腈)。根据所述侧基的特性,所述聚磷腈可以是疏水性的,亲水性的或两性的。所述聚合物可以生产成薄膜,膜和水凝胶,以便通过交联或嫁接用于生物医学用途。业已制备了用于药物输送装置的生物可腐蚀的聚合物,包括掺入咪唑的可水解的侧链,以便用于骨骼组织再生。
聚磷腈是具有由通过交替的单键和双键隔开的氮和磷原子的主链的聚合物。每一个磷原子与两个侧链共价结合。可以使用的聚磷腈大部分具有侧链,它们是酸性的,并且能够与二价或三价阳离子形成盐桥。酸性侧链的例子有羧酸基和磺酸基。
生物可腐蚀的聚磷腈具有至少两种不同类型的侧链,可以与多价阳离子形成盐桥的酸性侧基,和能在体内条件下水解的侧基,例如,咪唑基,氨基酸酯,甘油,和葡糖基。生物可腐蚀的或生物可降解的聚合物,即,能够在预期用途中可接受的时间内溶解或降解的聚合物(通常用于体内治疗)会在少于大约5年时间内降解,并且优选在少于大约1年时间内降解,一旦接触到pH 6-8的,温度大约为25℃-38℃的生理学溶液的话。所述侧链的降解导致了聚合物的腐蚀。水解侧链的例子是未取代过的和取代过的咪唑和氨基酸酯,其中,所述侧链通过氨基键与磷原子结合。
用于合成和分析各种类型的聚磷腈的方法披露于美国专利号4,440,921,4,495,174,和4,880,622中,所述文献的完整内容被收作本文参考。用于合成上述其他聚合物的方法为本领域技术人员所公知,例如参见Concise Encyclopedia of Polymer Science andEngineering,J.I.Kroschwitz,editor John Wiley and Sons,New York,N.Y.,1990,所述文献的完整内容被收作本文参考。很多聚合物,如聚(丙烯酸),藻酸盐,和PLURONICSTM可以通过商业渠道获得。
另一种合成的水凝胶是聚(乙烯基)醇(PVA)。PVA不是直接合成的,而是聚(乙酸乙烯酯)的脱乙烯化产物。聚乙酸乙烯酯通常是通过乙酸乙烯酯的游离基聚合制备的(整体,溶液或乳液聚合)。PVA是通过聚(乙酸乙烯酯)的醇解,水解或氨解过程形成的。通过水解程度和分子量能够方便地控制PVA的亲水性和水溶性。
PVA业已被广泛地用作增稠剂和湿润剂。PVA凝胶可以通过在存在硫酸的条件下与甲醛交联制备。业已将甲醛交联的PVA材料用作多种塑料手术用途的假体,包括隆胸,横隔膜置换和骨骼置换。不过,在长期植入之后,发现了多种并发症,包括PVA的石灰化。
最近,采用物理交联方法将PVA制成了不溶性的凝胶。所述凝胶是通过反复的冷冻-解冻过程制备的。这导致了所述水凝胶的稠化作用,这是由于半晶体结构的形成。业已报导了这种凝胶在药物输送用途中的应用。不过,PVA并不是真正是生物可降解的,由于在所述聚合物键中缺少不稳定的键。只有低分子量的材料可以被用作植入物材料。
另一种合成的水凝胶是聚环氧乙烷(PEO)。PEO可以通过使用多种引发剂通过环氧乙烷的阴离子或阳离子聚合产生。PEO是高度亲水性的和生物兼容的,并且业已被用作多种生物医学用途,包括制备生物学相关的缀合物,诱导细胞膜融合和生物材料的表面修饰。业已合成了不同的聚合物结构,并且最近业已对它们在医学上的某些用途进行了综述。例如,可以通过γ-射线或电子束辐射和化学交联将PEO制成水凝胶。业已将所述水凝胶用作基体,用于药物输送和细胞附着研究。
Pluronics多元醇或polyoxamers是PEO和聚(环氧丙烷)的嵌段共聚物,并且通常是通过以ABA三嵌段形式使用多功能引发剂通过阴离子聚合合成的。Pluronics F 127包括占重量的70%的环氧乙烷和30%的环氧丙烷,平均分子量为11,500,它是用于输送蛋白的最常用的成凝胶聚合物基体。
浓度为20%或以上的水溶液中具有可逆转的热胶凝化,因此,该聚合物溶液在室温下是液体,但是在体温下迅速胶凝。尽管所述聚合物不能被身体降解,所述凝胶能够缓慢地溶解,并且最终清除所述聚合物。业已将该聚合物用于蛋白输送和皮肤烧伤治疗。
尽管PGA不是水溶性的,业已合成了基于光敏聚合的PGA-PEO共聚物的生物可腐蚀的水凝胶,并且研究了它们的生理学活性。合成了具有聚(乙二醇)中央嵌段的大型单体,它是用α-含氧酸(例如,寡(d1-乳酸)或寡(乙醇酸))的寡聚体延长的,并且其末端是丙烯酸基。设计所述水凝胶是为了在光致聚合作用之后与组织或蛋白直接接触,并且起着屏障作用。
所述凝胶在水解时,将寡(α-含氧酸)区水解成聚(乙二醇),α-含氧酸,和寡(丙烯酸)。通过适当地选择寡(α-含氧酸),可以将所述凝胶的速度设定为从少于1天到4个月。可以使用无毒的光引发剂使用可见光合成大型单体,而又没有过度加热或局部毒性。在与组织接触时聚合的水凝胶紧密地附着在底层组织上。相反,所述凝胶如果是在与组织接触之前聚合的话,它们是非附着性的。业已将所述水凝胶用于动物模型,用于预防手术后粘连,和血管的血栓症,并且在插入气囊之后启动增稠。
因此,可以看出,有大量的合成的生物可降解的聚合物可用于本文所披露的脊椎组织工程发明。建立的聚合物化学,使得人们能够通过使用不同的手段改变合成聚合物的特性i)官能团(位于主链或侧链上),ii)聚合物结构(线性,分支,梳子形或星形),和iii)物理混合的(聚合物混合物或互相贯通的网络)或化学结合的(共聚物)的聚合物种类的组合。目前优选PGA和相关的聚酯,部分原因是它们的在人体应用中的确定的安全性,以及食品和药物管理署的设计许可。PLGA还可用于将特殊肽序列整合在所述聚合物上。还可以使用由类似于ECM的建筑模块,例如,碳水化合物和肽构成的聚合物。
可用于本发明方法中的其他水凝胶是通过可见光或紫外线固化的。所述水凝胶是用大裂球制成的,它包括水溶性区,生物可降解的区,以及至少两个可聚合的区,如在美国专利号5,410,016中所披露的,所述文献的完整内容被收作本文参考。例如,所述水凝胶可始于生物可降解的,可聚合的大裂球,包括核心,在所述核心的每一端上的延长部分,以及位于每一个延长部分上的末端帽子。所述核心是亲水性聚合物,所述延长部分是生物可降解的聚合物,而所述末端盖子是寡聚体,它在接触可见光或紫外线,例如,长波长紫外线时能够交联所述大裂球。
所述光固化的水凝胶的例子包括聚环氧乙烷嵌段共聚物,聚乙二醇聚乳酸共聚物,具有丙烯酸端基,和10K聚乙二醇-乙交酯共聚物,在它的两端加有丙烯酸帽子。与PLURONICTM水凝胶类似,包括所述水凝胶的共聚物可以通过标准技术操作,以便改变它们的物理特性,如降解速度,在结晶度方面的差异,以及刚性程度。
众所周知的是,干细胞对大大超过体温的温度相当敏感。因此,在本发明的某些实施方案中,所述骨生物学组合物在大约37℃-大约60℃,优选大约40℃-大约50℃,更优选大约40℃-大约45℃的温度下输送到盘间隙中。
在某些实施方案中,在所述水凝胶周围形成了半透性膜,以便保护细胞的内侧。在这种场合下,使用了由Lin披露于美国专利号4,352,883中的技术,所述文献的完整内容被收作本文参考(以下称之为″Lin″)。
在一方面,本发明提供了将骨生长细胞或生长因子包在半透性膜中的方法。所述基本方法涉及将要包衣的骨生长细胞或生长因子悬浮在生理学兼容的介质中,它含有可以水溶性物质,它可以成为不溶于水的物质,就是说胶囊化,以便对所述组织的临时的保护性环境。然后将所述介质制成含有骨生长细胞或生长因子的液滴并且胶凝化,例如,通过改变温度条件,pH,或离子环境。由此产生的″临时胶囊″随后进行处理,可以是已知的处理,这种处理导致了有关形状保持临时胶囊的受控制的渗透性(包括不渗透性)的薄膜的产生。
所述临时胶囊可以用任何无毒的,水溶性物质生产,所述物质能够胶凝化,以便通过改变它所存在的介质中的条件形成保持形状的物质,并且还可以包括多个能方便地离子化的基团,以便形成阴离子或阳离子基团,所述基团在聚合物中的存在,使得所述胶囊的表面层能够交联,以便在接触含有带相反电荷的多个官能团时产生“永久性”膜。
目前用于生产临时胶囊的优选材料是天然的或合成的多糖树胶,其类型可以是(a)胶凝化的,以便通过接触条件的改变形成形状保持物质,如,pH改变,或通过接触多价阳离子,如钙Ca形成;和(b)通过含有活性基团,如胺或亚胺基的聚合物永久性″交联″或硬化,所述基团可以与酸性多糖成分起反应。目前优选的胶是碱金属藻酸盐。可以使用的其他水溶性胶包括瓜尔胶,阿拉伯树胶,角叉菜胶,果胶,黄蓍胶,黄原胶或它们的酸性级份。在用热难以熔化的材料包衣时,可以对明胶或琼脂取代所述树胶。
形成液滴的优选方法是强制树胶-养分-组织悬浮液通过放置在涡旋中央的振动的毛细管,所述涡旋是通过快速搅拌多价阳离子溶液产生的。从所述毛细管的顶端排出的液体马上接触所述溶液,并且以球形形状的物体交联化。
在临时胶囊周围形成永久性半透性膜的优选方法是让具有游离酸基的类型的胶凝化树胶的表面层与包括酸性活性基团,如胺或亚胺基的聚合物“交联”。这一目的通常是在特定聚合物的稀释溶液中完成的。一般,聚合物的分子量越低,渗透到临时胶囊表面中的程度就越大,并且渗透越大,所得到的膜可渗透性就越低。永久性交联是因为在所述交联聚合物的酸性活性基团和多糖树胶的酸性基团之间形成了盐而造成的。在极限范围内,半透性可以通过确定所述交联聚合物的分子量,它的浓度,以及反应时间进行控制。业已成功地使用的交联聚合物包括聚乙烯亚胺和聚赖氨酸。分子量可以根据需要的通透性程度在大约3,000-大约100,000之间波动或更高。业已使用平均分子量为35,000的聚合物获得了良好的结果。
可以对所述胶囊进行工程改造,以便具有特定的体内使用寿命,通过巧妙地选择所述交联聚合物,蛋白或多肽交联剂。例如,能够在体内方便地连接的蛋白或多肽交联剂,如聚赖氨酸导致了所述膜的较快的降解。在哺乳动物基体不容易降解的交联剂,例如,聚乙烯亚胺导致了持续更长时间的膜。通过选择所述交联聚合物或通过对两种或两种以上这样的材料同时或依次交联,可以预先确定植入的组织保持受保护的时间长度。
选择性地使用某些材料以便形成所述临时胶囊,可以改善在形成永久性膜之后在所述胶囊内的质量传递,通过重建所述材料是液体条件,例如,排出多价阳离子。这一目的可以通过离子交换实现,例如,浸泡在磷酸缓冲的盐溶液,或柠檬酸缓冲液中。在某些场合下,如需要保存胶囊化的组织,或当所属临时的胶凝化胶囊是可渗透性的时,优选保持所述胶囊化的树胶处在所述交联的,胶凝化状态。
膜形成的另一种方法涉及加剧作用的界面缩聚。该方法涉及在能够形成聚合物的一对互补性单体的水溶性反应物的水溶液中制备临时胶囊的悬浮液。然后,将所述水相悬浮在疏水性液体中,其中,所述互补性反应物是可溶的。在将第二种反应物添加到所述双相系统种时,在界面上发生了聚合作用。可以通过控制疏水性溶剂的组成和反应物的浓度控制渗透性。形成半透性膜的另一种途径是在临时胶囊中包括一定量的蛋白,它随后能够在表面层上通过接触交联剂如戊二醛时发生交联。
业已将上述方法用于对活的间充质干细胞进行包衣,所述细胞存在于包括保持生活力并且支持组织的体外代谢,提供骨生长所必需的养分和其他材料。
另一方面,本发明提供了组织植入方法,它不需要手术,并且它克服了免疫排斥的诸多问题。根据本发明,将所述胶囊注入哺乳动物身体的合适部位,并且正常发挥作用,直到组织耗尽,或直到天然肌体过程成功地隔离了所述胶囊,以便所述组织生活力所需要的物质不再有用。此时,由于不需要组织进行植入,可以通过另一次注射方便地提供新的组织。因此,只要需要的话就可以为所述哺乳动物身体提供所述组织的特殊功能。
在本发明的优选实施方案中,将哺乳动物间充质干细胞包在聚赖氨酸和聚乙烯亚胺交联的藻酸盐膜中。可将其注入所述骨生物学成分的聚合物基体中。
因此,本发明的主要目的是提供将活的骨形成成分或生长因子包在用于维持和代谢所需要的养分和其他物质和代谢产物可渗透的膜中,所述膜对于分子量高于特定水平的聚合物基体材料来说是不可渗透的。
本发明的其他目的是提供将活组织植入哺乳动物身体的方法和提供非手术组织植入的方法。另一个目的是提供对活组织进行包衣的方法,它允许生产具有高的表面积与体积比例的胶囊和具有预定的体内驻留时间的膜。
IPNs和S-IPNs中的每一种都是非常理想的,因为细胞能够悬浮在可以通过无毒的活性物质,如光启动交联的聚合物溶液中。在某些实施方案中,所述活性物质和引发剂是以对细胞无毒的用量使用的。在其他实施方案中,所述活性物质是以对细胞无毒,并且通过光启动启动的用量使用的。
细胞可以直接从供体,从来自供体的细胞的细胞培养物,或从建立的细胞系培养物中获得。在优选实施方案中,细胞是直接从供体体内获得的,洗涤与聚合材料直接组合之后植入。所述细胞是使用组织培养技术领域的技术人员所公知的技术培养的。
可以通过扫描电子纤维术,组织学,和使用放射性同位素进行定量测定评估细胞结合和生活力。可以通过上述技术和功能分析的组合确定植入细胞的功能。例如,对于肝细胞来说,体内肝功能研究可以通过将套管插入受体的胆总管进行。然后就可以逐渐收集胆汁。可以通过高压液相层析分析胆汁色素,寻找未衍生化的四吡咯,或者在转化成叠氮二吡咯之后通过薄层层析分析。通过与叠氮化叠氮二吡咯氨基苯甲酸乙酯起反应,用或不用P-葡糖醛酸酶处理。双缀合的和单缀合的胆红素还可以在对缀合的胆汁色素进行碱性甲醇分解作用之后通过薄层层析确定。一般,随着功能性移植的肝细胞数量的增加,缀合的胆红素的含量也会增加。还可以对血液样品进行简单的肝功能测试,如白蛋白生产。可以用本领域技术人员所公知的技术进行类似的器官功能研究,这是在移植之后确定细胞功能的程度所需要的。例如,能够用与专门用于植入肝细胞类似的方式输送胰腺的胰岛细胞,以便通过胰岛素的合适的分泌实现葡萄糖调控,从而治愈糖尿病。还可以移植其他内分泌组织。可以使用标记过的葡萄糖进行研究,以及采用蛋白分析进行研究,以便对聚合物支架上的细胞团块进行定量。然后可以用细胞功能研究对这种细胞团块研究进行校正,以便确定什么样的细胞团块是合适的。对于软骨细胞来说,功能是以提供对周围的结合组织的合适的结构支撑的形式确定的。
该技术可用于提供多种细胞类型,包括遗传学改变过的细胞,位于用来有效转移大量细胞并且促进移植物嫁接的三维结构支架中,以便产生新的组织或组织等同物。还可将它用于细胞移植的免疫保护,同时通过排除宿主免疫系统生长新的组织或组织等同物。
可以按照本发明的方法移植的细胞的例子,包括软骨细胞和能形成软骨的其他细胞,造骨细胞和能形成骨骼的其他细胞,肌肉细胞,成纤维细胞,和器官细胞。在本文中,″器官细胞″包括肝细胞,胰岛细胞,来自肠道的细胞,来自肾脏的细胞,以及主要起着合成和分泌或代谢材料的作用的其他细胞。
在某些实施方案中,所述骨生物学成分包括骨传导性相。在某些实施方案中,所述骨传导性相包括颗粒相,包括硬组织,骨传导性或骨诱导性含有钙的非纤维状、粉末状化合物,其中所述含钙的化合物包括具有以下结构式的材料M2+(10-n)N1+2n(ZO43-)6mYX-
其中,当x=1时,n=1-10,且m=2,和/或当x=2时,m=1其中,M和N是碱金属或碱土金属,优选钙,镁,钠,锌和钾。ZO4是酸根,其中,Z优选是磷,砷,钒,硫或硅,或是用碳酸根(CO32-)完全或部分取代过的。Y是阴离子,优选卤离子,氢氧根,或碳酸根。
最优选的是,所述含钙的化合物包括磷酸一钙,磷酸二钙,磷酸八钙,α磷酸三钙,β磷酸三钙,或磷酸四钙,羟磷灰石,氟磷灰石,硫酸钙,氟化钙和它们的混合物。
所述含钙的骨骼再生化合物还可以含有生物活性玻璃,包括金属氧化物,如氧化钙,二氧化硅,氧化钠,五氧化二磷,和它们的混合物等。
优选的是,用于本发明的复合物中的所述含钙的化合物具有大约10μm-大约1000μm的粒度,并且更优选大约100μm-大约500μm。所述颗粒是通过常规方法制备的,如粉碎,研磨等。
在某些实施方案中,羟磷灰石颗粒优选是干燥的能自由流动的羟磷灰石颗粒类型的,它可用于形成湿润的,松散的移植物,并且可以通过商业渠道从Orthomatrix Corporation(Dublin,CA)或Calcitek(San Diego,CA)获得。大约250-2000μm的粒度是优选的。较小的颗粒在允许组织向内生长方面表现出较大的难度,更大的颗粒需要增加粘合剂的用量,以便有利于使用。
在某些实施方案中,包括本发明的骨生物学成分的材料具有至少一种下列内在特性
在某些实施方案中,本发明的骨生物学成分具有以下机械性能特征
所述骨生物学组合物的一种例子包括原位成型的,多孔的,polyoxaester支架,它占据了由图2(f)和2(g)中所示出的所述支柱所产生的空间。
在某些实施方案中,所述聚合物的Tm不超过大约80℃。这使得可以将水或蒸汽用作加热流体。在某些实施方案中,所述聚合物的Tm低于100℃,因此不太可能损伤周围的组织。
具体地讲,固化形式的优选实施方案具有接近于松质骨的机械特性。例如,所述骨生物学组合物的优选实施方案具有大约50-大约300psi(磅/平方英寸)的承重强度,优选为大约100-大约150psi。所述复合物还具有大约10-100psi的剪切应力,并优选为大约30-50psi,因为这种单位通常是在评估天然组织和关节时确定的。
在本文中,术语″生长因子″包括能调节其他细胞,特别是结缔组织祖细胞生长或分化的任何细胞产物。可用于本发明的生长因子包括,但不局限于,FGF-1,FGF-2,FGF-4,PDGFs,EGFs,IGFs,PDGF-bb,骨形成蛋白-1,骨形成蛋白-2,OP-1,转化生长因子-β,类骨质诱导因子(OIF),血管生成素(s),内皮缩血管肽,肝细胞生长因子和角化细胞生长因子,成骨素(骨形成蛋白-3);骨形成蛋白-2;OP-1;骨形成蛋白-2A,-2B,和-7;转化生长因子-β,HBGF-1和-2;血小板衍生的生长因子的同种型(PDGF),成纤维细胞生长因子,上皮生长因子,转化生长因子-β的同种型,胰岛素样生长因子,和骨形态发生蛋白,以及FGF-1和4。
可用于本发明基体中的生长因子包括,但不局限于转化生长因子-β超家族的成员,包括转化生长因子-β1、2和3,骨形态发生蛋白(BMP′s),生长分化因子(GDF′s),和ADMP-1;成纤维细胞生长因子家族的成员,包括酸性和碱性成纤维细胞生长因子(FGF-1和-2);蛋白的刺猬家族的成员,包括印度,sonic和沙漠刺猬;胰岛素样生长因子(IGF)家族的成员,包括IGF-I和-II;血小板衍生的生长因子(PDGF)家族的成员,包括PDGF-AB,PDGF-BB和PDGF-AA;白介素(IL)家族的成员,包括IL-1至-6;和集落刺激因子(CSF)家族的成员,包括CSF-1,G-CSF,和GM-CSF。
正如上文所指出的,存在这样的问题将骨形成成分和骨诱导性成分添加到加热的聚合物基体中有可能使得这些成分无活力或变性。不过,本领域技术人员已知某些生长因子比大部分生长因子更耐热。据信,存在于骨生物学组合物中的这些高温生长因子可以添加到要在体温至大约45℃下流入盘间隙的骨生物学组合物中。
因此,在一种实施方案中,本发明是药用组合物,包括可以药用的载体或稀释剂,和(a)在38℃-45℃之间可流动的至少一种聚合物选自下列的聚(ε-n内酯),聚(对二噁烷酮),或聚(环丙烷碳酸酯)的均聚物或共聚物或它们的混合物,或对二噁烷酮或环丙烷碳酸酯和乙交酯的共聚酯,或丙交酯或它们的混合物,具体地讲,对二噁烷酮/乙交酯,对二噁烷酮/丙交酯,环丙烷碳酸酯/乙交酯和环丙烷碳酸酯/丙交酯的共聚酯,或ε-己内酯和乙交酯的共聚酯或它们的混合物,或ε-己内酯和丙交酯的均聚物的混合物,和(b)选自下列的能够承受在至少大约45℃下的变性的至少一种生长因子骨形态发生蛋白。
在本文中,″药用组合物″是包括所述化合物和可以药用的稀释剂和载体的制剂,它是适合给对象服用形式的。在单位剂量的组合物中活性成分的数量(例如,生长因子)是有效量,并且可以根据涉及到的具体治疗而改变。在本文中,″化合物的有效量″是在给需要治疗的对象服用时能够改善对象的愈后的用量,例如减轻与脊柱损伤相关的对象的一种或多种症状的严重程度。可以理解的是,有必要根据患者的年龄和状态对剂量进行常规改变。要给对象服用的活性成分的用量取决于损伤的类型和对象的特征,如一般健康,其他疾病,年龄,性别,基因型,体重和对药物的耐受性。技术人员能够根据这些因素和其他因素确定合适的剂量。
本文所披露的化合物可以与可以药用的载体或稀释剂组合应用于药物制剂中。合适的可以药用的载体包括惰性固体填料或稀释剂和消毒的水溶液或有机溶液。所述化合物在所述药用组合物中的用量足以提供本文所披露的范围的理想的剂量。用于制备和服用本发明化合物的技术可以从以下文献中查阅到the Science andPractice of Pharmacy,19thedition,Mack Publishing Co.,Easton,PA(1995)。
优选的是,所述基体材料在至少40℃-55℃的温度范围内,更优选在至少45℃-50℃的范围内变成可流动的。
优选的是,所述生长因子能够承受在至少40℃的温度下的变性。在某些实施方案中,所述生长因子是二聚体。在某些实施方案中,所述生长因子是骨形成蛋白二聚体。
如果需要,还可将诸如抗体,抗菌剂,和抗真菌剂与所述聚合物混合。可以使用的抗微生物制剂的例子包括四环素,土霉素,金霉素,新霉素,erithromycin,及其衍生物,杆菌肽,链霉素,利福平及其衍生物,如N-二甲基利福平,卡那霉素和氯霉素。有用的抗真菌剂包括灰黄霉素,制霉菌素,双氯苯咪唑及其衍生物,正如在美国专利号3,717,655中所披露的,所述文献的完整内容被收作本文参考;双联胍,如洗必太;以及更优选季铵化合物,如溴化杜灭芬,氯化杜灭芬,氟化杜灭芬,杀藻胺,鲸蜡基氯化吡啶,克菌定,1-(3-氯烯丙基)-3,5,7-三氮杂-1-氯化氮氮鎓金刚烷的异构体(可以从Dow Chemical Company购买,商标为Dowicil 200)以及它的类似物,参见美国专利号3,228,828,所述文献的完整内容被收作本文参考,鲸蜡基三甲基溴化铵,以及氯化苄甲乙氧胺和氯化甲基苄甲乙氧胺,如参见美国专利号2,170,111,2,115,250和2,229,024,所述文献的完整内容被收作本文参考;二苯脲和水杨酰苯胺,如3,4,4′-三氯二苯脲,和3,4′,5-三溴水杨酰苯胺;对羟基联苯,如双氯酚,四氯酚,六氯酚,和2,4,4′-三氯-2′-对羟基联苯醚;和有机金属和氟防腐剂,如sinc羟基吡啶硫酮,silversulfadiazone,尿嘧啶银,碘,和来自非离子表面活性剂的碘载体,如参见美国专利号2,710,277和2,977,315,所述文献的完整内容被收作本文参考,以及来自聚乙烯吡咯烷酮,如参见美国专利号2,706,701,2,826,532和2,900,305,所述文献的完整内容被收作本文参考。
所述基体可选择性地具有对结缔组织祖干细胞有亲和力的抗体。举例来说,合适的抗体包括STRO-1,SH-2,SH-3,SH-4,SB-10,SB-20,和碱性磷酸酶的抗体。所述抗体披露于以下文献中Haynesworth等,Bone(1992),1369-80;Bruder,S.等,TransOrtho Res Soc(1996),21574;Haynesworth,S.E.,等,Bone(1992),1369-80;Stewart,K.,等,J Bone Miner Res(1996),11(Suppl.)S142;Flemming J E,等,in″Embryonic Human Skin.Developmental Dynamics,″212119-132,(1998);和Bruder SP,等,Bone(1997),21(3)225-235,所述文献的完整内容被收作本文参考。
在美国专利号6,197,325(所述文献的完整内容被收作本文参考)中,Mac Phee披露了药物,多克隆抗体和单克隆抗体以及其他化合物,包括,但不局限于,DBM和骨形态发生蛋白可以添加到所述基体中,如本发 明的基体。它们能加快伤口愈合,抗感染,肿瘤形成,和/或其他疾病过程,介导或增强生长因子在所述基体中的活性,和/或影响能抑制生长因子在所述基体中的活性的基体成分。所述药物可以包括,但不局限于抗生素,如四环素和卷须霉素;抗增殖/细胞毒性药物,如5-氟尿嘧啶(5-FU),紫杉酚和/或泰索帝;抗病毒剂,如gangcyclovir,齐多夫定,amantidine,阿糖腺苷,病毒唑,三氟尿苷,无环鸟苷,双脱氧尿苷和对病毒成分或基因产物的抗体;细胞因子,如α-或β-或γ-干扰素,α-或β-肿瘤坏死因子,和白介素;集落刺激因子;促红细胞生成素;抗真菌剂,如氟康唑,ketaconizole和制霉菌素;杀寄生虫剂,如戊烷脒;抗炎制剂,如α-1-抗-胰蛋白酶和α-1-抗胰凝乳蛋白酶;类固醇;麻醉剂;止痛剂;和激素。可以添加到所述基体中的其他化合物包括,但不局限于维生素和其他营养添加剂,;激素;糖蛋白;粘连蛋白;肽和蛋白;碳水化合物(简单的和/或复杂的);蛋白聚糖;抗血管生成素;抗原;寡核苷酸(正义和/或反义DNA和/或RNA);骨形态发生蛋白;DBM;抗体(例如,对感染剂,肿瘤药物或激素的抗体);以及基因治疗剂。遗传改变了的细胞和/或其他细胞也可以添加到本发明的基体中。
如果需要,还可以将诸如止痛剂和镇静剂的物质与所述聚合物混合,以便输送并且释放到盘间隙。
在本发明的某些实施方案中,所述添加剂被包埋在所述支架的所述基体的材料中。在其他实施方案中,所述添加剂位于开口空隙的内表面上,它是通过滤出物而产生的。在其他实施方案中,所述添加剂存在于所述水凝胶相中。
当所述骨生物学组合物包括一种或多种骨形态发生蛋白时,在这种情况下它们优选位于所述开口空隙的内表面上,其中,所述支架是在接种细胞之前成型的,并且优选位于所述水凝胶相中,在这种情况下,水凝胶被用于与输送所述支架的同时输送细胞。这样做是为了在移植之后使细胞尽可能快地接触到所述骨形态发生蛋白,以便启动骨形成过程。另外,由于所述骨形态发生蛋白具有有限的时间,其中,它们能有效诱导细胞以便形成骨骼。让细胞尽可能快地接触骨形态发生蛋白是重要的,以便增强它们的效力。
当骨祖细胞被所述支架原位成型之后接种到所述支架上时,它们优选附着在所述支架的内部孔隙的表面上。这一点是重要的,因为骨祖细胞必须结合在基质上,以便开始形成骨骼。类似地,当骨祖细胞被输送到融合部位,同时包在水凝胶中时,它们优选结合在所述水凝胶的内部孔隙中。
在某些实施方案中,骨形成蛋白在所述支架中的存在浓度至少为自体固有浓度的2倍。更优选的是,所述骨形成蛋白在所述支架中的存在浓度至少为自体固有浓度的100倍。
在某些实施方案中,间充质干细胞在所述支架中的存在浓度至少为自体固有浓度的2倍。更优选所述间充质干细胞在所述支架中的存在浓度至少为自体固有浓度的10倍,更优选它们的存在浓度为自体固有浓度的100倍。
在某些实施方案中,所述骨生物学组合物具有足够的骨生物学性质,并且所述基体能充分承受降解,以便在所述基体出现任何明显的降解之前骨生长能基本上填充所述骨生物学组合物的支架的所有孔隙。在这种场合下,在器械发生明显的强度损失之前,所述新骨能够开始明显承担由所述器械所经历的压缩负载。
在优选实施方案中,在所述基体损失其重量的50%之前,骨向内生长能穿透到植入物中央距离的至少50%。在更优选的实施方案中,所述基体损失其重量的25%之前,骨向内生长能穿透到植入物中央距离的至少75%。在更优选的实施方案中,在所述基体损失其重量的10%之前,骨向内生长能穿透到植入物中央距离的至少90%。
在优选实施方案中,在所述基体在损失其耐压强度的50%之前,骨向内生长能穿透到植入物中央距离的至少50%。在更优选的实施方案中,在所述基体在损失其耐压强度的25%之前,骨向内生长能穿透到植入物中央距离的至少75%。在更优选的实施方案中,在所述基体在损失其耐压强度的10%之前,骨向内生长能穿透到植入物中央距离的至少90%。
根据本发明,本发明的可注射的植入物可用于融合小链骨,并且融合椎间部位。在某些实施方案中,本发明的植入物利用弹性体将锥间部位张开到正确的脊柱前凸角度。
另外据信,上述骨生物学组合物可优选用于椎体成形术,特别是在输送到在锥体中产生的骨骼的孔隙中时,参见由Martin Reynolds申请的美国专利申请,题为″Method of Performing Embolism Freevertebroplasty and Devise Therefore″,申请日为2002年11月21日,所述文献的完整内容被收作本文参考。
其他实施方案在一种实施方案中,本发明是用于提供通过盘间隙的骨融合的椎间融合器械。所述器械包括支柱。所述支柱包括用于支撑所述上终板的上表面,用于支撑所述下终板的下表面,和位于所述上表面和下表面之间的原位成型的承重组合物。
在另一种实施方案中,本发明是包括支柱的椎间融合器械,具有形状记忆能力,和原位成型的骨生物学成分。所述支柱还包括(i)用于支撑所述上终板的上表面和(ii)用于支撑所述下终板的下表面。
在另一种实施方案中,本发明是椎间融合器械包括支柱和原位成型的骨生物学成分。所述支柱包括用于支撑所述上终板的上表面,和用于支撑所述下终板的下表面。所述原位成型的骨生物学成分包括具有形成支架的内表面的基体成分,具有适合通过它的骨生长的开口空隙,和位于所述开口空隙中的骨形成成分。
在另一种实施方案中,本发明是椎间融合器械,包括支柱和原位成型的骨生物学成分。所述支柱包括用于支撑所述上终板的上表面,和用于支撑所述下终板的下表面。所述原位成型的骨生物学成分包括可注射的基体成分,和包埋在所述基体中的骨诱导性成分。
在另一种实施方案中,本发明是椎间融合器械,包括支柱和原位成型的骨生物学成分。所述支柱包括用于支撑所述上终板的上表面,和用于支撑所述下终板的下表面。所述原位成型的骨生物学成分包括可注射的基体成分,和包埋在所述基体中的成孔剂。
在另一种实施方案中,本发明是包括支柱和原位成型的骨生物学成分的椎骨间融合器械。所述支柱包括用于支撑所述上终板的上表面,和用于支撑所述下终板的下表面。所述原位成型的骨生物学成分包括形成间隙的可膨胀的装置,以及位于所述间隙中的可注射的骨生物学组合物。
在另一种实施方案中,本发明是包括支柱的椎间融合器械,它包括具有间隙的可膨胀的装置,用于支撑所述上终板的上表面,用于支撑所述下终板的下表面,和限定通孔的内壁。所述支柱还包括位于所述间隙中的所述可注射的承重组合物。所述融合器械还包括位于所述通孔中的骨生物学成分。
在另一种实施方案中,本发明是包括支柱和原位成型的骨生物学成分的椎间融合器械。所述支柱包括用于支撑所述上终板的上表面和用于支撑所述下终板的下表面。优选的是,所述原位成型的骨生物学成分包括可注射的,基本上不含单体的基体成分基体成分。
在另一种实施方案中,本发明是用于提供通过盘间隙的骨融合的包括支柱的椎间融合器械。所述支柱包括用于支撑所述上终板的上表面,用于支撑所述下终板的下表面,和位于所述上表面和下表面之间的原位成型的承重组合物,并且是用包括可交联的可再吸收的聚合物的材料制成的。
优选实施方案在本文中,术语″环形室″表示通过至少部分旋转的闭合曲线获得的表面,它位于平面上,环绕平行于该表面的轴线,并且它不与所述曲线相交。″由环形室的外表面限定的开口腔″的例子是孔。
在一种优选实施方案中,本发明是包括至少一个弓形可充气的气囊的椎骨间脊柱融合器械。它在邻椎骨之间膨胀时,至少部分恢复相邻椎骨之间的自然角度,所述器械的覆盖区基本上与脊椎终板的外周相当。
优选的是,所述椎骨间脊柱融合器械具有上部,下部,前部和后部。在通气时,所述器械的覆盖区基本上与脊椎终板的边缘相当,并且所述前部高度大于所述后部高度。更优选的是,在膨胀时,所述器械的至少一部分具有基本上的环形形状,以便限定具有轴向尺寸和径向尺寸的开口腔。在一种实施方案中,所述器械包括至少一个包括多个内腔的可膨胀的气囊。
在特别优选的实施方案中,所述器械包括所述气囊中的至少一个包括选自下列的可再吸收的,半透性的材料聚烯烃共聚物,聚乙烯,聚碳酸酯,聚对苯二甲酸乙二醇酯,醚-酮聚合物,编织纤维,非编织纤维,织物和金属网。
在优选实施方案中,所述气囊限定了至少一个开口。
在另一种实施方案中,所述器械的上部和下部具有多个向外的突出部分。所述向外的突出部分优选包括聚醚醚酮(PEEK)。
所述器械的上部包括选自下列的至少一种材料聚醚嵌段共聚物(PEBAX),ABS(丙烯腈丁二烯苯乙烯),ANS(丙烯腈苯乙烯),delrin acetal;PVC(聚氯乙烯),PEN(聚萘二甲酸乙二醇酯),PBT(聚对苯二甲酸丁二醇酯),聚碳酸酯,PEI(聚醚酰亚胺),PES(聚醚砜),PET(聚对苯二甲酸乙二醇酯),PETG(聚对苯二甲酸乙二醇酯乙二醇),聚酰胺,芳族聚酰胺,聚醚,聚酯,聚甲基丙烯酸甲酯,聚氨酯共聚物,乙烯乙酸乙烯酯(EVA),乙烯基乙烯醇,聚乙烯,胶乳橡胶,FEP(氟化乙烯聚合物),PTFE(聚四氟乙烯),PFA(全氟-烷氧基链烷),聚丙烯,聚乙烯,聚硅氧烷,液晶聚合物,离聚物,聚(乙烯-共-异丁烯酸),硅橡胶,SAN(苯乙烯丙烯晴),尼龙,聚醚嵌段酰胺和热塑性弹性体。
在一种优选实施方案中,本发明的装置具有至少一个气囊,它包括下列一组的至少一种成分承重成分和骨生物学成分。所述承重和所述骨生物学成分可以单独使用或组合使用。组合是优选的。在特别优选的实施方案中,所述承重和所述骨生物学成分是可再吸收的。
所述承重成分可以包括选自下列的至少一种成分聚(乳酸),聚(乙醇酸),对二噁烷酮纤维,聚芳基乙基,聚甲基丙烯酸甲酯,聚氨酯,氨基酸衍生的聚碳酸酯,聚己酸内酯,脂肪族聚酯,磷酸钙,不饱和线性聚酯,乙烯吡咯烷酮和聚丙二醇富马酸二丙烯酸酯,或它们的混合物。
所述骨生物学成分可以包括选自下列的至少一种成分间充质干细胞,生长因子,松质骨碎片,羟磷灰石,磷酸三钙,聚乳酸,聚乙醇酸,聚半乳糖醛酸,聚己酸内酯,聚环氧乙烷,聚环氧丙烷,聚砜,聚乙烯,聚丙烯,透明质酸,生物玻璃,明胶,胶原和切碎的聚合纤维或它们的混合物。
在本文中,术语″松质骨″表示具有多孔结构的骨骼。成年哺乳动物骨骼的正常类型,无论是松质骨或是致密骨,对于前者来说是由平行的片层组成的,而对于后者来说是由同中心的片层组成的。片层结构体现了胶原纤维结构的重复形式。成年骨骼由矿物化的规则有序的平行胶原纤维组成,其组构比成年长骨的轴的片层骨骼更疏松,如存在于长骨末端的骨骼,它被称作″松质骨″。
在另一种优选实施方案中,所述器械还包括骨诱导性成分和骨传导性成分。
所述骨诱导性成分可以包括选自下列的至少一种成分成纤维细胞生长因子,如(FGFs)FGF-1,FGF-2和FGF-4;血小板衍生的生长因子(PDGFs),如PDGF-AB,PDGF-BB,PDGF-AA;上皮生长因子EGFs;胰岛素样生长因子(IGF),如IGF-I,IGF-II;生骨蛋白-1(OP-1);转化生长因子(TGFs),如转化生长因子-β,转化生长因子-β1,转化生长因子-β2,转化生长因子-β3;类骨质诱导因子(OIF);血管生成素(s);内皮缩血管肽;肝细胞生长因子和角化细胞生长因子;骨形态发生蛋白(BMPs),如成骨素(骨形成蛋白-3),骨形成蛋白-2;骨形成蛋白-2A,骨形成蛋白-2B,骨形成蛋白-7;肝素结合生长因子(HBGFs),如HBGF-1,HBGF-2;血小板衍生的生长因子的同种型,成纤维细胞生长因子,上皮生长因子,转化生长因子-β,胰岛素样生长因子,骨形态发生蛋白,骨形态发生蛋白和生长分化因子(GDF′s);印度刺猬,sonic刺猬,沙漠刺猬;细胞因子,如IL-1,IL-2,IL-3,IL-4,IL-5,IL-6;集落刺激因子s(CSFs),如CSF-1,G-CSF和GM-CSF或它们的混合物。
所述骨传导性成分可以包括选自下列的至少一种成分具有以下结构式的材料M2+(10-n)N1+2n(ZO43-)6mYX-其中,当x=1时,n=1-10,且m=2,和/或当x=2时,m=1;
M和N是碱金属或碱土金属;ZO4是酸根,其中,Z是磷,砷,钒,硫或硅;和Y是阴离子,优选卤化物,氢氧化物,或碳酸盐。
所述骨传导性成分还可以包括选自下列的至少一种材料磷酸一钙,磷酸二钙,磷酸八钙,α-磷酸三钙,β-磷酸三钙,或磷酸四钙,羟磷灰石,氟磷灰石,硫酸钙,氟化钙,氧化钙,二氧化硅,氧化钠,和五氧化二磷或它们的混合物。
在另一种优选实施方案中,所述骨生物学成分还可以选自下列的至少一种水溶性材料明胶,盐,多糖和蛋白。
本发明的特别优选的实施方案是如图17(a)(收缩状态)和(b)(膨胀)所示出的椎骨间脊柱融合器械。器械100包括(a)部分刚性的前支架110,它可分离地与第一流体连通装置120连接,所述支架具有上部可充气的边缘130和下部可充气的边缘140;和(b)刚性可膨胀的后支架120,它可分离地与第二流体连通装置122连接,所述支架具有刚性上边缘160和刚性下边缘170,它们分别与所述前支架110的上部可充气的边缘130和下部可充气的边缘140连接。
优选的是,所述器械还包括至少一个与所述前支架110的上部可充气的边缘130和下部可充气的边缘140连接的至少一个筛网部位180。器械100的所述前支架110的上部可充气的边缘130和下部可充气的边缘140中的至少一个可以具有多个向外的突出部分190。
最优选的是,所述器械的后支架150还包括至少一个可伸缩地膨胀的支撑部件200,所述每一个支撑部件连接在所述后支架150的上部刚性边缘160和下部刚性边缘170上。
器械100可以在收缩状态210下插入椎骨间隙中。然后可以确定器械100的方向,以便所述器械的前支架110朝向椎骨的前面,所述器械的后支架150朝向椎骨的后面,并且每一个支架的上边缘和下边缘130,140,160和170分别朝向上脊椎终板和下脊椎终板。
在优选实施方案中,当所述承重成分和所述骨生物学成分中的至少一种导入所述器械,包括在加压条件下引导至少一种成分通过第一流体连通装置120和第二流体连通装置122中的至少一个,以便使得所述器械膨胀,并且引导所述前支架的上部可充气的边缘130和下部可充气的边缘140以及所述器械的后支架150顶在相应的脊椎终板上,以便至少部分恢复相邻椎骨之间的自然角度。
在特别优选的实施方案中,在至少部分填充上部和下部可充气的边缘130和140以及位于两个相邻的椎骨之间(未示出)的后支架150时,至少部分恢复了所述两个椎骨之间的自然角度。优选的是,在填充所述上部可充气的边缘130和下部可充气的边缘140以及所述后支架150时,所述上部和下部可充气的边缘的距离B与所述后支架的高度h不同。在一种实施方案中,在至少部分填充上部和下部可充气的边缘130和140时,所述边缘各自具有基本上相当于脊椎终板边缘的覆盖区。优选的是,在至少部分填充上部和下部可充气的边缘时130和140以及后支架150时,所述器械限定了具有轴向和径向尺寸的开口腔205。
在另一种优选实施方案中,本发明是制备椎骨间脊柱融合器械的方法,包括(a)通过套管将充气装置插入椎骨间隙;(b)确定所述充气装置的方向,以便在膨胀时相邻椎骨之间的自然角度至少部分恢复;和(c)将下列一组的至少一种成分承重成分和骨生物学成分通过所述流体连通装置导入所述充气装置。最优选的是,本发明的方法还包括硬化所述承重成分的步骤。在一种实施方案中,所述充气装置包括连接在至少一个流体连通装置上的弓形气囊,其中,所述充气装置在邻椎骨之间膨胀时,它的覆盖区基本上与脊椎终板的周边相当,并且至少部分恢复相邻椎骨之间的自然角度。在另一种实施方案中,所述充气装置包括至少一个可充气的气囊,所述装置具有上部,下部,前部和后部,并且在所述上部和下部针对相应的脊椎终板膨胀时,所述前部的高度等于所述后部的高度,并且所述器械的覆盖区基本上与脊椎终板的边缘相当。所述至少一个气囊可以包括多个内腔。
优选的是,将所述充气装置的前部朝向椎骨的前面,并且确定所述后部的方向,使它朝向椎骨的后面。
最优选的是,将所述承重成分和所述骨生物学成分中的至少一种成分导入所述气囊,通过在加压条件下通过所述流体连通装置导入至少一种成分,以便使所述气囊膨胀,并且将所述装置的上部和下部导向相应的脊椎终板,以便至少部分恢复相邻椎骨之间的自然角度。
在另一种优选实施方案中,所述器械的至少一部分被用于实施本发明的方法,在膨胀时,具有基本上的环形形状,以便限定由所述环形形状的外表面构成的开口腔,具有轴向尺寸和径向尺寸。优选的是,确定所述器械的至少一部分的方向,以便所述开口腔的轴向尺寸基本上平行于业已植入了所述器械的患者脊柱的长轴。
在一种实施方案中,可以将承重成分和骨生物学成分中的至少一种导入由所述膨胀的装置限定的开口腔。
本发明的方法还可以包括溶解至少一种水溶性材料,以便形成多孔基体的步骤。
优选的是,本发明的方法还包括将所述骨诱导性和/或骨传导性成分导入所述充气装置。
在一种优选实施方案中,本发明是至少部分恢复相邻椎骨之间的自然角度的方法,包括(a)通过套管将充气装置插入椎骨间隙;(b)确定所述充气装置的方向,以便在膨胀时相邻椎骨之间的自然角度至少部分恢复;和(c)通过将承重成分和骨生物学成分中的至少一种导入所述充气装置使所述充气装置膨胀。适合实施本发明的方法的所述充气装置如上文所述。
优选的是,本发明的方法包括使所述充气装置膨胀的步骤。充气包括将承重成分和骨生物学成分的至少一种导入所述装置,包括通过所述流体连通装置导入至少一种成分,以便使所述下部和上部接合相应的终板,并且所述充气装置的前部的高度大于后部的高度,以便至少部分恢复或形成相邻椎骨之间的自然角度。最优选的是,所述方法还包括使所述承重成分和骨生物学成分中的至少一种硬化的步骤。
在优选实施方案中,所述装置在膨胀时具有基本上的环形形状,以便限定由所述环形形状的外表面构成的开口腔,并且具有轴向尺寸和径向尺寸,并且确定所述充气装置的方向的步骤,包括确定所述器械的至少一部分的方向,以便所述开口腔的轴向尺寸基本上平行于业已植入了所述器械的患者脊柱的长轴。在一种实施方案中,所述方法还包括将所述承重成分和所述骨生物学成分中的至少一种导入所述间隙的步骤,以及使所述承重成分和骨生物学成分中的至少一种硬化的步骤。所述方法还包括溶解至少一种水溶性材料,以便形成多孔基体的步骤。
将通过以下实施例对本发明作进一步的和具体的说明,这些实施例并非要以任何方式限定本发明的范围。
实施例例1采用本发明的方法在实施本发明的优选方法时,将患者带到手术前的区域并且做好准备。对有关脊柱部位进行麻醉诱导,并且对有关脊柱作进一步的准备。在解剖显微镜下面在肌肉上打开小的切口。所述切口尽可能得小,并且在脊柱平面上是纵向的。通过钝器解剖分离脊柱旁的肌肉,并且用镊子和两脚规保持分离。观察椎间盘部位,首先向下察看片层。在所述片层下面还可以看的椎间孔的点。
检查椎间盘的挤出材料,并且除去任何挤出的材料。可以将磁共振(″MRI″)成像数据用于确定该点的环状纤维化的完整性。将关节内窥镜插入所述盘,并且用于检查所述环面的内部。可以选择性地进行外科手术进行时发生的椎间盘造影,其中,插入染料,并且观察,以便证实环状纤维化的完整性。确定所述环状纤维化上的薄弱点或破裂处,并且定位,并且将合适的装置,例如,生物可吸收的胶用于封堵所述破裂处。如果用气囊输送在本发明中所使用的所述可流动的材料的话,所述破裂处就不需要修补。
然后可以实现如上文所述的椎间盘间隙的张开,包括将收缩的气囊插入盘间隙,并且将流体(优选的是,本发明的可流动的承重成分)输入所述气囊间隙。
然后,对相对的椎骨体终板进行部分包皮,通常通过使用耳匙,以便使血液流入盘间隙。
在终板包皮之后,将利用套管插入关节或盘间隙,并且在光纤显微镜下面输入所述生物材料。由操作者通过与聚合物罐上的泵送机构连接的脚踏开关控制所述生物材料的流动。所述生物材料从所述应用导管的顶端流入,以便填充所提供的间隙。
如果所述承重成分具有可流动的成分的话,所述可流动的成分优选在3-5分钟内固化,并且优选在1-2分钟内固化。一旦盘间隙被适当地张开,就将本发明的骨生物学成分导入张开的间隙,以便填充盘间隙的其余部分。取出关节内窥镜套管和应用套管。再用15-20分钟时间让所述可流动的材料硬化。
让输送的生物材料固化,或者通过最低侵害性方式固化,并且使得所述固化的生物材料保持在准备好的部位。正如本文所披露的,所述生物材料可以通过任何合适的方式固化,通过一个步骤固化或在它输送时分阶段固化。一旦固化之后,所述生物材料表面就可以根据需要通过其他合适的方式造型,例如,内窥镜或关节内窥镜,仪器。冲洗所述关节,并且将仪器从入口中取出。
此时,进行了手术间x-光拍照,以便证实所述椎间盘间隙的保存。通过显像证实了无神经根损伤的椎骨间形成的直接观察。将收缩的肌肉放回原处,并且用介入的可吸收的缝合线缝合局部创口。然后用常规方法缝合皮下创口和皮肤。然后在创口上敷药。
例2采用本发明的方法和器械的手术方法利用本发明的方法和器械融合椎骨的手术方法可以包括以下步骤i.在纤维环上穿孔或切开一片,并且将小直径的导管插入所述切口,ii.实施常规椎间盘切除术,以便取出髓核,iii.将小直径导管,例如套管通过所述切口插入盘间隙,iv.将具有部分环形形状的支柱,例如气囊或坡道通过所述导管插入盘间隙,v.通过所述导管在大约70℃下,让含有葡萄糖的聚己酸内酯流入盘间隙,包括由所述部分环形气囊或坡道的外表面限定的空间。在冷却到37℃时所述聚己酸内酯应当成为固体,以便补充所述支柱的机械强度,vi.滤去所述葡萄糖,以便形成多孔基体。
vii.使加载有骨生物学材料溶液通过所述多孔基体流动,以便所述骨生物学材料收集在所述孔中。所述导管还可以具有真空口,以便收集洗脱的溶液。
viii.取出所述导管,密封所述切口,并且用一个月时间等待骨生长。
该方法的结果是形成了融合笼子。该方法具有多种优点。首先,所得到的笼子填充并且支撑着整个盘间隙,因此,它是稳定的,并且不容易下沉。其次,对纤维环的最低侵害性的处理使得所得到的笼子通过所保留的纤维环固定在原位。第三,所述支架的原位成型消除了对高冲击力的需要。第四,通过充气装置的特殊性质将它调整到适合需要的盘高度。
例3收获用于骨生物学材料的祖细胞在实行脊椎手术之前,将大约5cc的骨髓从患者的髂嵴吸入肝素化的注射器管。然后让所述肝素化的骨髓通过选择性细胞结合过滤器。所述过滤器被设计成能选择性地结合骨祖细胞,如间充质干细胞和造骨细胞。在选择性的细胞结合之后,对所述细胞进行胰蛋白酶化,使它与过滤器分离并且收集在烧瓶中。然后对所述烧瓶进行离心,以便使细胞团沉淀在烧瓶底部,并且将上清液倒掉。然后让所述细胞与可注射的前体混合,形成所述水凝胶。然后将所述前体水凝胶注入模具,该模具在任何方向上都为50-250μm。然后让所述前体水凝胶固化,例如,使用光引发剂,以便得到细胞加载的水凝胶颗粒。然后让所述细胞-水凝胶颗粒与粘稠形式的所述可硬化的材料混合,并且作为所述骨生物学组合物注射。
例4腰融合器械的理想规格腰体间融合器械的规格通常被制成具有以下特征a)患者的每一个脊椎终板具有1500mm2的横截面积,b)患者所经受的最大体内负荷为3.4kN;c)椎骨体的极限强度为大约8.2kN;d)所述器械最初应当能够承受所述最大体内负荷;e)在一年之后,所述器械应当能够承受所述最大体内负荷的1/2,f)所述器械的所述支柱部分应当具有盘间隙面积的20%的覆盖区。
因此,可以获得所述器械的以下指标 最大体内负荷=3.4kN=11.3Mpa
(2)300mm2由于所述支柱和骨生物学成分最初拥有脊椎的轴向压缩负载,可以降低该装置所需要的起始最低强度。如果选择OB组合物以便提供5Mpa长度和0.05Gpa模量至少6周时间以便模拟松质骨的话,所述OB组合物应当具有压缩负载的大约10%,此时所述支柱的模量为2GPa(假设没有环状纤维化)。因此,所述支柱的强度可大约为10%或更低。
承重成分的模量优选的是,本发明的装置的硬度至少0.5kN/mm的硬度。这种优选的下限相当于常规同种异体移植物笼子的硬度。不过,据信,同种异体移植物笼子的较低的硬度有时会导致在重塑过程中出现太多的微型骨折。因此,在某些实施方案中,本发明的装置的硬度优选至少为5kN/mm。因为据信,过高的器械硬度可能会导致不希望的所述骨生物学组合物(和骨骼再吸收)的障碍,本发明的装置的硬度优选不超过50kN/mm。
在本发明的很多实施方案中,本发明的装置的硬度为10-20kN/mm。这种值的范围适合在常规同种异体移植物笼子(0.6-2.6kN/mm)和CFRP笼子(20-30kN/mm)中观察到的硬度范围。因此,据信,本发明的装置具有适合支撑通过盘间隙的骨融合的硬度。
通过非限定性例子,所述成分的硬度可以按以下公式计算压缩模量(GPa)×面积(mm2)/盘间隙厚度(mm)=硬度(kN/mm)(7)。
假设盘间隙高度为10mm,面积为300mm2,可以制造以下表格表I
由于所述支柱和骨生物学成分最初要承受脊柱的轴向压缩负载,可以降低该装置所需要的起始最低模量。如果选择OB组合物以便提供5Mpa和0.05Gpa模量至少6-12周以便模拟松质骨的话,所述OB组合物可以拥有所施加的压缩负载的大约10%,此时所述支柱的模量为2GPa(假设没有环状纤维化)。因此,所述支柱的模量可大约为10%或更低。
类似地,如果需要装置的起始硬度为15kN/mm的话,所述支柱的硬度应当为大约1Gpa。如上文所述,由Timmer所报导的材料符合这一要求。
例5材料和装置的组合将通过介绍形式在下面说明适用于本发明的组合物和材料。
适用于本发明的承重成分的典型的组合物包括富马酸-型聚合物(如聚丙二醇富马酸酯),它是与含有聚丙二醇富马酸酯单位的交联剂交联的,如披露于以下文献中的聚丙二醇富马酸酯-二丙烯酸酯Timmer,Biomaterials(2003)24571-577(以下称之为,″Timmer″),所述文献的完整内容被收作本文参考。所述组合物的特征是具有高的起始耐压强度(大约10-30MPa),该强度通常在前12周提高,具有高的水解降解抗性(大约20-50,52周),和用作支柱的可接受的模量(0.5-1.2GPa)。
适合用作可再吸收的可交联成分的典型的组合物包括由Wise披露于美国专利号6,071,982(以下称之为,″Wise″)中的可交联的成分,所述文献的完整内容被收作本文参考。
可以通过套管输送可再吸收的装置的典型的可吸收的弹性材料由Bezwada披露于美国专利号6,113,624(以下称之为,″Bezwada)中,所述文献的完整内容被收作本文参考。
适用于本发明的典型的可注射的骨生物学聚合物-型组合物由Cooper披露于美国专利号5,679,723(以下称之为,″Cooper″)中,所述文献的完整内容被收作本文参考。
在它里面原位产生孔隙的典型的骨生物学组合物由Mikos披露于美国专利号5,522,895(以下称之为,″Mikos″)中,所述文献的完整内容被收作本文参考。
在本文中,″PCL″是聚己酸内酯,″PLA″是聚(乳酸),″PPF″是聚丙二醇富马酸酯,而″PMMA″是聚甲基丙烯酸甲酯。
在本文中,″IPN″或″互相贯通的网络″是包括两种可交联的聚合物的组合物,其中,两种可交联的聚合物在接触合适的交联剂时,自身发生交联,但是不会与其他交联的聚合物发生交联。″S-IPN″或″半-互相贯通的网络″是包括第一可交联的聚合物和第二不-可交联的聚合物的组合物,其中,在接触合适的交联剂时,所述第一可交联的聚合物可自身交联,而第二聚合物保持不变。
按照Hao,Biomaterials(2003),241531-39,(以下称之为,″Hao″)披露的技术,所述文献的完整内容被收作本文参考,在它形成SIPN时聚己酸内酯的机械特性提高了大约3倍。在添加至少15wt%HAP时,其拉伸模量与常规聚己酸内酯相比提高了6倍。
采用在例4中所提供的条件和标准,选择在下面的表2中所提供的本发明的材料和装置的组合。
表II
组合1在本实施例中,选择TimmerIPN组合物作为所述支柱中的承重组合物,因为它具有足够的起始和长期强度,可接受的模量,并且是可再吸收的。
由于所述Timmer组合物包括单体,需要在固化期间将该组合物容纳在充气装置中。由于所述Timmer组合物相对抗降解,所述充气装置可以用具有短的半衰期的可再吸收的材料制成。由于所述支柱还应当发挥扩张器的作用,所述气囊应当是非-顺从性的。
选择所述聪明组合物作为所述骨生物学组合物,因为它形成了具有基本上类似于松质骨的强度和模量支架。它可以使用含有骨形成细胞和骨诱导性生长因子的水凝胶在原位渗透。
由于所述聪明组合物包括单体,需要在固化期间将所述组合物容纳在充气装置中。由于骨骼向内生长需要通过由所述气囊占据的区域进行,所述充气装置应当用具有非常短的半衰期(如一天)的可再吸收的材料。由于所述聪明组合物在成孔期间膨胀25%,希望所述气囊是顺从性的,以便所述聪明组合物与盘间隙的形状吻合。
组合2在本实施例中,选择固体纯聚己酸内酯作为所述支柱的承重组合物,因为它具有足够的起始强度(15MPa),非常耐降解,具有可接受的模量(0.5GPa),并且是可再吸收的。
由于固体聚己酸内酯是相对抗降解的,所述充气装置没有必要相对抗降解,并因此可以用具有短的半衰期的可再吸收的材料制成。由于所述支柱还应当发挥扩张器的作用,所述气囊应当是非-顺从性的。
选择Cooper组合物作为所述骨生物学组合物,因为它在40℃下是可流动的,并且能够在几个月内充分降解,以便形成羟磷灰石型支架。由于它的低的输送温度,还可以在注入该组合物期间输送某些双体骨形态发生蛋白。
由于所述Cooper组合物是完全生物可降解的,实际上不需要将所述组合物容纳在充气装置中。
不过,如果需要注入足够的Cooper组合物以便使它符合盘间隙轮廓的话,将它容纳在充气装置中可能是理想的。由于需要通过所述骨生物学组合物的骨骼向内生长,所述充气装置应当用具有非常短的半衰期(如一天)的可再吸收的材料制成。
组合3
在本实施例中,选择聚己酸内酯S-IPN组合物(正如Hao所报导的)作为所述支柱的承重组合物是因为它具有比纯聚己酸内酯高出大约3-6倍的机械特性,并且是可再吸收的。
由于所述聚己酸内酯-聚己酸内酯组合物包括单体,可能需要在固化期间将所述组合物容纳在充气装置中。由于聚己酸内酯组合物相对抗降解,所述充气装置可以用具有短的半衰期的再吸收的材料制成。
由于所述支柱还应当发挥扩张器的作用,所述气囊应当是非-顺从性的。
组合4在本实施例中,选择CaPO4作为所述支柱的承重组合物,因为它具有足够的起始和长期强度,可接受的模量,并且是可再吸收的。
由于CaPO4是非常容易降解的,所述充气装置需要相对抗降解,并且应当用可以容纳CaPO4至少一年时间的有抗性的材料制成。由于所述支柱还应当发挥扩张器的作用,所述气囊应当是非-顺从性的。抗性的并且是非-顺从性的一种材料是聚醚醚酮。
选择CaPO4组合物作为所述骨生物学组合物,因为它在体温下是可流动的,并且能在几个月时间内充分降解,以便形成羟磷灰石型支架。由于它是在体温下输送的,含有温度敏感型添加剂,如骨形成细胞和骨诱导性成分(如骨形态发生蛋白)的水凝胶还可以在注入该组合物期间输送。
由于CaPO4组合物是完全可生物降解的,实际上不需要将所述组合物容纳在充气装置中。
组合5在本实施例中,选择所述聪明组合物作为所述支柱的承重组合物,因为它具有足够的起始强度,可接受的模量,并且是可再吸收的。
由于所述聪明组合物是非常容易降解的,所述充气装置需要相对抗降解,并因此应当用能够容纳所述聪明组合物至少一年时间的抗性材料制成。由于所述支柱还应当发挥扩张器的作用,所述气囊应当是非-顺从性的。抗性的并且是非-顺从性的一种材料是聚醚醚酮。
选择Mikos组合物作为所述骨生物学组合物因为它在体温下是可注射的,在含有温度敏感型添加剂,如骨形成细胞和骨诱导性成分(如骨形态发生蛋白)的水凝胶中形成了原位支架。
由于水凝胶应当在手术期间注入所述Mikos组合物,需要不借助于气囊注入Mikos组合物。
组合6在本实施例中,它披露于Mendez,JBMR(2002),6166-74中,所述文献的完整内容被收作本文参考,选择CaPO4作为所述支柱的承重组合物因为它具有足够的起始和长期强度,可接受的模量,并且是可再吸收的。
由于CaPO4是非常容易降解的,所述充气装置需要相对抗降解,并因此应当用可以容纳CaPO4至少一年时间的抗性材料制成。由于所述支柱还应当发挥扩张器的作用,所述气囊应当是非-顺从性的。抗性的并且是非-顺从性的一种材料是聚醚醚酮。
组合7选择聚乳酸球作为所述骨生物学组合物的基体,因为它们可以在体温下包装到盘间隙中,并且用热水加热粘合,以便形成原位成型的支架。如果这些球选择具有2mm直径的话,所得到的支架的孔隙应当占大约40vol%,孔度为大约500μm。含有温度敏感型添加剂,如骨形成细胞和骨诱导性成分(如骨形态发生蛋白)的水凝胶随后可以输送所述原位支架。
由于所述包装的球必须包装在盘间隙中,然后用高温流体加热粘合,可能需要将所述球和热流体容纳在气囊中。
所述Nitonol强化气囊是理想的,因为所述强化有助于所述气囊承受在包装期间所需要的高压。
由于所述聚乳酸球具有足够的起始和长期强度,可接受的模量,不需要支柱。
组合8含有磷酸三钙(实施方案B)与50vol%孔隙(或接种的水凝胶相)的Timmer聚丙二醇富马酸酯-聚丙二醇富马酸酯-二丙烯酸酯在一年之后仍然具有25Mpa的耐压强度。如果它占据整个盘间隙的话,只需要11.3Mpa。安全系数为2倍。
等同方案尽管业已结合优选实施方案对本发明进行了具体的图示和说明,本领域技术人员应当理解的是,在不超出所述权利要求书限定的本发明的范围的前提下,可以对形式和细节加以改变。
权利要求
1.用于植入相邻的椎骨之间的矫形器械,包括弓形气囊;和装在所述气囊中的可硬化的材料。
2.如权利要求1的器械,其中,所述器械具有基本上相当于脊椎终板周长的至少一部分的覆盖区。
3.如权利要求1的器械,其中,所述气囊具有上部,下部,前部和后部,并且,在填充所述气囊时,所述前部不等于所述后部。
4.如权利要求3的器械,其中,所述上部和下部各自具有具有基本上相当于脊椎终板边缘的覆盖区。
5.如权利要求1的器械,其中,所述气囊是柱状的,并且,其中,所述器械具有基本上相当于脊椎终板中部的覆盖区。
6.如权利要求1的器械,其中,所述气囊还包括金属线,以便提供可成像的装置。
7.如权利要求1的器械,其中,所述气囊中的至少一个限定了多个内腔。
8.如权利要求1的器械,其中,所述气囊中的至少一个包括选自下列的可再吸收的半透性材料多孔和无孔薄膜,织物(纺织和无纺)和泡沫材料。
9.如权利要求1的器械,其中,所述气囊中的至少一个包括选自下列的材料聚烯烃共聚物,聚乙烯,聚碳酸酯,聚对苯二甲酸乙二醇酯,醚-酮聚合物,纺织纤维,无纺纤维,织物和金属网。
10.如权利要求1的器械,其中,所述气囊限定了至少一个开口。
11.如权利要求1的器械,其中,所述上部和所述下部中的至少一个包括至少一个向外突出部分。
12.如权利要求11的器械,其中,所述向外的突出部分包括聚醚醚酮(PEEK)。
13.如权利要求11的器械,其中,所述上部包括选自下列的至少一种材料聚醚嵌段共聚物(PEBAX),丙烯腈丁二烯苯乙烯(ABS),丙烯腈苯乙烯(ANS),delrin acetal;聚氯乙烯(PVC),聚萘二甲酸乙二醇酯(PEN),聚对苯二甲酸丁二醇酯(PBT),聚碳酸酯,聚醚酰亚胺(PEI),聚醚砜(PES),聚对苯二甲酸乙二酯(PET),聚对苯二甲酸乙二醇酯(PETG),聚酰胺,芳族聚酰胺,聚醚,聚酯,聚甲基丙烯酸甲酯,聚氨酯共聚物,乙烯乙酸乙烯酯(EVA),乙烯基乙烯醇,聚乙烯,胶乳橡胶,FEP,TFE,PFA,聚丙烯,聚烯烃,聚硅氧烷,液晶聚合物,离聚物,聚(乙烯-共-异丁烯酸),硅橡胶,苯乙烯丙烯晴(SAN),尼龙,聚醚嵌段酰胺和热塑性弹性体。
14.如权利要求1的器械,其中,所述气囊包括承重成分。
15.如权利要求14的器械,其中,所述承重材料是支柱。
16.如权利要求14的器械,其中,所述承重成分还包括选自下列的至少一种成分抗菌剂和抗真菌剂。
17.如权利要求14的器械,其中,所述承重成分还包括至少一种对结缔组织祖干细胞有亲和力的抗体。
18.如权利要求14的器械,其中,所述承重成分还包括选自下列的至少一种成分维生素,激素,糖蛋白,粘连蛋白,肽,蛋白,碳水化合物,蛋白聚糖,抗血管生成剂,寡核苷酸,骨形态发生蛋白,脱矿物质的骨骼基体,抗体和遗传改变了的细胞。
19.如权利要求14的器械,其中,所述承重成分还包括骨生物学成分。
20.如权利要求19的器械,其中,所述承重成分包括a)在40℃-80℃之间可流动的聚合物;b)间充质干细胞;和c)骨形态发生蛋白。
21.如权利要求20的器械,其中,所聚合物选自线性酸酐和富马酸酯。
22.如权利要求14的器械,其中,所述承重成分是可再吸收的。
23.如权利要求22的器械,其中,所述承重成分包括a)可以在约40℃-约80℃之间的温度下流动的聚合物,并且其用量为50%-70%体积;和b)磷酸钙化合物其用量为大约10%-大约30%体积。
24.如权利要求23的器械,其中,所述聚合物是聚己酸内酯,而所述磷酸钙化合物是羟磷灰石。
25.如权利要求14的器械,其中,所述可再吸收的承重材料的总承重能力和新骨生长至少足以支撑椎骨之间的脊椎负荷。
26.如权利要求19的器械,其中,所述骨生物学成分是可再吸收的。
27.如权利要求19的器械,其中,所述承重成分包括选自下列的至少一种成分聚(乳酸),聚(乙醇酸),对二噁烷酮纤维,聚芳基乙基,聚甲基丙烯酸甲酯,聚氨酯,氨基酸衍生的聚碳酸酯,聚己酸内酯,脂肪族聚酯,磷酸钙,不饱和线性聚酯,乙烯吡咯烷酮和聚丙二醇富马酸酯二丙烯酸酯。
28.如权利要求27的器械,其中,所述承重成分包括两种可交联的聚合物,并且,其中,在暴露于至少一种交联剂时,所述可交联的聚合物的每一种可自身交联,以便形成互相贯通的网络。
29.如权利要求27的器械,其中,所述承重成分包括第一可交联的聚合物和第二可交联的聚合物,并且,其中,在暴露于至少一种交联剂时,所述第一可交联的聚合物可自身交联,而所述第二可交联的聚合物保持不受影响,以便形成半-互相贯通的网络。
30.如权利要求19的器械,其中,所述骨生物学成分包括选自下列的至少一种成分间充质干细胞,生长因子,松质骨碎片,羟磷灰石,磷酸三钙,聚乳酸,聚乙醇酸,聚半乳糖醛酸,聚己酸内酯,聚环氧乙烷,聚环氧丙烷,聚砜,聚乙烯,聚丙烯,透明质酸,生物玻璃,明胶,胶原和聚合纤维。
31.如权利要求30的器械,其中,所述间充质细胞是包在聚赖氨酸和聚乙烯亚胺交联的藻酸盐膜中的哺乳动物间充质干细胞。
32.如权利要求19的器械,其中,所述骨生物学材料包括选自下列的至少一种成分骨诱导性成分和骨传导性成分。
33.如权利要求32的器械,其中,所述骨诱导性成分包括选自下列的至少一种成分成纤维细胞生长因子-1,成纤维细胞生长因子-2,成纤维细胞生长因子-4,血小板衍生的生长因子-AB,血小板衍生的生长因子-BB,血小板衍生的生长因子-AA,上皮生长因子,胰岛素样生长因子-I,胰岛素样生长因子-II,生骨蛋白-1,转化生长因子-β,转化生长因子-β1,转化生长因子-β2,转化生长因子-β3;类骨质诱导因子(OIF),血管生成素,内皮缩血管肽,肝细胞生长因子,和角化细胞生长因子,成骨素,骨形态发生蛋白-2;骨形态发生蛋白-2A,骨形态发生蛋白-2B,骨形态发生蛋白-7;肝素结合生长因子-1,肝素结合生长因子-2,血小板衍生的生长因子的同种型,成纤维细胞生长因子的同种型,上皮生长因子的同种型,胰岛素样生长因子的同种型,骨形态发生蛋白的同种型,生长分化因子的同种型,印度刺猬,sonic刺猬,沙漠刺猬,白介素-1,白介素-2,白介素-3,白介素-4,白介素-5,白介素-6,集落刺激因子-1,粒细胞-集落刺激因子和粒细胞-巨噬细胞集落刺激因子。
34.如权利要求32的器械,其中,骨传导性成分包括具有以下结构式的化合物M2+(10-n)N1+2n(ZO43-)6mYx-其中,当x=1时,n=1-10,且m=2,和/或当x=2时,m=1;M和N是碱金属或碱土金属;ZO4是酸根,其中,Z是磷,砷,钒,硫或硅;且Y是卤离子,氢氧根,或碳酸根。
35.如权利要求32的器械,其中,所述骨传导性成分包括选自下列的至少一种材料磷酸一钙,磷酸二钙,磷酸八钙,α-磷酸三钙,β-磷酸三钙,或磷酸四钙,羟磷灰石,氟磷灰石,硫酸钙,氟化钙,氧化钙,二氧化硅,氧化钠,和五氧化二磷。
36.如权利要求19的器械,其中,所述承重或骨生物学成分中的至少一种还包括选自下列的至少一种水溶性材料明胶,盐,多糖和蛋白。
37.如权利要求36的器械,其中,在所述水溶性材料溶解时,所述承重或骨生物学成分的至少一种形成了多孔基体。
38.如权利要求37的器械,其中,在将其他骨生物学成分导入所述多孔基体时,所述其他骨生物学材料包括骨祖细胞,所述细胞附着在所述多孔基体的孔的内表面上。
39.如权利要求1的器械,其中,在至少部分填充所述气囊时,所述器械的至少一部分具有基本上的环形形状,以便限定具有轴向尺寸和径向尺寸的开口腔。
40.如权利要求39的器械,其中,所述气囊的覆盖区形成了至少大约200度的弧度。
41.如权利要求39的器械,其中,所述开口腔是用承重材料填充的。
42.如权利要求41的器械,其中,填充所述开口腔的所述承重材料还包括骨生物学成分。
43.一种椎骨间脊柱融合器械,包括至少一个弓形可充气的气囊,以便至少部分填充位于两个相邻的椎骨之间的气囊,至少部分恢复相邻椎骨之间的自然角度,并且,其中所述不对称的气囊包括承重成分位于由所述气囊形成的内腔中。
44.如权利要求43的器械,其中,所述器械具有基本上相当于脊椎终板周长的覆盖区。
45.如权利要求43的器械,其中,所述承重成分包括骨生物学成分。
46.如权利要求45的器械,其中,所述承重成分包括选自下列的至少一种成分聚(乳酸),聚(乙醇酸),对二噁烷酮纤维,聚芳基乙基,聚甲基丙烯酸甲酯,聚氨酯,氨基酸衍生的聚碳酸酯,聚己酸内酯,脂肪族聚酯,磷酸钙,不饱和线性聚酯,乙烯吡咯烷酮和聚丙二醇富马酸酯二丙烯酸酯或它们的混合物。
47.如权利要求46的器械,其中,所述气囊具有化学活性的内表面,以便所述承重成分在聚合时与所述气囊结合。
48.椎骨间脊柱融合器械,包括a)前支架,具有上部可充气的边缘和下部可充气的边缘,所述前支架可分离地连接第一流体连通装置上;和b)刚性可充气的后支架,连接在所述前支架的上部和下部可充气的边缘,所述后支架可分离地连接第二流体连通装置,其中,在至少部分填充位于两个相邻的椎骨之间的上部和下部可充气的边缘和所述后支架时,至少部分恢复了所述椎骨之间的自然角度。
49.如权利要求48的器械,其中,所述前支架是部分刚性的。
50.如权利要求48的器械,其中,在填充上部和下部可充气的边缘和所述后支架时,上部和下部可充气的边缘之间的距离不同于所述后支架的高度
51.如权利要求49的器械,其中,在至少部分填充上部和下部可充气的边缘时,所述边缘各自具有基本上相当于脊椎终板边缘的覆盖区。
52.如权利要求51的器械,其中,在至少部分填充上部和下部可充气的边缘和所述后支架时,所述器械限定了具有轴向尺寸和径向尺寸的开口腔。
53.如权利要求48的器械,还包括至少一个与所述前部的上部和下部边缘连接的网状部件。
54.如权利要求48的器械,其中,所述前部的上部和下部边缘中的至少一个包括至少一个向外突出部分。
55.如权利要求48的器械,其中,所述后部还包括至少一个可伸缩地可充气的支撑部件,所述每一个支撑部件连接在所述后部的上部和下部边缘上。
56.一种植入椎骨间脊柱融合器械的方法,包括以下步骤a)施行椎间盘切除术,同时保持外部环形外壳;b)将包括收缩的弓形气囊的充气装置插入椎骨间隙;c)将可硬化的材料导入所述收缩的弓形气囊,其用量足以张开所述气囊并且张开盘间隙。
57.一种植入椎骨间脊柱融合器械的方法,包括以下步骤a)通过套管将充气装置插入椎骨间隙,所述充气装置包括连接在至少一个流体连通装置上的弓形气囊,其中,所述充气装置在邻椎骨之间膨胀时至少部分恢复相邻椎骨之间的自然角度;b)确定所述充气装置的方向,以便在膨胀时至少部分恢复椎骨之间的自然角度;c)通过所述流体连通装置将承重成分导入所述充气装置。
58.如权利要求57的方法,其中,所述承重材料是可再吸收的,并且,其中,所述可再吸收的承重材料的总承重能力和新骨生长至少足以支撑椎骨之间的脊椎负荷。
59.如权利要求57的方法,其中,所述承重材料包括骨生物学成分。
60.如权利要求57的方法,其中,所述气囊在充气时具有基本上相当于脊椎终板边缘的覆盖区。
61.如权利要求59的方法,其中,所述承重成分包括可硬化的材料。
62.如权利要求59的方法,其中,所述充气装置包括至少一个可充气的气囊,所述器械形成了上部,下部,前部和后部,并且,在填充所述气囊时,所述前部等于所述后部,并且所述上部和所述下部各自具有基本上相当于脊椎终板边缘的覆盖区。
63.如权利要求62的方法,其中,确定所述前部的方向,以便朝向椎骨的前面,和确定所述后部的方向,以便朝向椎骨的后面。
64.如权利要求62的方法,其中,将所述承重成分导入所述气囊,包括通过所述流体连通装置导入所述成分,以便使所述气囊膨胀,并且将所述气囊的上部和下部导向相应的脊椎终板,以便至少部分恢复相邻椎骨之间的自然角度。
65.如权利要求62的方法,其中,所述气囊形成了多个内腔。
66.如权利要求62的方法,其中,所述气囊包括选自下列的可再吸收的材料聚(乳酸),聚(乙醇酸),对二噁烷酮纤维,聚芳基乙基,聚甲基丙烯酸甲酯,聚氨酯,氨基酸衍生的聚碳酸酯,聚己酸内酯,脂肪族聚酯,磷酸钙,不饱和线性聚酯,乙烯吡咯烷酮和聚丙二醇富马酸酯二丙烯酸酯。
67.如权利要求62的方法,其中,至少一个气囊包括选自下列的至少一种材料聚烯烃共聚物,聚烯烃,聚碳酸酯,聚对苯二甲酸乙二醇酯,醚-酮聚合物,编织纤维,非-编织纤维,织物和金属网。
68.如权利要求62的方法,其中,所述上部和所述下部的至少一个具有多个向外的突出部分,并且,其中,所述向外的突出部分包括聚醚醚酮(PEEK)。
69.如权利要求62的方法,其中,所述上部是用选自下列的至少一种材料制成聚醚嵌段共聚物(PEBAX),ABS(丙烯腈丁二烯苯乙烯),ANS(丙烯腈苯乙烯),delrin acetal;PVC(聚氯乙烯),PEN(聚萘二甲酸乙二醇酯),PBT(聚对苯二甲酸丁二醇酯),聚碳酸酯,PEI(聚醚酰亚胺),PES(聚醚砜),PET(聚对苯二甲酸乙二醇酯),PETG(聚对苯二甲酸乙二醇酯),聚酰胺,芳族聚酰胺,聚醚,聚酯,聚甲基丙烯酸甲酯,聚氨酯 共聚物,乙烯乙酸乙烯酯(EVA),乙烯基乙烯醇,聚乙烯,胶乳橡胶,氟化乙烯聚合物(FEP),聚四氟乙烯(PTFE),全氟-烷氧基链烷(PFA),聚丙烯,聚烯烃,聚硅氧烷,液晶聚合物,离聚物,聚(乙烯-共-异丁烯酸),硅橡胶,SAN(苯乙烯丙烯晴),尼龙,聚醚嵌段酰胺和热塑性弹性体。
70.如权利要求62的方法,其中,所述承重成分包括选自下列的至少一种成分聚(乳酸),聚(乙醇酸),对二噁烷酮纤维,聚芳基乙基,聚甲基丙烯酸甲酯,聚氨酯,氨基酸衍生的聚碳酸酯,聚己酸内酯,脂肪族聚酯,磷酸钙,不饱和线性聚酯,乙烯吡咯烷酮和聚丙二醇富马酸酯二丙烯酸酯。
71.如权利要求62的方法,其中,所述骨生物学成分包括选自下列的至少一种成分间充质干细胞,生长因子,松质骨碎片,羟磷灰石,磷酸三钙,聚乳酸,聚乙醇酸,聚半乳糖醛酸,聚己酸内酯,聚环氧乙烷,聚环氧丙烷,聚砜,聚乙烯,聚丙烯,透明质酸,生物玻璃,明胶,胶原和聚合纤维。
72.如权利要求62的方法,其中,所述骨生物学成分还包括选自下列的至少一种水溶性材料明胶,盐,多糖和蛋白。
73.如权利要求45的方法,还包括将含水流体导入所述承重材料的步骤,以便溶解至少一种所述水溶性材料,以便形成多孔基体。
74.如权利要求62的方法,其中,所述骨诱导性成分包括选自下列的至少一种成分成纤维细胞生长因子-1,成纤维细胞生长因子-2,成纤维细胞生长因子-4,血小板衍生的生长因子-AB,血小板衍生的生长因子-BB,血小板衍生的生长因子-AA,上皮生长因子,胰岛素样生长因子-I,胰岛素样生长因子-II,生骨蛋白-1,转化生长因子-,转化生长因子-(31,转化生长因子-2,转化生长因子-β3;类骨质诱导因子(OIF),血管生成素,内皮缩血管肽,肝细胞生长因子,和角化细胞生长因子,成骨素,骨形态发生蛋白-2;骨形态发生蛋白-2A,骨形态发生蛋白-2B,骨形态发生蛋白-7;肝素结合生长因子-1,肝素结合生长因子-2,的同种型血小板衍生的生长因子,成纤维细胞生长因子的同种型,上皮生长因子的同种型,胰岛素样生长因子的同种型,骨形态发生蛋白的同种型,生长分化因子的同种型,印度刺猬,sonic刺猬,沙漠刺猬,白介素-1,白介素-2,白介素-3,白介素-4,白介素-5,白介素-6,集落刺激因子-1,粒细胞-集落刺激因子和粒细胞-巨噬细胞集落刺激因子。
75.如权利要求62的方法,其中,所述骨生物学成分具有以下结构式M2+(10-n)N1+2n(ZO43-)6mYx-其中,当x=1时,n=1-10,和m=2,和/或当x=2时,m=1;M和N是碱金属或碱土金属;ZO4是酸根,其中,Z是磷,砷,钒,硫或硅;和Y是卤离子,氢氧根,或碳酸根。
76.如权利要求62的方法,其中,所述骨生物学成分包括选自下列的至少一种成分磷酸一钙,磷酸二钙,磷酸八钙,α-磷酸三钙,β-磷酸三钙,或磷酸四钙,羟磷灰石,氟磷灰石,硫酸钙,氟化钙,氧化钙,二氧化硅,氧化钠,和五氧化二磷,或它们的混合物。
77.如权利要求57的方法,其中,所述器械的至少一部分在膨胀时具有基本上的环形形状,以便形成由所述环形形状的外表面构成的开口腔,具有轴向尺寸和径向尺寸。
78.如权利要求62的方法,其中,确定所述器械的至少一部分的方向,以便所述开口腔的轴向尺寸基本上平行于业已植入了所述器械的患者脊柱的长轴。
79.如权利要求78的方法,其中,所述承重材料导入由所述膨胀的装置形成的开口腔。
80.如权利要求78的方法,其中,所述承重材料包括骨生物学材料。
81.一种至少部分恢复相邻椎骨之间的自然角度的方法,包括以下步骤a)通过套管将充气装置插入椎骨间隙;b)确定所述充气装置的方向,以便在所属装置膨胀时至少部分恢复椎骨之间的自然角度;和c)通过将承重成分导入所述充气装置使所述充气装置膨胀。
82.如权利要求80的方法,其中,所述充气装置包括至少一个弓形可充气的气囊,和连接在至少一个气囊上的流体连通装置,并且,其中少一个气囊在邻椎骨之间膨胀时,至少部分恢复相邻椎骨之间的自然角度。
83.如权利要求81的方法,其中,所述可充气的气囊,所述器械形成了上部,下部,前部和后部,并且,在填充所述气囊时,所述前部等于所述后部,并且,所述上部和所述下部各自具有基本上相当于脊椎终板边缘的覆盖区。
84.如权利要求83的方法,其中,所述确定所述充气装置的方向的步骤,包括确定所述前部的方向,以便朝向椎骨的前面,和确定所述后部的方向,以便朝向椎骨的后面。
85.如权利要求83的方法,其中,所述使所述充气装置膨胀的步骤包括将承重成分和骨生物学成分的至少一种导入所述装置,包括通过所述流体连通装置导入至少一种成分,以便使所述装置的上部和下部与相应的终板接合,并且,所述装置的前部大于所述装置的后部,以便至少部分恢复相邻椎骨之间的自然角度。
86.如权利要求81的方法,其中,所述承重材料包括可硬化的材料。
87.如权利要求82的方法,其中所述器械的至少一部分在膨胀时具有基本上的环形形状,以便形成由所述环形形状的外表面构成的开口腔,并且具有轴向尺寸和径向尺寸。
88.如权利要求87的方法,其中,所述确定所述充气装置的方向的步骤,包括确定所述器械的至少一部分的方向,以便所述开口腔的轴向尺寸基本上平行于业已植入了所述器械的患者脊柱的长轴。
89.如权利要求81的方法,还包括将承重材料导入所述开口腔的步骤。
90.如权利要求89的方法,其中,承重材料包括骨生物学成分。
91.如权利要求89的方法,其中,所述承重材料包括可硬化的材料。
92.如权利要求91的方法,其中,所述骨生物学材料还包括至少一个水溶性材料选自下列的明胶,盐,多糖和蛋白。
93.如权利要求92的方法,还包括将含水流体导入由所述充气装置形成的开口腔的步骤,以便溶解至少一种所述水溶性材料,并且形成多孔基体。
94.一种输送骨生物学材料的方法,包括a)将充气装置插入椎骨间隙,其中,所述器械的至少一部分在膨胀时具有基本上的环形形状,以便形成由所述环形形状的外表面构成的开口腔,并且具有轴向尺寸和径向尺寸;b)确定所述器械的至少一部分的方向,以便所述开口腔的轴向尺寸基本上平行于业已植入了所述器械的患者脊柱的长轴;c)通过将承重成分导入所述充气装置使所述充气装置膨胀;d)将骨生物学材料导入所述开口腔,所述材料包括至少一种水溶性材料;
95.如权利要求94的方法,还包括以下步骤e)将含水流体导入由所述充气装置形成的开口腔,以便溶解至少一种所述水溶性材料,并且形成多孔基体;和f)将其他骨生物学成分导入所述多孔基体,其用量足以填充所述多孔基体体积的至少90%。
96.一种包括原位成型的骨生物学成分的椎间融合器械,所述骨生物学成分包括a)基体,具有形成适合通过它进行骨生长的开口空隙,和b)位于所述开口空隙中的骨形成成分。
97.一种提供用于通过盘间隙的骨融合的椎间融合器械,包括a)原位成型的支柱,具有用于支撑上终板的上表面和用于支撑下终板的下表面,和b)原位成型的骨生物学多孔基体。
98.一种提供用于通过盘间隙的骨融合的椎间融合器械,包括原位成型的支柱,包括a)用于支撑上终板的上表面,b)用于支撑下终板的下表面,和c)位于上表面和下表面之间的可注射的承重组合物。
99.一种包括基体的椎间融合器械,所述基体具有限定适合通过它进行骨生长的开口空隙,其中,所述基体是通过多个原位结合的球形成的。
100.包括支柱的椎间融合器械,包括a)第一部件,包括i)适合支撑下脊椎终板的下支撑表面,和,ii)上表面,包括前端,倾斜的中部和尾端;和b)第二部件,包括i)适合支撑上脊椎终板的上支撑表面,和,ii)上表面,包括前端,倾斜的中部和尾端,其中,第一部件的倾斜部分与第二部件的倾斜部分配合。
101.提供通过椎间盘间隙的体间融合的成套用具,包括a)限定内径的套管;b)能够支撑椎骨间负荷的可硬化的材料;c)可流动的骨生物学组合物;和d)弓形气囊。
102.一种提供用于通过盘间隙的骨融合的椎间融合器械,包括a)原位成型的支柱,具有用于支撑上终板的上表面和用于支撑下终板的下表面,所述上表面和下表面在它们之间限定了高度,和b)原位成型的骨生物学成分,其中,所述支柱的高度不超过盘间隙的高度。
103.一种提供通过椎间盘间隙的体间融合的方法,包括以下步骤a)提供限定内径的套管;b)通过所述套管移动承重组合物,并且进入所述盘间隙,以便形成原位成型的承重弓形支柱;和c)通过所述套管移动骨生物学组合物,并且进入所述盘间隙,以便形成原位成型的骨生物学组合物。
104.一种提供用于通过盘间隙的骨融合的包括弓形支柱的椎间融合器械,所述支柱包括a)用于支撑上终板的上表面,b)用于支撑下终板的下表面,并且,其中所述支柱包括原位成型的承重组合物。
全文摘要
用于植入相邻的椎骨之间的矫形器械,包括弓形气囊,和装在所述气囊中的可硬化的材料。在某些实施方案中,所述气囊具有基本上相当于脊椎终板周长的覆盖区。将充气装置通过套管插入椎骨间隙,并且定向,以便在膨胀时,至少部分恢复椎骨之间的自然角度。将选自承重成分骨生物学成分的至少一种成分通过流体连通装置导入所述充气装置。
文档编号A61L27/14GK1774220SQ200480010041
公开日2006年5月17日 申请日期2004年2月13日 优先权日2003年2月14日
发明者T·M·迪莫罗, M·A·斯利夫卡, J·D·马隆, B·T·穆尔, H·塞尔汉, S·卡迪亚拉, C·M·小巴蒂什, H·B·伍德罗, W·L·罗尔, J·E·凯利, K·库珀, L·阿奎诺 申请人:德普伊斯派尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1