人造软骨用植入物材料的制作方法

文档序号:1128197阅读:496来源:国知局
专利名称:人造软骨用植入物材料的制作方法
技术领域
本发明涉及一种包括生物活性的、可降解的和可吸收的有机-无机复合多孔制品的植入物材料,及其生产方法,以及包括该复合多孔制品和其它生物材料的植入物材料。
背景技术
作为用于临床目的的无机多孔制品,例如,通过煅烧或者烧结生物陶瓷获得的多孔陶瓷是已知的。然而,当用于诸如用于活体骨组织重建的架子、假体材料等之类的应用中时,由于这样的多孔陶瓷显示了硬但是脆的缺点,所以总是有在手术后由于轻微的碰撞而引起损坏的危险。此外,在手术领域中,加工和改变多孔陶瓷的形状来匹配活体骨组织的受损的部分的形状也是困难的。此外,由于在一些情况下要求10年或者更加延长的时间周期,直到其完全由活体骨来替代,所以在该时期期间保持由其损坏引起有害影响的危险。
另一方面,作为用于临床目的的有机多孔制品,例如,在JP-B-63-64988中披露的海绵等是已知的。该海绵通常在外科手术时用于止血,或者在活体中的软组织(例如,器官)的缝合时用作假体材料,其为包括生物可降解的和生物可吸收的聚乳酸的具有连续孔的海绵。这样的海绵通过一种方法来产生,其中,聚乳酸在苯或者二氧乙烷中溶解,且溶剂通过冻干聚合物溶液来升华。
然而,关于由冻干方法产生的多孔制品,诸如上述海绵的情况,完全去除溶剂是困难的,因为其要求延长的时间周期来升华,以及因为其具有1mm薄的厚度或者更薄(通常大约几百微米),产生具有几mm厚度或者更厚的多孔制品实际上是困难的。作为用于产生具有连续孔的多孔制品的其它方法,除了上述的冻干方法以外已经检验了多种方法,但是获得几mm或者更厚的厚多孔制品是不容易的。应用这样薄的多孔制品来与例如活体组织的受损部分的复杂且相对大的三维空间的形状相符合,从而允许其行使其作为临时假体材料的功能,以及同时实现受损部分的三维组织重建是不可能。因此,需要这样的物品,其具有厚度,且可以在手术前或者在手术期间制造为三维立方体,以及在相对早的阶段被降解和吸收,以及被活体骨替代。
此外,洗提方法已知为用于制造具有连续孔的多孔制品的另一种可靠的方法,其中,大量具有一定尺寸的可水溶解的粉末,诸如NaCl,与聚合物混合,且该混合物形成为薄片或者同样的薄造型,然后浸入水(溶剂)中,以实现所述粉末的遁辞,从而形成具有所述粉末的相同直径的连续孔,但是由于完全洗提所述粉末是困难的,所以产品限制于具有连续孔的薄物。此外,当可水溶解粉末的比例变高时,几乎不能获得连续孔。而且,当该多孔制品植入活体中时,其引起被仍然剩余的所述粉末的毒性妨碍的问题。
像前述的海绵的情况一样,不包含生物活性的生物陶瓷和同样的无机粉末的多孔制品缺少与活体中的骨、软骨和同样的骨组织的直接粘合性、传导性、可替代性等,使得不是造骨细胞而是成纤维细胞和同样的软组织被穿透,且呈现其中,这样要求相当延长的时间周期,直到活体中的骨组织完全被替代和再生,或者其结束未替代。
因此,本申请人已经申请了一项关于包括可生物降解的和可生物吸收的聚合物的具有连续孔的厚多孔制品的专利,其中,生物活性的生物陶瓷粉末包含其中,当造骨细胞被接种时,其成为三维立方体的骨架,且可以被移植到用于间介的大骨的受损部分(日本专利申请No.8-229280)。
该多孔制品通过称为溶液沉淀方法的多孔制品生产方法来产生。也就是,通过一种方法,其中通过在其溶剂与具有比溶剂的沸点高的沸点的非溶剂的混合溶剂中溶解可生物降解的和可生物吸收的聚合物,同时在其中散布生物陶瓷粉末来制备悬浮液,以及包括生物陶瓷粉末的可生物降解的和可生物吸收的聚合物通过在比溶剂的沸点低的温度下从该悬浮液蒸发混合的溶剂来沉淀。
通过该溶液沉淀方法来形成多孔制品的原理如下。也就是,当混合的溶剂在比溶剂的沸点低的温度下从前述悬浮液蒸发时,具有较高沸点的非溶剂的比例通过具有较低沸点的溶剂的优先蒸发来逐渐增加,且当溶剂和非溶剂到达一定比例时,溶剂变得不能溶解聚合物。因为这样,聚合物开始沉积和沉淀,且包括从一开始就开始沉淀的生物陶瓷粉末,这样沉积和沉淀的聚合物由于高比例的非溶剂而收缩和固化,且固定,同时包括生物陶瓷粉末,其中包括混合溶剂的单元结构形成在聚合物的连接的薄单元壁上。此后,剩余的溶剂蒸发,且消失,同时通过破坏单元壁的部分来制造孔,且具有较高沸点的非溶剂也通过所述孔逐渐蒸发,且最终完全蒸发和消失。结果,形成了包含生物陶瓷粉末的多孔制品,其中,包括在聚合物单元壁中的混合溶剂容器的剩余物连接为连续的孔。
前述的溶液沉淀方法是划时代的方法,其可以形成具有从低膨胀率到高膨胀率的厚的多孔制品,且可以获得具有从几mm到几十mm的厚度的块形三维多孔制品。因此,这是明显有用的,例如,用于具有大凸纹的固体形状(三维固体形状)的骨的再生的骨架。
然而,该方法的缺点在于,在包含大量生物陶瓷粉末的悬浮液中的颗粒直径分部中,属于相对大的颗粒直径的生物陶瓷粉末从溶剂蒸发的开始就开始其沉淀,且当聚合物开始其沉积和沉淀时,相当大量的生物陶瓷粉末已经开始其沉淀,其具有朝着底部的密度梯度,使得这样获得的多孔制品的生物陶瓷粉末含量整体不均匀,因此,含量从多孔制品的上侧朝着底部侧增加是不可避免的。这样的具有含量密度梯度的不均匀的多孔制品不能有效地和无差别地用于其应用,诸如用于骨组织重建的骨架、假体材料、骨填料等。通过一定的方法来控制生物陶瓷粉末的淀积速度等,可以一定程度地改进这样的问题,但是其不能完全解决。尤其是,不但通过本发明,而且通常使用包含重量百分比30%或者更多的生物陶瓷粉末来制备用于三维骨重建,且具有均质和均匀浓度的多孔制品是困难的。
关于通过前述方法产生的具有小含量的生物陶瓷粉末的多孔制品,大部分的生物陶瓷粉末包括在聚合物单元壁中,且几乎不能暴露到连续孔的内表面和多孔制品的表面,以致具有这样的问题,即,当植入活体中时,从刚植入以后,活体骨组织通过生物陶瓷粉末的传导作用几乎不能行使,因此,生物活性显示为具有时间滞后,同时生物陶瓷粉末在形成皮肤层的聚合物的降解的同时暴露。
此外,即使当特别细微的颗粒选择为生物陶瓷粉末时,通过前述方法产生的多孔制品中的其百分比含量也到达最多大约30%的重量百分比,且当其包含在比此大的量中时,生物陶瓷粉末变成更加易于沉积,以致这样获得的多孔制品的底部侧包含大量的生物陶瓷粉末,因此变得特别脆。
此外,通过前述方法产生的多孔制品通常具有80%或者更多的大的占有比例的连续孔,但是,一般而言,只获得具有从几微米到几十微米的相对小的孔直径的连续孔,以致不一定能说形成了对于造骨细胞渗透和增生到多孔制品中和在多孔制品中渗透和增生理想的孔直径和孔形状。
除了本申请人的前述溶液沉淀方法以外,已经通过其它方法来检验用于高度填充无机粉末物质的方法,其中的一种有影响的方法是用于通过烘烤方法来制备多孔制品的方法,其中,通过用大约50%重量百分比的生物陶瓷粉末填充聚合物来制备颗粒,且这些颗粒通过加热熔合到表面上。该方法不是崭新的方法,但是熟知为用于制备诸如环氧树脂、氯乙烯树脂或者类似物之类的粒状树脂的多孔制品的方法。由于该方法要求表面熔合,所以填充量具有限制,且由于脆度的产生,获得50%重量百分比或者更高的填充是困难的,以及孔直径的控制也不容易,以致几乎不能获得具有好的质量的产品。
本发明的目的在于提供可以解决所有这些问题的包括高度填充有无机颗粒的有机-无机复合多孔制品的各种植入物材料,及其生产方法。此外,还考虑提供包括该有机-无机复合多孔制品与其它活体材料的组合的植入物材料,其用作骨固定材料,用作椎体固定材料[椎间安装材料和椎体假体材料等],用作骨同种移植物、骨自体移植物、皮质骨、松质骨或者其组合的替代物,用作用于骨的缺陷部分和变形部分的假体和填充材料等,用作用于骨和软骨形成的骨架,以及用作人造软骨。
当前,使用诸如包括可生物降解和可生物吸收的聚合物的固定销之类的骨固定材料,例如在胸骨分裂切口闭合的外科手术中,其通过桥接胸骨的切割部分的两侧的骨髓来植入。由于这在胸骨中逐渐降解和吸收,所以不要求其像由不可吸收的陶瓷或者金属制成的销的情况一样通过执行再手术来从活体中取出是一个优点,但是由于其没有骨传导,且不直接结合到骨组织,所以其只具有通过行使简单的“楔”的作用来通过闭合的胸骨的临时固定来闭合切割面的作用。由于这样的情况,当松质骨由于变为只保持薄的皮质骨的薄片而变脆时,如在大多数老年人的胸骨中可见的,其引起的问题在于,即使当该用于胸骨的固定销被植入时,通过行使其作为“楔”的作用来增加固定稳定性也是困难的,且其不被骨组织替代。另一方面,用于除了胸骨以外的骨的切割区域和骨折区域的连接和固定的羟磷灰石(HA)和类似陶瓷的多孔制品具有的问题在于,它们易于折断,且要求相当延长的时间周期来在活体中吸收。虽然有这样一种观点,即,即使当要求延长的时间周期时也没有问题,因为一旦植入到活体骨中时,其强度就恢复,但是仍然具有引起折断的危险,直到其完全植入。要被用作骨固定材料的本发明的植入物材料主要目的在于解决这些问题。
在这个方面,在用于腰椎变性疾病的前介体熔合术中要被用作椎间垫片的传统的椎体固定材料,诸如由钛或者碳制成的构架,目前满足表面的化学生物相容性,但是由于动态生物相容性与活体不同,所以会有问题,诸如由于其作为活体中的外来物而延长存在,其通过周期的破坏和腐蚀来对周围组织产生有害效果的危险。例如,有一个问题在于,构架经由骨端板沉到椎体中,该骨端板通过扩孔暴露,其由于构架和活体之间的不协调动态特性而产生。尤其是,由碳制成的构架硬但是脆,其沿着其碳素纤维折断,且在一些情况下产生细微的片,以致总是存在呈现有害作用的可能性。此外,在这些构架中被填充的用于自体移植物的骨通常通过提取骼骨来供给,但是有关于其量和制备的问题,以及关于在提取以后的复杂的处理问题(提取区域的后处理,以及骼骨的粉碎、填充到构架、在无菌条件下处理等)。要被用作椎体固定材料的本发明的植入物材料主要目的在于解决这些问题。
另一方面,近年来,用于补充骨的缺陷部分的手术通常利用通过切割和处理尸体的骨来制备的骨同种异体移植物或者从诸如骨盆、肋骨或者类似物之类的大骨的区域提取的骨自体移植物来执行。当骨同种异体移植物处于通过在松质骨的表面上提供皮质骨来集成的决形时,骨的缺陷位置的皮质骨区域可以通过所述骨同种异体移植物的皮质骨来补充,骨的缺陷位置的松质骨区域可以通过所述骨同种异体移植物的松质骨来补充。然而,由于骨同种异体移植物通过切割和处理尸体骨来制备,所以其引起的问题在于,通过大量获得材料尸体骨,其不容易提供必要和足够量的移植骨,且其还引起的问题在于,可使用的形状被大大地限制。此外,即使在骨同种异体移植物的情况下,移植的所述移植骨是不同于其自己的骨组织的骨组织,有这样的可能性,即,其通过其自发的吸收而消失,且根据植入条件,其长度变得不够,或者减小。除此以外,必须执行消毒处理,因为其为其他人的尸体骨,但是由于尸体骨的变性根据其条件出现,所以必须控制足够的消毒条件。然而,由于有时是不充分的,所以有这样的情况,其中,在其植入以后,宣告产生延伸到死亡的严重事故。虽然通过在手术期间提取的骨自体移植物可以避免这样的事故,但是不能否认其量是不充分的。另一方面,由羟磷灰石(HA)、磷酸三钙(TCP)和类似的生物活性陶瓷制成的植入物材料的植入也在缺陷部分处执行,但是在这样的情况下,有问题在于,骨的缺陷位置的皮质骨区域和松质骨区域通过硬陶瓷均匀地补充,由于这样的陶瓷暂时剩余,其仍然引起不能通过自己的骨组织来重建骨的缺陷位置的问题。这样,用于通过制备所述陶瓷的多孔制品来获得松质骨的替代物的方法变得相当现实。然而,由于这些合成人造骨由活体骨替代是理想地最好的,当在10到20年的延长周期以后它们被替代时,有时一定会担心在该周期期间由于实际外来物的事故。要被用作骨同种异体移植物和骨自体移植物的替代物的本发明的植入物材料主要目的在于解决这些问题。
此外,其中大量孔通过打孔形成的由钛或者类似金属制成的打孔(网眼形)板,包括烘烤的生物陶瓷的紧密物或者多孔制品的打孔的平板或者粗糙的板等用作骨的缺陷部分和变形部分的传统的假体、填充和涂覆材料。然而,由于由金属制成的打孔板缺少物理生物相容性,且在补充区域中永久的保持为外来物,所以在其长期植入期间,有通过腐蚀、金属离子洗提等引起的对周围组织呈现有害作用的危险,以致有问题在于,缺陷部分根本不能被骨组织完全替代。此外,由于烘烤的生物陶瓷的多孔制品是硬但是脆的,且容易折断,所以在其使用期间有由于接受碰撞而被折断的危险,且有问题在于,在手术期间,其不能后成形来匹配骨的缺陷部分的三维形状。要被用作假体、填充、涂覆和类似材料的本发明的植入物材料主要目的在于解决这些问题。
此外,传统的人造软骨,例如,完全替代类型的独立人造椎间盘是具有所谓的夹层结构的人造椎间盘,其中,由钛或者钴-铬制成的两个金属端板重叠在包括生物非活性的聚乙烯或者具有生物相容性的橡胶的芯的两侧(上侧和下侧),其中,根据两片聚乙烯的重叠条件,以及在橡胶的情况下,其通过其弹性来模拟,该芯部分执行类似于活体椎间盘的运动。为了通过防止当插入到椎体之间时滑动来给出其独立性的效果,其制成一种结构,其中,在金属板的表面上突出几个角,以致它们通过刺入椎体的凹进来固定。然而,由于该人造椎间盘具有由具有与活体不同质量的材料制成的夹层结构,所以其具有的大缺点在于,在重复运动以后,在它们的界面之间形成磨损,绝不能说,该运动与活体椎间盘的运动相同,且从金属板突出的角不但损伤上部和下部椎体,而且在其使用延长的时间周期期间,通过逐渐沉入和穿透到椎体中而引起更大的损坏,以致其不能通过直接结合到上部和下部椎体来单独地固定。要被用作人造软骨的本发明的植入物材料主要目的在于解决这些问题,且通过将本发明的多孔制品插入包括端板的椎体之间,其目的也在于通过用所述人造椎间盘来填充物理间隙来实现闭合接触,且也在于通过骨传导来用椎体实现直接结合。

发明内容
本发明的人造软骨用植入物材料,在将有机纤维制成三轴以上的多轴三维织造纹理、或者针织纹理、或者他们的复合纹理的纹理结构主体形成的芯材料的至少一面上层压了具有骨传导性的生物可降解和生物可吸收的垫片。
本发明的人造软骨用植入物材料,是由将有机纤维制成三轴以上的多轴三维织造纹理、或者针织纹理、或者他们的复合纹理的纹理结构主体所形成的人造软骨用植入物材料,在该纹理结构主体的上下表面具有生物可降解和生物可吸收的固定用销。
本发明的人造软骨用植入物材料,是生物活性的生物陶瓷粉末均匀地分散在生物可降解和生物可吸收的聚合物中的生物活性的生物可降解和生物可吸收的多孔体,将具有连续气孔、在气孔内面或者气孔内面与多孔体表面上露出了生物陶瓷粉末的一部分的有机-无机复合多孔体层压在由将有机纤维制成三轴以上的多轴三维织造纹理、或者针织纹理、或者他们的复合纹理的纹理结构主体形成的芯材料的至少一面上,合为一体,固定用销的前端从多孔体的表面突出出来。
本发明的最基本的植入物材料包括有机-无机复合多孔制品,其为生物可降解和生物可吸收的生物活性的多孔制品,其中,生物活性的生物陶瓷粉末均匀地散布在生物可降解和生物可吸收的聚合物中,其中,其具有孔径为50-500μm的连续孔,且生物陶瓷粉末部分地暴露到孔内表面或者孔内表面和多孔制品表面。如下将要描述的,该多孔制品具有从50到90%的孔隙率,连续孔占据整个孔的50到90%,且连续孔被控制在适于造骨细胞渗透、增生和稳定的近似从100到400微米的孔尺寸。此外,生物陶瓷粉末被重量百分比从60到90%大量包含,且多孔制品具有从1到50mm的大厚度的三维固体形状。该基本植入物材料用于各种临床应用,诸如用于替代类型骨组织再生的骨架、假体材料、涂层材料、骨填料、松质骨的替代物、骨组织和其它人造植入物之间的内含物、药物载体等。
此外,包括有机-无机复合物,其为生物可降解和生物可吸收的生物活性的多孔制品,其中,生物活性的生物陶瓷粉末均匀地散布在生物可降解和生物可吸收的聚合物中,其中,其具有连续孔,且生物陶瓷粉末重量百分比含量从60到90%的一种植入物材料也是本发明的基本植入物材料,且用于类似于上面的各种临床应用。
上述包括有机-无机复合多孔制品的植入物材料可以通过本发明的生产方法来产生,即,这样一种方法,其中,由通过在挥发性溶剂中溶解生物可降解和生物可吸收的聚合物,且在其中散布生物活性的生物陶瓷粉末制备的混合溶液来形成非织造织物型纤维聚集,这通过在加热条件下压缩模制来形成多孔纤维聚集模制物,纤维聚集模制物浸渍在挥发溶剂中,然后所述溶剂被去除。
另一方面,前述有机-无机复合多孔制品应用的本发明的植入物材料通过使前述有机-无机复合多孔制品与其它紧密的生物可降解和生物可吸收部件结合来获得。下面四种类型是这样的植入物材料的主要类型。
第一种植入物材料是用于骨固定的植入物材料,其中,其它生物可降解和生物可吸收部件是销,其中,所述销通过穿透过前述多孔制品来结合,且销的两个端子从前述多孔制品伸出。例如,植入物材料合适地用于固定胸骨分裂和胸骨分裂切口闭合的外科手术操作中切开。
第二种植入物材料是这样的植入物材料,其中,其它生物可降解和生物可吸收部件是具有开口到外侧的腔,且包括包含生物活性的生物陶瓷粉末的生物可降解和生物可吸收的聚合物的基体,其中,前述多孔制品通过填入所述基体的腔来结合,且前述多孔制品部分地从所述基体暴露。该植入物材料使用用作椎间垫片或者在前介体熔合术或者后介体熔合术等中的类似的椎体固定材料。
第三种植入物材料是这样的植入物材料,其中,其它生物可降解和生物可吸收部件是包括包含生物活性的生物陶瓷粉末的生物可降解和生物可吸收的聚合物的皮肤层,其中,所述皮肤层通过重叠在前述的块形的多孔制品的表面的一部分上结合。在该植入物材料中,块形的多孔制品起松质骨的作用,皮肤层起皮质骨的作用,以便其合适地用作全部吸收替代类型的人造骨,诸如,用于骨同种异体移植物、骨自体移植物等的替代物。
第四种植入物材料是这样的植入物材料,其中,其它生物可降解和生物可吸收部件是包括包含生物活性的生物陶瓷粉末的生物可降解和生物可吸收的聚合物的网形主体,其中,前述多孔制品通过填入所述网形主体的网眼来结合。该植入物材料合适地用作骨的缺陷部分和变形部分的假体、涂覆、支撑或者填充材料等。
此外,与前述多孔制品一起应用的本发明的还有一种植入物材料是用于人造软骨和植入物材料,其中,前述的多孔制品通过在包括纹理结构主体的芯材料的至少一侧上层压前述多孔制品来结合,该纹理结构主体通过将有机纤维转化为多轴三维织造纹理或者三轴或更多轴的针织纹理,或者其复合纹理来制备。该植入物材料合适地用作人造椎间盘、半月板等,其通过直接结合的椎体的上部和下部来独立地固定。


图1是示出了根据本发明的植入物材料的实施例的透视图;图2(a)、(b)和(c)是示出了相同实施例的植入物材料的应用例子的说明性附图;图3是示出了根据本发明的植入物材料的另一个实施例的透视图;图4是示出了相同实施例的植入物材料的基体的透视图;图5是示出了相同实施例的植入物材料的纵向截面图;图6是示出了相同实施例的植入物材料的应用例子的说明性附图;图7是示出了根据本发明的植入物材料的还有一个实施例的透视图;图8是示出了根据本发明的植入物材料的还有一个实施例的透视图;图9是示出了根据本发明的植入物材料的还有一个实施例的透视图;图10是示出了根据本发明的植入物材料的还有一个实施例的透视图;图11是示出了相同实施例的植入物材料的截面图;图12是示出了相同实施例的植入物材料的应用例子的说明性附图;图13是示出了根据本发明的植入物材料的还有一个实施例的截面图;图14是示出了根据本发明的植入物材料的还有一个实施例的截面图;图15是示出了根据本发明的植入物材料的还有一个实施例的截面图;图16是示出了根据本发明的植入物材料的还有一个实施例的透视图;以及图17是示出了相同实施例的植入物材料的截面图。
具体实施例方式
接下来描述本发明的植入物材料的期望的实施例及其生产方法。
本发明的最基本的植入物材料包括有机-无机复合多孔制品,其为生物可降解和生物可吸收的生物活性的多孔制品,其中,生物活性的生物陶瓷粉末均匀地散布在生物可降解和生物可吸收的聚合物中,其中,其具有连续孔,且生物陶瓷粉末部分地暴露孔内表面或者孔内表面和多孔制品表面,且在其期望的实施例中,选择通过确保其安全性已经进入实际应用、降解相对快速且当多孔制品形成时不脆的聚合物,且用作生物可降解和生物可吸收的聚合物。也就是,使用非晶体或者晶体/非晶体混合的完全可吸收的聚D,L乳酸、L乳酸与D,L乳酸的嵌段共聚物、乳酸与乙醇酸的共聚物、乳酸与p二恶烷酮(dioxanone)的共聚物、乳酸与乙二醇的共聚物、乳酸与己内酯的共聚物、其混合物以及类型的生物可降解和生物可吸收的聚合物。通过考虑在本发明的生产方法中容易形成非织造织物型纤维共聚物,以及多孔制品在活体中的降解和吸收的周期,最好使用具有从50000到1000000的粘度平均分子重量的聚合物。
尤其是,当根据本发明的生产方法形成非织造织物型纤维聚集时,以及当通过在加热条件下压缩模制形成的多孔纤维聚集模制物用挥发性溶剂处理时,从溶剂特性的观点看,根据单体比例显示非晶体性质的聚D,L乳酸、L乳酸与D,L乳酸的嵌段共聚物、乳酸与乙醇酸的共聚物、乳酸与p二恶烷酮(dioxanone)的共聚物,以及类型的生物可降解和生物可吸收的聚合物是期望的,且这些聚合物的使用致使可能制备包括有机-无机复合多孔制品的植入物材料,即使当包含大量生物陶瓷粉末时,该有机-无机复合多孔制品也不脆,其具有相当于松质骨的压缩强度,不同于只有陶瓷的多孔制品的情况,该有机-无机复合多孔制品在相对低的温度(大约70℃)下可以热变形,且在活体中6到12个月以后,其快速水解和完全吸收。具有这样的特性的植入物材料作为用于填充活体骨的缺陷部分和成为复合体的材料明显是期望的,其还维持了热塑性树脂特有的优点,即,其通过不同于只有陶瓷的材料的情况的树脂成分来维持黏弹性,当仅仅是接触时,不像陶瓷由于脆度的情况,其不引起破损,且通过使其热变形,在操作期间,其形状可以调节为与缺陷部分匹配。
由于可生物降解和完全可生物吸收的聚合物的分子量影响周期,直到其被水解和完全吸取,以及纤维形成的可能性,具有从50000到1000000的粘度平均分子量的聚合物用作如前所述的。具有小于50000的粘度平均分子量的聚合物具有短的时间周期来直到水解到具有低分子量的低聚物或者单体单元中,但是在可纺性上是不充分的,当根据本发明的生产方法通过喷射或者类似的方法来形成纤维时,形成纤维聚集是困难的。此外,具有大于1000000的粘度平均分子量的聚合物要求长时间周期来直到完全水解,以致当由活体骨组织早期阶段替代是目的时,其不适于复合多孔制品的聚合物。虽然其依赖于每种聚合物来变化,但是其期望的粘度平均分子量为从100000到300000,且当使用具有在该范围内的分子量的生物可降解和生物可吸收的聚合物时,纤维聚集的形成变得容易,且可以获得具有合适水解完全周期的复合多孔制品的植入物材料。
此外,在包括有机-无机复合多孔制品的植入物材料中,具有生物活性以及好的骨传导(有时显示骨诱导)和好的生物相容性的粉末用作要被散布在多孔制品中的生物陶瓷粉末。这样的生物陶瓷粉末的例子包括煅烧或者烧结的羟磷灰石、磷灰石钙硅石玻璃陶瓷、生物活性和完全可生物吸收的未煅烧或者未烧结的羟磷灰石、磷酸二钙、磷酸三钙、磷酸四钙、磷酸八钙、方解石、ceravital、透辉石、天然珊瑚等的粉末。此外,也可以使用那些通过将碱性无机化合物、基本有机化合物等粘附在这些粉末的表面上来制备的生物陶瓷粉末。由于通过由自身骨组织完全替代来执行的组织再生是理想的,被活体中的骨组织完全吸收和完全替代的完全可生物吸收的生物陶瓷粉末是期望的,其中,未煅烧或者未烧结的羟磷灰石、磷酸三钙和磷酸八钙是尤其期望的,因为它们具有大的活性,骨传导极好,具有低的有害影响,这是由于极好的生物相容性,且在短时间周期期间在活体中吸收。
期望使用前述的具有从0.2到10微米的平均颗粒尺寸(主要颗粒的平均颗粒尺寸)的生物陶瓷粉末,因为当使用具有比此更大的颗粒尺寸的生物陶瓷粉末时,形成纤维聚集变得困难,这是由于当通过混合所述粉末来制备的混合溶液通过本发明的生产方法张开且进入纤维时,将纤维切割成小段,即使在可以形成纤维聚集的情况下,在纤维固化以前,生物陶瓷粉末稍微沉淀且不均匀的散布也是可能的。那些具有超过20到30微米尺寸的是不期望的,因为即使它们被完全吸收,也需要延长的时间周期来用于它们的完全吸收,在该周期期间有时会呈现组织反应。
更优选的生物陶瓷粉末的颗粒尺寸是从0.2到5微米,因为当使用这样的生物陶瓷粉末时,在通过使在本发明的生产方法中由混合高浓度的所述粉末来制备的混合溶液进入具有从1到3微米的纤维直径的细微纤维来形成纤维聚集的情况下,纤维几乎不被切断,且当其处于像本发明的情况下的高浓度时,在从纤维暴露的条件下,所述粉末包括在纤维中,以便在其用挥发性溶剂浸渍处理以后,纤维聚集变成复合多孔制品,其中,所述粉末从连续孔的表面或者内表面暴露。
在包括有机-无机复合多孔制品的植入物材料的情况下,其用于临床应用,诸如在再生医学工程中的骨架、用于DDS的载体或者骨填料、用于异型松质骨(骨同种异体移植物)的替代物等,从生物陶瓷的生物活性的角度看,期望将生物陶瓷粉末的百分比含量控制在从60到90%的重量百分比的范围内。当通过形成包含生物陶瓷粉末的纤维聚集,以及像本发明的生产方法的情况一样,在挥发性溶剂中浸渍通过在加热条件下压缩模制来制备的纤维聚集模制物来制备的复合多孔制品,大量生物陶瓷粉末可以包含在这样的可能形成纤维的范围内,以致生物陶瓷粉末的百分比含量可以增加到如上所述的从60到90%的重量百分比的水平(当使用具有平均颗粒尺寸为3微米和比重为2.7的粉末时体积%相应于近似从41到81%的高比例)。在生物陶瓷粉末的百分比含量超过90%的重量百分比的情况下,纤维聚集的形成变得困难,因为令人满意的纤维不能获得,这是由于当进行纤维形成时,它们被切割成小块,另一方面,当其小于60%的重量百分比时,生物陶瓷粉末是不够的,且几乎不能暴露到表面,以致在将植入物材料植入到活体中以后,从早期阶段就几乎不能呈现来源于生物陶瓷粉末的生物活性。
使得可以以这样的方式以从60到90%的重量百分比的高百分比含量来均匀地散布生物活性的生物陶瓷粉末的这样的复合多孔制品在现有技术中找不到,且是本发明的基本植入物材料中的一种。
生物陶瓷粉末的期望的体积%为从50到80%的体积百分比。在聚合物在复合多孔制品中的孔隙率为0%的情况下,该体积%是生物陶瓷粉末的体积相对于聚合物的体积的百分比,且即使当生物陶瓷粉末的重量是恒定的时,体积%也依赖于生物陶瓷粉末的比重和平均颗粒尺寸而变化。因此,考虑生物陶瓷粉末的比重和平均颗粒尺寸,期望以从50到85%的体积百分比包含其。更加期望的体积%为从50到80%的体积百分比。
由于通过烧结羟磷灰石和类似的陶瓷获得的多孔陶瓷是硬但是脆的,所以薄的材料通过外部力容易折断或者碎裂,且作为植入物不令人满意。与此相反,即使当生物陶瓷粉末具有从60到90%的重量百分比的高百分比含量时,通过将生物陶瓷粉末特别包括在非晶体生物可降解和生物可吸收的聚合物中来制备的复合多孔制品通过结合作用也具有与松质骨相当的压缩强度,其保持柔性,且不脆,示例性的为近似从1MPa到5MPa的压缩强度,以致其可以适用于松质骨的替代物,以及其它临床应用,如已经描述的。在这个方面,前述的压缩强度是根据JIS K 7181测试方法来使用由Shimadzu制造的自动绘图仪AGS-2000D测量的值(然而,每个试样的尺寸固定到10×10×15mm,且压缩速度为5mm/min)。
包括该有机-无机复合多孔制品的植入物材料具有50%或者更高的孔隙率(全部孔隙率),技术上其可以增加到大约90%,但是当考虑该复合多孔制品的物理强度和造骨细胞的渗透和稳定时,其近似从60到80%,且当考虑造骨细胞进入到复合多孔制品的中间部分的渗透效率时,期望连续孔占据总体孔的50到90%,尤其是70到90%。
该有机-无机复合多孔制品的连续孔的孔尺寸设置为从100到400微米。研究多孔陶瓷的孔尺寸以及造骨细胞的渗透和稳定已经进行了许多次,以及其根据从300到400微米的孔尺寸对于钙化是最有效的,且当偏离该范围时该效果变弱的结果来表现。这样,虽然该复合多孔制品的孔尺寸被设置为如前所述的近似从100到400微米的值,但是包括那些具有在从50到500微米范围内的孔尺寸,且分布中心可以从200到400微米。
在这个方面,当连续孔的孔尺寸大于400微米时,且孔隙率(全部孔隙率)大于90%时,复合多孔制品的强度减小,使得在植入活体期间很可能导致其破损。另一方面,当孔尺寸小于100微米且孔隙率小于50%时,复合多孔制品的强度被增强,但是直到其水解和完全吸收的周期被延长,因为造骨细胞的渗透变得困难。然而,在一些情况下,这样的具有小的孔尺寸的低孔隙率的复合多孔制品可以被用作这样的材料,即,在作为DDS的载体的聚合物的降解的同时,要求从该材料维持相对延长的时间周期的持续释放的特性。连续孔的更加优选的孔尺寸是从150到350微米,且更加优选的孔隙率(全部孔隙率)为从70到80%。在这个方面,当纤维聚集通过其在本发明的生产方法中的压缩模制来形成为纤维聚集模制物时,连续孔的孔尺寸和连续孔占据全部孔的比例可以通过调节压缩性来控制,或者当纤维聚集模制物漫渍在挥发性溶剂中同时保持其形状时,通过调节用于保持形状的外部压力来控制。
例如通过将其植入到活体骨的缺陷部分来使用前述的包括有机-无机复合多孔制品的植入物材料,在这样的情况下,通过利用生物可降解和生物可吸收的聚合物的热塑特性在大于70℃下加热来将其变形为匹配缺陷部分的形状,植入物材料可以被植入而在缺陷部分中没有间隙,以致可以简单和精确地执行植入操作。此外,由于生物可降解和生物可吸收的聚合物拥有的粗糙度和陶瓷粉末的硬度,可以通过在操作期间用外科手术刀来切割成可选择的形状而不松散该形状来使用它。
当包括该复合多孔制品的植入物材料植入到活体骨的缺陷部分中时,如上所述,体液从复合多孔制品的表面通过连续孔的内部快速渗透到复合多孔制品的内部,以致生物可降解和生物可吸收的聚合物的水解从复合多孔制品的两个表面和连续孔的内部几乎同时进行,且降解在整个多孔制品上均匀地进行。此外,由于暴露在复合多孔制品的表面上的生物陶瓷粉末的骨传导能力,骨组织快速传导和形成在复合多孔制品的表面层上,且生长为小柱骨,且复合多孔制品在短时间周期内结合到活体骨的缺陷部分,也由于在孔内暴露的生物陶瓷粉末的骨传导能力,该骨组织也渗透到复合多孔制品的内部,且实现造骨细胞的传导和生长,以致其直接结合到周围的骨。伴随着生物可降解和生物可吸收的聚合物的降解过程,该现象变得重要,且其逐渐由周围的骨取代。最终,聚合物完全降解和吸收,且完全可吸收的生物陶瓷粉末也被完全吸收,且骨的缺陷部分的再生通过由生长的骨组织完全替代来完成。
由于大量包含且在表面上暴露的生物陶瓷粉末的可湿性,在活体中包括复合多孔制品的该植入物材料的可湿性比只有可生物降解和可生物吸收的聚合物的可湿性极大地提高,而且当电晕放电、等离子处理、过氧化氢处理或者类似氧化处理应用到该复合多孔制品时,聚合物的可湿性也提高,以便可以进一步有效地执行要被增生的造骨细胞的渗透和生长。
此外,当各种类型的骨化因子、生长因子、药物等通过提前填充到复合多孔制品的孔中,或者提前溶解在生物可降解和生物可吸收的聚合物中来包括,它们响应于复合多孔制品的降解和吸收率而逐渐释放,以便骨的再生和疾病的治疗可以被加速和实现。主要的骨化因子包括BMP,主要的生长因子的例子包括IL-1、TNF-α、TNF-β、IFN-γ和类似的单核因子和淋巴因子,或者集落刺激因子,或者TGF-α、TGF-β、IGF-1、PDGF、FGF和类似的所谓增生分化因子。此外,在骨的生长中涉及的药物(维生素D、前列腺素、抗肿瘤(制癌)剂等),抗菌剂等可以选择性地选择为药物。
接下来,详细地示例性描述用于产生包括有机-无机复合多孔制品的植入物材料的本发明的方法。
根据本发明的生产方法,前述的生物可降解和生物可吸收的聚合物溶解在挥发性溶剂中,且通过在其中均匀地散布前述的生物陶瓷粉末来制备混合溶液。作为挥发性溶剂,可以使用二氯甲烷、二氯乙烷、二氯甲烷、氯仿或者类似的低沸点溶剂,其易于在稍微高于常温的温度下蒸发。还可以使用的是通过与具有比这些溶剂高的沸点的一种或者两种或者多种非溶剂混合这些溶剂来制备的挥发混合的溶剂,这些非溶剂诸如为甲醇、乙醇、1-丙醇、2-丙醇、2-丁醇、三丁醇、三戊醇和类似的具有在范围从60到110℃内的沸点的酒精。
接下来,从上面的混合溶液制备非织造织物型纤维聚集。作为其装置,最好使用用于通过喷射溶解的混合溶液来制造纤维的装置。也就是,当前述溶解的混合溶液填入喷射器,且混合的溶液通过氮气或者类似的惰性高压喷射气体从喷射器的喷嘴喷射到物质时,形成纤维,同时挥发性溶剂蒸发,且包含生物陶瓷粉末的生物可降解和生物可吸收的聚合物的纤维通过在它们的接触点相互缠绕和粘附来聚集、固化和积累,从而实现可选择形状的厚的非织造织物型纤维聚集的形成。虽然纤维间的间隙的形状与单元形孔的不同,但是纤维聚集形成在粘附和固化的纤维之间近似几百微米的连续的空间,且生物陶瓷粉末包括在纤维中(部分暴露在表面上)和均匀散布在所有纤维聚集模制物上。
为了使这样的以60%的重量百分比或者更大(有时50%体积百分比或者更大)的量包含生物陶瓷粉末的树脂制成这样一种材料,其中,这通过在均匀散布的状态下固化来固定,而不引起沉淀和分离,且其还包含作为其内部的孔的连续的间隙,使用一种装置来用于蒸发溶剂,同时通过喷射系统来形成细纤维,且在生物陶瓷粉末分离以前在短时间周期内实现它们的固化是合理的,就像该生产方法的情况,且本发明的生产方法的新颖性也位于其中。
在这个方面,为了获得具有从5到50mm的特别厚的厚度的复合多孔制品,其有时作为临床使用的植入物材料是必须的,通过由喷射形成该纤维聚集可以获得预定的厚度,然后,在其通过蒸发溶剂干燥以后,再次重复通过在其上喷射来使其变厚的步骤。
当上述物质被注入时,使用包括聚乙烯或者类似的烯属树脂、氟树脂、硅树脂或者类似具有好的释放能力的树脂的网或者板。尤其是,当使用网或者类似的具有自由通风的要被注入的物质时,混合的溶液通过其喷射且撞击网,然后挥发性溶剂通过网眼蒸发来形成纤维,以致其具有的优点在于,纤维聚集可以在不产生皮肤层(只有树脂的粘附层)的情况下通过在网侧的表面上的纤维熔合来形成,且在随后的步骤中的溶剂的渗透处理可以容易地执行。具有从50到300的网眼的网是所需的,因为具有大于50网眼的网导致纤维通过网眼转到后面,因此引起从网释放形成的纤维聚集的困难,具有小于300网眼的网不能进行挥发性溶剂的平稳蒸发,以致网侧纤维易于熔合和形成皮肤层。在这个方面,要被注入的物质不限于平的网或者板,且凸起弯曲和/或凹进弯曲的三维网或者板也可以使用。这样的要被注入的三维物质的使用具有的优点在于,可以形成具有等于三维形状的厚度的纤维聚集。
通过如上所述的由喷射混合溶液来制造纤维形成的纤维聚集具有几百微米的大纤维间间隙,且纤维间间隙的比例(孔隙率)近似从60到90%。此外,由于无机颗粒包含在纤维中,且不沉积,所以它们不均匀地散布在纤维聚集的整个部分上。
该纤维聚集的纤维长度为近似从3到100mm是所需的,且该纤维直径为近似从0.5到50微米是所需的。具有这样程度的纤维长度和纤维直径的纤维聚集便于获得复合多孔制品,通过用于溶剂的渗透处理的后续步骤,通过纤维的容易熔合,纤维基本从复合多孔制品消失。
纤维长度主要依赖于生物可降解和生物可吸收的聚合物的分子量、混合溶液的聚合物浓度、生物陶瓷粉末的百分比含量和颗粒尺寸等,具有这样的趋势,即,当分子量变大,聚合物浓度变高,生物陶瓷粉末的百分比含量变小且生物陶瓷粉末的颗粒尺寸变小时,纤维长度变长。另一方面,纤维直径主要依赖于混合溶液的聚合物浓度、生物陶瓷粉末的百分比含量、喷射器的喷嘴的尺寸等,且有这样的趋势,即,当聚合物浓度变高,生物陶瓷粉末的百分比含量变大,以及喷嘴的尺寸变大时,纤维直径变厚。此外,通过注入空气的压力,纤维直径也改变。因此,为了获得前述的纤维长度和纤维直径,必须控制聚合物的分子量、聚合物浓度、生物陶瓷粉末的百分比含量和颗粒尺寸、喷嘴的尺寸、气压等。
接下来,执行随后的步骤来用于通过在加热条件下压缩模制前述纤维聚集来形成多孔纤维聚集模制物。首先,通过在加热和压缩的条件下固化纤维聚集来制备具有连续空隙的初步模制物,该初步模制物在比前者高的压力下经历压缩模制,从而获得具有一定强度和连续的空隙和孔尺寸的受控的比例的多孔纤维聚集模制物。在这样的情况下,在压缩模制时的加热为这样的程度,即,纤维聚集稍微软化,且压缩控制在这样的程度,即,最终获得的复合多孔制品的孔隙率变为从50到90%,且连续孔的孔尺寸变为大致从100到400微米。
通过进一步进行到下一步,在前面步骤中获得的纤维聚集模制物浸渍在前述的挥发性溶剂中,以实现所述溶剂充分渗透到模制物的内部。此后,该溶剂被去除。当纤维聚集模制物浸渍在挥发性的溶剂中时,该纤维聚集模制物填入带有具有大量孔的面的模子中,且被浸渍,同时在这样的条件下维持该形状,即,合适的压力从外部加到纤维聚集模制物。或者,通过将其倒到纤维聚集模制物上,该溶剂可以渗透。此外,为了获得所需的形状,通过使纤维聚集模制物内部的溶剂被真空吸取的方法来快速去除溶剂是所需的。
当纤维聚集模制物浸渍在挥发性溶剂中以允许溶剂渗透到模制物中时,纤维相互熔合,同时纤维通过从表面溶解到溶剂中来收缩,且纤维大致消失来形成起泡的膜。此后,起泡壁在这样的状态下形成,即,保留具有近似从100到400微米的间隙孔尺寸的连续圆形孔,其形状变化为连续孔的主体。大量包含在纤维中的一部分生物陶瓷粉末包括在孔膜的内部(起泡壁的内部),伴随着纤维熔合和通过膜变形的形态学变化,而不引起沉淀,且其一部分从孔膜暴露,且也通过以这样的程度植入来暴露在多孔制品表面上,即,所述粉末不容易失落。然而,有这样的情况,其中,根据条件,皮肤层形成在表面上,以便生物陶瓷粉末不暴露在多孔制品表面上,且在这样的情况下,可以执行处理来用于通过由打磨来去除皮肤层来暴露存在于表面层中的无机粉末。
以这样的方式,可以获得包括具有连续孔的有机-无机复合多孔制品的植入物材料,其中,大量生物陶瓷粉末均匀地散布,且一部分生物陶瓷粉末暴露到孔的内侧和多孔制品表面。根据该复合多孔制品,连续孔的平均孔尺寸可以控制在近似从100到400微米,其对于造骨细胞的渗透和稳定是方便的,且当其浸渍在挥发性溶剂中时,通过控制外部压力来保持纤维聚集模制物的形状,孔隙率也可以控制在近似从50到90%。在这个方面,当在从50到60℃下加热来进行纤维聚集模制物在挥发性溶剂中浸渍处理时,通过仅仅允许纤维聚集模制持续短时间周期,纤维充分地相互熔合,以致可以有效地获得复合多孔制品。
根据本发明的生产方法,可以在能够形成纤维的范围内以从60到90%的重量百分比的量(在具有3微米的平均颗粒尺寸和2.7的比重的未烘烤的羟磷灰石的情况下,相应于41到81%的重量百分比)在复合多孔制品中均匀地包含生物陶瓷粉末,即使当包含大量时,溶剂被蒸发,且在生物陶瓷粉末沉淀和分离以前,纤维粘附,以便与通过前述溶液沉淀方法获得的多孔制品相比,可以最终获得高百分比含量的复合多孔制品,其中,生物陶瓷粉末均匀地散布。然而,有一个上限,因为当百分比含量太高时,作为粘合剂的生物可降解和生物可吸收的聚合物的量变小,且复合多孔制品变脆,因此保持其形状变得困难。
例子接下来,描述了包括有机-无机复合多孔制品的本发明的植入物材料的还有的示例性的实施例。
通过均匀地均质化通过在二氯甲烷中(浓度PDLLA4克/二氯甲烷100ml)溶解具有粘度平均分子量为200000的聚D,L乳酸(PDLLA)(D乳酸和L乳酸的摩尔比例为50/50)制备的聚合物溶液和通过在乙醇中悬浮具有3微米的平均颗粒尺寸的未烘烤的羟磷灰石粉末(u-HA粉末)制备的悬浮液,制备了一种混合溶液,其中,230份的u-HA粉末重量百分比与100份的PDLLA重量百分比混合。
使用HP-E Air Brush(由Anest Iwata制造)作为喷射器,上述的悬浮液填入该喷射器,且通过1.6kg/cm2压力的氮气喷射在大约120cm距离的聚乙烯网(150网眼)上,以形成纤维聚集,且纤维聚集从该网释放。该纤维聚集的纤维直径大约为1.0微米,其纤维长度近似从10到20mm,且其表观比重为0.2。
该纤维聚集被切割成合适的尺寸,装进30mm直径和30mm深度的圆柱形阴模中,且与阳模一起压缩,使得纤维聚集的表观比重变成0.5,从而获得具有30mm直径和5mm厚度的盘形纤维聚集。
接下来,该纤维聚集模制物浸渍在包括乙醇混合的二氯甲烷的溶剂中,以实现所述溶剂渗透到模制物的内部,且在允许其在60℃下停留10分钟以后,在模制物的内部部分中的溶剂通过真空吸取被去除,以获得具有30mm直径、4mm厚度和重量百分比为70%的u-HA粉末百分比含量的有机-无机复合多孔制品。
当该复合多孔制品的部分截面在电子显微镜下观察时,纤维熔合和消散,具有从100到400微米的大孔尺寸的连续孔形成,u-HA粉末均匀地散布,且u-HA粉末的一部分暴露到孔的内表面和多孔制品表面。该复合多孔制品的表观比重为0.5,连续孔占据全部孔的比例(连续孔隙率)为75%,且压缩强度为1.1MPa。
具有直径为30mm和厚度为5mm的盘形纤维聚集模制物以在例子1中相同的方式制备为初步模制物,且其被在吉尔烘箱(geer oven)中加热到80℃,放入装备有直径减小部分的腔中,其中,其直径逐渐减小,然后压配合到具有10.6mm的底部部分直径的圆筒中。圆柱形杆形纤维聚集模制物以显示的大约2.5MPa的压缩强度的方式在加热条件下压缩模制。
接下来,该圆柱形杆形纤维聚集模制物被放入在其外围上具有孔的相同直径的圆筒中,且在包括15%重量百分比的甲醇混合的二氯甲烷的溶剂(60℃)中浸渍10分钟,同时通过从其上侧和下侧施加压力到这样的程度来按压它,即,圆柱形杆形纤维聚集模制物的高度不变化,然后所述溶剂被去除,以获得复合多孔制品。
当复合多孔制品的部分截面和其表面在打磨以后在电子显微镜下观察时,其具有纤维消失的多孔形状,其孔尺寸包括近似从150到300微米的混合孔,且u-HA粉末从多孔制品表面和孔的内表面暴露。该复合多孔制品的表观比重大约为0.55,连续孔隙率为70%,以及压缩强度增加到大约3.5MPa。从PDLLA的粘度平均分子量和其占有量的比例,以及具有3微米的平均颗粒尺寸的u-HA粉末的体内生物可降解和生物可吸收特性来判断,虽然其依赖于其植入区域和尺寸,但是考虑该复合多孔制品在从大约6个月到12个月的周期以后完全被吸收。
通过合成具有100000粘度平均分子量的PDLLA(D乳酸和L乳酸的摩尔比例为30/70),且通过例子1的相同方法,使其与80%的重量百分比的具有大约3微米的平均颗粒尺寸的β磷酸三钙粉末(β-TCP粉末)均匀混合来制备混合溶液。已经确认该β-TCP粉末在活体中是生物活性和可吸收的,虽然该机构不同于u-HA粉末,但是已知这显示了骨传导能力,以在活体中形成HA。
使用该混合溶液,以与例子2中相同的方式通过喷射方法制备的纤维聚集通过在加热条件下执行压缩模制被制成为纤维聚集模制物,且这经历溶剂浸渍处理,以获得具有大约0.6表观比重、75%的连续孔隙率和4.2MPa的压缩强度的复合多孔制品。由于该复合多孔制品的β-TCP粉末的体积比例为大约65%的体积百分比,β-TCP粉末的体积比例比例子1和2的包含70%重量百分比(大约55%的体积百分比)的u-HA粉末的复合多孔制品的情况大很多,以便通过暴露β-TCP粉末到多孔制品的表面和孔内表面来较大地展现生物活性。
可以确定,由于该复合多孔制品由于非织造织物型纤维聚集的纤维的消失而变化为一种形状,其中,β-TCP粉末植入到大的单元壁,由分解引起的粉末散布到外围几乎不出现,即使当浸渍在活体中的体液中时,且其在5到8个月内完全降解和吸收,同时显示了好的生物活性。因此,该复合多孔制品变成用于硬的组织(骨和软骨)的好的骨架。
D,L乳酸(D/L摩尔比例为1)与乙醇酸(GA)混合的摩尔比例为8∶2,且具有粘度平均分子量为130000的共聚物P(DLLA-GA)通过已知的方法合成。通过制备一种混合溶液,其中,该聚合物均匀地与60%重量百分比的磷酸八钙粉末(OCP粉末)混合,以如在图2中相同的方式通过喷射方法制备的纤维聚集通过在加热条件下执行压缩模制来制成为纤维聚集模制物,且其经历溶剂浸渍处理,以最终获得具有0.5的表观比重的复合多孔制品。由于OCP粉末的活性为高,且共聚物的降解和吸收由于GA而快速,在3到4个月以后,该复合多孔制品的大部分被骨吸收和替代,显示了好的骨传导(变化为新的骨的倾向性)。
D,L交酯与对二恶烷酮(p-DOX)混合的摩尔比例为8∶2,且具有粘度平均分子量为大约100000的共聚物通过已知的方法来执行它们的共聚合来合成。虽然不能找到用于p-DOX的聚合物的挥发性通用的好的溶剂,但是其在氯仿、二氯甲烷等中可以前述比例溶解,以致能够通过例子1的相同方法获得目标复合多孔制品。此外,由于前述共聚物显示了具有比例子4的D,L乳酸/乙醇酸共聚物P(DLLA-GA)高的塑性的像橡胶一样的特性,所以当所述粉末的颗粒尺寸为3微米时,该生物陶瓷粉末的体积比例可以增加到70%的体积百分比(85%的重量百分比),以致该复合多孔制品可以避免在活体中由聚合物降解到极端的产品引起的反应,且生物活性的生物陶瓷粉末的活性显著有效地展现。尤其是,由于p-DOX的特性使其亲水特性比PDLLA高,可以认为该复合多孔制品作为用于通过体外(体外盘)增生细胞的软骨再生的骨架或者类似物是有效的。
如前已经描述的,由于在均匀散布的条件下,包括有机-无机复合多孔制品的本发明的植入物材料在生物可降解和生物可吸收的聚合物中包含大量的生物陶瓷粉末,体液等快速渗透通过形成在其内部的大孔尺寸的连续孔,以致与活体骨的结合和活体骨组织的再生可以通过暴露到多孔制品表面和连续孔的内表面的生物陶瓷粉末的骨传导来在早期阶段进行,且其具有临床应用所必需的实际强度,且可以通过本发明的生产方法来容易地和精确地产生。因此,如前所述,该植入物材料实际上用作用于活体骨组织的重建的骨架、假体材料、骨填料、其它植入物和活体骨组织之间的内含物、松质骨的替代物、持续药物释放的载体等。
接下来,参考附图详细描述应用了前述的本发明的有机-无机复合多孔制品的植入物材料的典型实施例。这样的植入物材料大致分为前述多孔制品与其它紧密的生物可降解和生物可吸收部件结合的一种类型,以及前述多孔制品与生物不可吸收的部件结合的另一种类型,在图1到15中显示的各种实施例可以例证为前者的植入物材料的主要情况,且在图16和图17中显示的实施例作为后者的植入物材料的主要情况。
在图1中显示的植入物材料10是用于固定中间切口闭合胸骨的植入物材料,作为用于固定骨的生物活性和生物可降解和生物可吸收的植入物材料的典型例子,当由于骨质疏松产生骨的减少或者骨组织的萎缩引起的横隔片变粗糙和薄的区域的骨被切开或者切割,或者当骨的缺陷部分由外科手术来闭合且连接时,其被植入。
该植入物材料10具有有机-无机复合多孔制品1和作为生物可降解和生物可吸收部件的销2,该销2通过多孔制品1,且销的两端从所述多孔制品1突出。此外,为了防止当植入胸骨时旋转,销2形成为棱柱形,且多孔制品1形成为矩形棱柱形。此外,为了促进插入形成在胸骨的骨髓(松质骨)中的孔中,销2的两端形成为锥形,以及为了防止销2从刚描述过的孔滑动,具有锯齿形截面的凹凸结构2a形成在该销2的两端的表面上。在这个方面,销2可以形成为柱形,且多孔制品1可以形成为圆柱形,且销的两端的凹凸结构2a可以省略。
多孔制品1与前述有机-无机复合多孔制品相同,即,具有连续孔的生物可降解和生物可吸收的多孔制品,其中,生物活性的生物陶瓷粉末大致均匀地散布在生物可降解和生物可吸收的聚合物中,其中,生物陶瓷粉末的一部分暴露到这些孔的内表面或者这些孔的内表面和多孔制品表面。关于该多孔制品1,孔隙率、连续孔的孔尺寸、连续孔占据全部孔的比例、生物可降解和生物可吸收的聚合物、生物陶瓷粉末、所述粉末的百分比含量等如前所述。
根据前述的生产方法,该多孔制品1这样来制备,即,通过在加热条件下通过将非织造织物型纤维聚集压缩模制为矩形棱柱形来形成多孔纤维聚集模制物,以及在通过将模制物浸渍在挥发性溶剂中获得的矩形棱柱形有机-无机复合多孔制品上打孔用于销2插入的方形孔(具有稍微小于销2的尺寸的方形孔)。
该多孔制品1的尺寸可以响应于每种临床情况来选择,尽管该尺寸没有特别限制,但是必须注意,其不要变得太大(很多)。在用于胸骨固定的植入物材料的情况下,需要将多孔制品1的长度设置为近似从10到15mm,其宽度为近似从6到20mm,其高度为近似从6到15mm。不必说,其在该范围内的选择依赖于每个病人的胸骨的结构。当多孔制品1的每个尺寸小于前述范围的下限时,要在多孔制品1上传导和形成的骨组织变少。在这个方面,不必说,该多孔制品1的优选尺寸也响应于每个移植骨的变化。
该多孔制品1的功能效果可以通过以合适的量包括前述骨化因子、生长因子、药物等来增加。当包括骨化因子或者生长因子时,在多孔制品1中极大地加速了骨化,以致多孔制品1被骨组织在早期阶段替代,且切开的和闭合的一半胸骨部分两者都直接结合。此外,当其充满药物时,药物直接吸收到两个半部胸骨部分,以便施加足够的药物效果。此外,需要通过将前述氧化处理应用到该多孔制品1的表面来改进可湿性来更加有效地实现造骨细胞的渗透和增生。
另一方面,前述销2包括晶体聚乳酸、聚乙醇酸和类似的生物可降解和生物可吸收的聚合物,其安全性已经被确认,尤其是,合适地使用包括具有150000或者更高的,优选的为近似从200000到600000的粘度平均分子量的生物可降解和生物可吸收的聚合物的高强度的销2。还可以被合适地使用的是包括其中近似从10到60%的重量百分比的前述生物活性的生物陶瓷粉末与这些生物可降解和生物可吸收的聚合物混合的复合主体的销,以及其强度通过压缩模制、锻造模制、伸展或者类似方法来使前述聚合物的分子和晶体定向来进一步改进的销。尤其是,合适地使用那些具有通过锻造模制来在三维方向上定向聚合物分子和晶体来获得的压紧质量的销。
在用于胸骨固定的植入物材料的情况下,需要销2的长度近似从20到40mm,因为小于20mm对于作为用于胸骨固定的销太短,另一方面,当长于40mm时,其引起不方便在于,该销几乎不能放入胸骨的骨髓(松质骨)中。此外,需要销2的宽度近似从2到4mm,以及需要其高度近似从2到3mm。当销2的宽度比2mm窄且其高度比2mm小时,其变得这样细,以致销2会折断,另一方面,当销2的宽度比4mm宽且其高度比3mm大时,其不能使用,因为其与多孔制品1的组合超过了胸骨的厚度。在这个方面,在用于胸骨固定的植入物材料的情况下,前述销的尺寸是需要的尺寸的极限,不必说,销的需要的尺寸响应于植入骨而变化。
接下来,参考图2来描述用于胸骨固定的前述植入物材料10的使用例子。
首先,如图2(A)所示,两根钢丝3和3使用镐来插入到中间切割的右边和左边半部胸骨部分B和B,结合带4通过肋间空间围绕半部胸骨部分B和B缠绕。虽然在图2(A)中只缠绕了一条这样的结合带4,但是两条或者多条带(通常4条)通过垂直保持距离来缠绕。然后,通过用Kocher钳或者类似物从两个半部胸骨部分B和B刮掉不必要的松质骨来形成两个或者多个孔5(具有稍微小于植入物材料10的孔),用于胸骨固定的植入物材料10的一半的一侧可以插入孔中。
接下来,如图2(B)所示,植入物材料10的一个侧半部通过稳定地推动它来插入到一侧半部胸骨部分B的每个孔5,以致其不滑出。然后,如图2(C)所示,通过拉钢丝3和3来闭合两个半部部分B和B,从而将每个植入物材料10的相对侧的半部推到另一个半部胸骨部分B的每个孔5中,丝3和3的末端部分通过打几个结来牢固地绑扎,且同时,每个结合带4也通过打几个结来牢固地绑扎。在这个方面,虽然在本实施例中使用钢丝3和结合带4来用于固定半部胸骨部分B和B,但是也可以使用由诸如前述聚乳酸之类的生物可降解和生物可吸收的聚合物形成的,或者由该聚合物与生物陶瓷粉末的混合物制成的带。
当用于胸骨固定的植入物材料10如上所述的植入到切割的和闭合的胸骨的骨髓中时,在植入以后的初始阶段,植入物材料10的销2作为“楔”进入两个半部胸骨部分B和B的骨髓(松质骨)中,以通过固定两个半部胸骨部分B和B来施加加固作用,以便提高两个半部胸骨部分的固定稳定性。此外,通过暴露在该植入物材料10的多孔制品1的表面上的生物陶瓷粉末的骨传导能力来实现,骨组织在多孔制品1的表面上传导和形成,且多孔制品1和两个半部胸骨部分B和B在短周期内结合,以便通过该结合也提高了半部胸骨部分B和B的固定稳定性和强度。
根据该植入物材料10,销2和植入物1的水解通过它们与在骨髓中的体液的接触来进行,但是多孔制品1水解的更加快,因为体液通过连续孔渗透到其内部部分中,而且,由于骨组织通过暴露到孔的内表面的生物陶瓷粉末的骨传导能力来在内部部分中传导和形成,所以该多孔制品1被骨组织代替,且在相对短的时间周期内消失。尤其是,当多孔制品1充满前述生长因子时,骨组织的生长快速,且多孔制品1在短周期内被骨组织代替。因此,由于闭合的胸骨(半部胸骨部分B和B)通过由多孔制品1替代的骨组织来直接结合,所以即使在骨质疏松的胸骨的松质骨变得特别空和多孔的情况下,胸骨的固定也通过新形成的骨来稳定,从而形成晶片状态且变脆。
另一方面,植入物材料10的销2的水解通过其与体液的接触来逐渐进行,且在当多孔制品1被骨组织替代时较大地进行,且多孔制品不久以后变成微小的块,且最终由活体完全吸收而消失。在这样的情况下,当销2包括前述的生物可降解和生物可吸收的聚合物以及生物陶瓷粉末的复合体时,销2也显示了骨传导能力,以致骨这样来传导和形成,即,通过重复其水解和由生物陶瓷粉末来替代造骨细胞和破骨细胞,伴随着降解的微小块的吞噬细胞反应,销2由骨组织替代,销2刺入的孔最终由新生的骨填充且消失。
包括有机-无机复合多孔制品1和销2的用于骨固定的本发明的植入物材料10不但通过将其植入由如上所述的胸骨中间切口闭合操作来切割和闭合的胸骨来使用,而且通过当由于骨质疏松产生骨的减少或者骨组织的萎缩引起的横隔片变粗糙和薄的区域的骨被切开或者切割,或者当骨的缺陷部分由外科手术来闭合且连接时将其植入来使用,且可以通过由骨组织的最终替代来牢固地连接和固定骨。
如图6所示,在图3中显示的植入物材料11用作椎间垫片或者类似的椎体固定材料,主要通过插入颈椎C3和C4之间或者腰椎L4和L5之间。该植入物材料11包括有机-无机复合多孔制品1和基体6,其为装备有朝着外部开口的腔6a的生物可降解和生物可吸收部件,且多孔制品1设置在基体6的腔6a中,且从所述腔6a的入口6b部分地暴露,且多孔制品1也通过以板形重叠来设置在基体6的上部和下侧上。在基体6的上部和下侧上的多孔制品1用作自体骨的替代物,如下将要描述的,其设置为通过消除基体6和颈椎C3和C4或者腰椎L4和L5之间的间隙来促进早期阶段的结合(固定)。在这样的情况下,可以省略在基体6的上部和下侧上的多孔制品1。
该植入物材料11的基体6是具有强度的紧密基体,其包括包含生物陶瓷粉末的生物可降解和生物可吸收的聚合物,如图4所示,形成为矩形棱柱形。朝外侧开口的两个长度方向穿透腔6a和两个横向穿透腔6a以相互交叉的方式形成在该基体6上,这些腔6a的入口6b在基体6的所有四个侧面上成对的开口。这些腔6a的入口6b用作体液等的渗透入口,设置在每个腔6a中的多孔制品1从每个入口6b部分地暴露。在这个方面,也可以在基体6的前表面和后表面上形成腔6a的入口6b,在这样的情况下,需要将后表面入口形成为螺孔形,以便插入夹具的顶部可以拧入其中。
为了促进该植入物材料11插入颈椎C3和C4之间或者腰椎L4和L5之间的间隙中,基体6的前表面6c的四个边缘被斜切。此外,为了将植入物11制成独立的类型(不要求辅助固定材料),在其插入到颈椎C3和C4之间或者腰椎L4和L5之间的间隙中以后,其不引起位移和移动,用于固定的几个(在图中每个6个)突出物6f设置在基体6的上表面和下表面6d和6e,且每个突出物6f的顶部部分从基体6的上部和下部表面的多孔制品1伸出。如图4所示,该突出物6f通过在基体6的上部和下部表面上形成凹进孔6g来制备,且将具有削尖的圆锥尖端,且包括基体6的相同的相同的生物可降解和生物可吸收的聚合物的销6h(6f)放入凹进孔6g中。在这个方面,具有锋利的尖端的刺穿件或者类似物可以用来代替销6h,且突出物6f和基体6可以一体形成。
如图5所示,连通孔6j形成在基体6的两个长度方向的腔6a和6a之间的壁部分6i上,以致要被传导和形成在设置在腔中的多孔制品1和1上的骨组织可以通过连通孔6j连接,如下所述。该壁部分6i起增加基体6的压缩强度的作用。
考虑基体6的尺寸,其前后尺寸近似从18到30mm,且其上下高度尺寸和左右宽度尺寸近似从6到24mm,当那些具有不同尺寸的基体分类在这些范围内时,可以选择和插入适合颈椎C3和C4或者腰椎L4和L5的尺寸以及椎间尺寸的基体。
在植入物材料11的基体6中,长度方向和横向的腔6a形成为具有跑道截面的通孔形状,但是它们可以形成为具有方形、圆形、卵形等各种截面的通孔形状。此外,可以将基体6的整个内部部分制成空室型腔,以及通过在基体6的所有四个表面上形成所述腔的入口可以实现腔与外部的连通。
在这个方面,可以省略在横向方向上通过基体6的腔6a,因为当存在在长度方向上通过它的腔6a时,从上部和下部颈椎C3和C4或者腰椎L4和L5传导和形成骨组织,且熔合和固定到设置在其内部中的多孔制品1。此外,在基体6的左右两侧上的入口1b也可以省略。
前述基体6包括包含生物活性的生物陶瓷粉末的生物可降解和生物可吸收的聚合物,使用前述的植入物材料10的销2的这些聚合物,即,在活体中的安全性已经被确认的晶体聚L乳酸、聚乙醇酸等,需要用作材料生物可降解和生物可吸收的聚合物,尤其是,使用具有150000或者更大的粘度平均分子量,优选的为近似从200000到600000的粘度平均分子量的聚L乳酸制备的高强度基体6是合适的。这样的基体6通过这样的方法来产生,其中,材料生物可降解和生物可吸收的聚合物经过注模或者材料生物可降解和生物可吸收的聚合物的模制块经过切割工作。在后者的方法中,通过使模制块经过压缩模制、锻造模制或者类似的方法,以形成其中聚合物分子和晶体定向的块,然后使其经过切割工作来获得的基体6是明显合适的,因为其具有压紧质量,且其强度由于三维定向的聚合物分子和晶体而进一步提高。除此以外,通过伸展模制制备的块作为模制块也可以合适地使用,且也需要通过以这样的方式来执行切割工作来增加其强度,即,伸展方向(定向方向)变成长度方向。
由于生物陶瓷粉末要被包含在该基体6中,所以可以使用所有前述生物活性完全可吸收的生物陶瓷粉末,类似于植入物材料10的前述销2的情况,需要控制其百分比含量在从10到60%的重量百分比。当其小于10%的重量百分比时,通过生物陶瓷粉末的骨传导的形成变得不充分,当其超过60%的重量百分比时,基体6变脆。
另一方面,要被填充到基体6的腔6a中的多孔制品1与前述的有机-无机复合多孔制品相同,即,具有连续孔的生物可降解和生物可吸收的多孔制品,其中,生物活性的生物陶瓷粉末大致均匀地散布在生物可降解和生物可吸收的聚合物中,其中,一部分生物陶瓷粉末暴露的孔的内表面,或者孔的内表面和多孔制品表面。关于该多孔制品1,孔隙率、连续孔的孔尺寸、连续孔占据全部孔的比例、生物可降解和生物可吸收的聚合物、生物陶瓷粉末、所述粉末的百分比含量等如前所述。
此外,通过形成一个孔来用于通过基体6的突出物6f,以及通过热焊接或者类似的方法来固定,基体6的上部和下部多孔制品1重叠在基体6的上部和下部表面6d和6e上。基体6的上部和下部多孔制品1的厚度近似从0.5到3mm是需要的,因为当其比0.5mm薄时,在颈椎C3和C4或者腰椎L4和L5的表面上吸收不规则性由于压缩变形而变得困难,以致恐怕会降低与颈椎C3和C4或者腰椎L4和L5紧密接触的特性,另一方面,当比3mm厚时,用于降解和吸收以及用骨组织替代所要求的时间周期变长。
需要以合适的量在要被填充到基体6的腔6a中的多孔制品1,以及要通过重叠在基体6的上部和下侧上来结合的多孔制品1中包括前述骨化因子、生长因子、药物等,且通过施加前述的氧化处理到多孔制品1的表面可以改进可湿性。
如图6所示,前述植入物材料11使用在颈椎C3和C4之间或者腰椎L4和L5之间的插入夹具插入到一对左右中,从而实现颈椎C3和C4或者腰椎L4和L5的距离和体位的校正。当植入物材料11以这样的方式插入时,基体6的上侧和下侧多孔制品1和1通过颈椎C3和C4或者腰椎L4和L5的夹入压力来压缩,且没有间隙地紧密接触到颈椎C3和C4或者腰椎L4和L5,基体6的上部和下侧上的突出物6f同时切入颈椎C3和C4或者腰椎L4和L5的松质骨中,以致植入物材料11被固定而不引起位移和移动,且由于基体6的矩形棱柱形状而稳定地设置。
当植入物材料11通过以这样的方式将其插入颈椎C3和C4或者腰椎L4和L5之间来安装时,具有足够强度且在活体中起与皮质骨相同作用的基体6的水解通过与体液的接触来从其表面逐渐进行。此外,起与松质骨相同作用的多孔制品1的水解通过体液经由连续孔渗透到其内部一半,以及造骨细胞渗透到多孔制品1的内部一半来从其暴露的部分快速进行,以通过生物陶瓷粉末的骨传导能力来传导和形成骨组织,以便多孔制品1由骨组织在相对短的时间周期内替代。因此,上部和下部颈椎C3和C4或者腰椎L4和L5通过该替代的骨组织熔合和固定。另一方面,基体6从早期阶段显示了类似于传统的碳构架的情况的高压缩强度,且即使在多孔制品1的骨替代以后也保持强度,以便其在通过与颈椎C3和C4或者腰椎L4和L5的完全熔合来动态固定植入物材料11中起重要作用,且其由骨组织的完全替代在几年(大约5年)以后完成。此时,获得了通过活体骨的完全固体熔合。
由于基体6的上侧和下侧多孔制品1被压缩,从而没有间隙地紧密地接触到颈椎C3和C4或者腰椎L4和L5,且类似于前述有机-无机复合多孔制品的情况,多孔制品1包含从60到90%重量百分比的具有骨传导能力的生物陶瓷粉末,具有从50到90%的孔隙率,其中,连续孔占据全部孔的50到90%,以及具有从大约100到大约400微米的连续孔的孔尺寸,造骨细胞可以容易地渗透其中,以便精确地执行骨组织的传导形成,以及当骨组织在基体6的多孔制品1的上部和下侧两者的表面层上传导和形成时,植入物材料11通过在早期阶段直接结合到上部和下部颈椎C3和C4或者腰椎L4和L5来固定。
由于基体6和多孔制品1两者降解,且被骨组织吸收和替代,而不在活体中作为外来物保留,所以该植入物材料11可以消除由于其在活体中存在延长的时间周期而呈现有害效果的危险,就如传统的用作椎体固定材料的钛或者碳构架中可能发生的那样,以及可以消除由于动态特性与活体不相容而引起其沉淀到椎体中的问题。而且,由于多孔制品1可以通过执行类似于活体骨的组织作用而由骨组织替代,所以不必抽取髂骨或者类似物作为移植自体骨,用于填充像传统情况一样的构架,且也可以消除可以用于移植的自体骨的量的不足的问题,和在抽取以后在外科手术时复杂的处理的问题。
虽然基体6的上部和下部表面6d和6e两个在该植入物材料11中都是水平表面,但是基体6可以通过向下倾斜上部表面6d的前侧和向上倾斜下部表面6e的前侧来变化为锥形的形状,适于将腰椎校正到脊柱前弯位置的植入物材料可以通过这样的变化来获得。
此外,基体6的形状不限于前述矩形棱柱形,且其可以被制成适于颈椎、腰椎、脊柱和类似的要被使用的区域的各种形状。在图7中显示的植入物材料12是以这样的方式改变基体的形状的结果,其中,基体6形成为其内部具有腔6a(截面为圆形的腔)的圆柱形,且大的圆形腔的入口6b形成在两个端面的每一个上,小的椭圆腔的入口6b以交错的方式大量地形成在其外围侧上。此外,前述有机-无机复合多孔制品1填充在该基体6的腔6a中,多孔制品1从形成在基体6的两个端面和外围侧上的每个入口6b部分地暴露。
这样的植入物材料12以在图中显示的垂直方向上插入颈椎、腰椎和类似的椎体,类似于前述植入物材料11的情况,基体6和多孔制品1最终由骨组织替代,以熔合和固定上部和下部椎体。
在这个方面,必要时,该植入物材料12可以通过在其外围侧上形成外螺纹,且将其拧入上部和下部椎体之间来侧向设置、如图8所示的植入物材料13也是改变基体的形状的结果,其中,基体6形成为具有小的弯曲部分6n的低高度环形,前述的多孔制品1填充在其内部腔6a中,且多孔制品1的上部和下侧两者都从所述腔的上部和下部入口6b暴露。虽然腔的入口没有形成在该环形基体6的外周面上,但是必要时可以形成腔的两个或者多个入口。此外,用于固定使用的前述突出物可以形成在该环形基体6的上部和下部表面上。
这样的植入物材料13插入颈椎、腰椎和类似的椎体之间,使基体6的小的弯曲部分6n定位在后面,类似于前述植入物材料11和12的情况,基体6和多孔制品1最终由骨组织替代,以熔合和固定上部和下部椎体。
每个前述植入物材料11、12和13插入和设置为颈椎、腰椎和类似椎体之间的椎体固定材料,且当基体6的形状可选择地改变时,其可以用于每个区域的骨关节。
在图9中显示的植入物材料14作为骨的同种异体移植物或者骨的自体移植物(自体的移植物)的替代物来植入骨的缺陷部分,其具有块形有机-无机复合多孔制品1和为生物可降解和生物可吸收的部件的皮肤层7,该皮肤层7重叠在多孔制品1的表面的一部分上,且结合。
块形的多孔制品1等同于前述有机-无机复合多孔制品,即,具有连续孔的生物可降解和生物可吸收的多孔制品,其中,生物活性的生物陶瓷粉末大致均匀地散布在生物可降解和生物可吸收的聚合物中,其中,生物陶瓷粉末的一部分暴露到孔的内表面或者孔的内表面和多孔制品表面。该多孔制品1通过前述的本发明的生产方法来制备,且其孔隙率、连续孔的孔尺寸、连续孔占据全部孔的比例、生物可降解和生物可吸收的聚合物、生物陶瓷粉末、所述粉末的百分比含量等如前所述。
该多孔制品1起松质骨的作用,其形状没有特别限制于其具有块形状的条件,且其可以响应于要被处理的骨的缺陷部分来制备为各种形状。该多孔制品1可以以合适的量来包含前述的骨化因子、生长因子、药物等,且通过施加前述的氧化处理到多孔制品1的表面和皮肤层7的表面可以改进可湿性。
皮肤层7起皮质骨的作用,且为紧密和坚固的层,包括包含生物活性的生物陶瓷粉末的生物可降解和生物可吸收的聚合物。根据该植入物材料14,皮肤层7重叠在该块形的多孔制品1的凸起弯曲的侧面,且整合为一体,但是其可以通过重叠在其它侧面,上表面或者下表面的任何一个上来设置,或者其通过重叠在多孔制品1的两个或者三个或者多个面上来设置。简而言之,该皮肤层7可以通过部分地重叠在块形的多孔制品1的表面上来设置。
虽然皮肤层7的厚度没有特别限制,但是,通过考虑要被植入植入物材料14的地方的缺陷骨部分,需要可选择地将其设置在从1.0到5.0mm的范围内。当其比1.0mm薄时,可能使得皮肤层7的强度不够,当比5.0mm厚时,其表现这样的缺点,即,需要延长的时间周期来降解和吸收皮肤层7以及其随后的由骨组织的替代。
由于该皮肤层7要求比多孔制品1大的强度,所以晶体聚L乳酸、聚乙醇酸等需要地用作材料生物可降解和生物可吸收的聚合物,尤其是,使用具有150000或者更大的粘度平均分子量,优选的为近似从200000到600000的粘度平均分子量的聚L乳酸制备的高强度皮肤层7是合适的。
作为要被包含在该皮肤层7中的生物陶瓷粉末,可以使用所有前述的要被包含在多孔制品1中的生物活性的生物陶瓷粉末,且需要控制其百分比含量在从10到60%的重量百分比的范围内。当其超过60%的重量百分比时,该皮肤层7变脆,且当其小于10%的重量百分比时,由生物陶瓷粉末形成骨传导变得不充分。
该皮肤层7通过这样的方法来产生,其中,包含生物陶瓷粉末的生物可降解和生物可吸收的聚合物经过注模,或者包含生物陶瓷粉末的生物可降解和生物可吸收的聚合物的模制的块经过切割工作。在后者的方法中,因为其具有压紧质量,且其强度由于三维定向聚合物分子和晶体而进一步改进,所以这样获得的皮肤层7是明显合适的,即,通过将模制的块制成这样的块,其中,聚合物分子和晶体通过压缩模制、锻造模制或者类似的方法来定向,然后使其经过切割工作。除此以外,通过使伸展模制的模制块经过切割工作来制备的皮肤层也可以使用。
该植入物材料14通过将由上述方法制备的皮肤层7重叠在块形的多孔制品1的一个凸起弯曲的侧面上,且通过热焊接或者类似的方式以不分离的形式结合它们来获得。用于将皮肤层7和多孔制品1整合成一体的方法不限于热焊接,它们可以通过其它方法来整合。
当具有前述结构的植入物材料14作为骨的同种异体移植物或者骨的自体移植物(自体的移植物)的替代物来植入骨的缺陷部分,缺陷的骨部分的松质骨半部填充有块形的多孔制品1,同时缺陷的骨部分的皮质骨半部填充有皮肤层7,块形的多孔制品1起松质骨的作用,且具有较大强度的皮肤层7起皮质骨的作用,这样实现了好像缺陷的骨部分的松质骨半部填充有松质骨,皮质骨半部填充有皮质骨。
当骨的缺陷部分以这样的方式填充有植入物材料14时,块形的多孔制品1的水解快速进行,因为体液通过连续孔渗透到其内部部分,且造骨细胞渗透到多孔制品1的内部部分,以通过生物陶瓷粉末的骨传导能力来实现骨组织的传导形成。因为这样,块形的多孔制品1由骨组织在相对短的时间周期内替代。另一方面,皮肤层7的水解从落在块形的多孔制品1的后面的表面上逐渐进行,且皮肤层7在直到决形的多孔制品1由骨组织在某种程度上替代且最终由于被骨组织吸收而消失的周期期间保持足够的强度。由于该植入物材料14没有显示如前所述的特殊的活体反应,其可以在其非特殊的降解、吸收和排放期间通过周围活体骨的渗透和替代来变成自体骨。也就是,由于块形的多孔制品1和皮肤层7两者通过它们的降解和吸收由骨组织替代,且不在活体中保留为外来物,可以消除在活体中存在延长的时间周期以后显示如在由陶瓷制成的传统植入物材料中可能的有害作用的危险,且骨的缺陷部分可以通过替代骨组织本身来修复和重建。
此外,由于该植入物材料14的多孔制品1和皮肤层7两者都使用生物可降解和生物可吸收的聚合物作为材料,不像使用尸体骨作为材料的传统的骨的同种异体移植物的情况,所以不需要担心材料的不足,以便可以没有限制地执行必需和足够量的植入物材料的大规模生产,且材料可以通过模制、切割工作等来制成需要的形状。
此外,该植入物材料14的皮肤层7包含生物陶瓷粉末,且包括生物可降解和生物可吸收的聚合物,不像烘烤的陶瓷植入物材料的情况,其没有太硬和脆的缺点,由于其韧性,其不容易被折断,且当必要时,可以热变形。此外,块形的多孔制品1也包含大量的生物陶瓷粉末,但是作为使用生物可降解和生物可吸收的聚合物作为材料的多孔制品,即使当其孔隙率高时,其也不显示在高放大多孔陶瓷中共有的缺点,即,由于相当大的脆度,即使当植入的时候也撕碎碎片的散落,且当必要时,其可以热变形。这样,本发明的植入物材料14没有脆度,具有足够的实际强度,可以热变形和具有极好的处理能力。
在这个方面,该植入物材料14可以在很多应用中用作外科手术替代物,且作为颈椎、腰椎和类似的椎体的假体和垫片特别有效,其现在频繁地使用,但是迄今为止还有问题。
在图10和11中显示的植入物材料15是这样一种植入物材料,其用作假体材料、填料等,以便恢复、校正或者增加诸如头骨、颚、面、胸等之类的各种骨骼区域的缺陷或者变形的部分,且其具有有机-无机复合多孔制品1和作为生物可降解和生物可吸收的部件的网形主体8,其中,多孔制品1填充在该网形主体8的网眼8a中,且在其间结合。
该植入物材料15的网形主体8是紧密和坚固的网形主体,其包括包含生物活性的生物陶瓷粉末的生物可降解和生物可吸收的聚合物,其这样来获得,即,通过打孔、切割工作或者类似的方法来在由包含生物活性的生物陶瓷粉末的生物可降解和生物可吸收的聚合物制成的片或者板上形成方形网眼8a。网眼8a的形状不限于方形,且其可以制成为圆形、菱形和类似的需要的网眼形状。
需要网眼8a的开口区域为近似从0.1到1.0cm2,且需要网眼8a占据网形主体8的面积比例为近似从10到80%。此外,需要网形主体8的厚度近似从0.3到1.5mm,且需要网形主体8的相应的经线部分8b和相应的纬线部分8c的宽度近似从2到10mm。当网眼8a的面积比例小于10%时,植入物材料15的总的强度大,但是要被填充到网眼8a中的具有高的水解比例的多孔制品1的填充量变小,且具有低的水解比例的网形主体8的占有率变大,这样导致用于植入物材料15的完全降解和吸收以及由骨组织的随后替代所需要的延长的时间周期。另一方面,当网眼8a的面积比例超过80%时,网形主体8的厚度变成比0.3mm薄,且相应的经线部分8b和相应的纬线部分8c的宽度变得比2mm要窄,网形主体8的强度相当大地减小,以致获得具有大强度的植入物材料15变得困难。
当想要具有好的弯曲可操作性的网形主体8时,由包含生物陶瓷粉末的生物可降解和生物可吸收的聚合物制成的熔化模制的产品在低温条件下(从聚合物的玻变温度到其熔化温度的温度范围)一次锻造,且通过改变方形(机械方向MD)来在低温条件下再次锻造,且使用其作为前述的片或者板,以用作材料,网形主体通过来在其上通过打孔、切割工作或者类似的方式形成网眼8a来制备。根据通过以这样的方式改变方向来两次锻造的生物可降解和生物可吸收的聚合物片或者板,该生物可降解和生物可吸收的聚合物的分子链、分子链聚集域、晶体等为多轴定向,或者形成由大量多轴定向的束形成的聚集的结构,以便当在常温范围(0到50℃)下经过弯曲变形时,形状被维持,且在体温(30到40℃)附近几乎不返回到初始的形状,以及当弯曲变形进行了多次时,几乎不出现变白和折断。
因此,由于使用通过在片或者板上形成网眼8a来获得的网形主体8来制备的植入物15具有好的弯曲可操作性,所以,例如如图12所示,可以通过在操作期间在常温下将其弯曲为等于缺陷部分21的弯曲表面的形状来将植入物材料15固定到头骨20的缺陷部分21。在这个方面,作为要被用作网形主体8的材料的片或者板,那些单轴或者二轴定向的、没有定向或者压缩模制的当然可以使用。
作为网形主体8的材料生物可降解和生物可吸收的聚合物,需要使用晶体聚L乳酸、聚D乳酸、聚D/L乳酸、聚乙醇酸等,其在活体中的安全性已经被确认。当考虑强度、水解比例和类似的网形主体8时,使用这样的具有150000或者更大的粘度分子量,优选的近似从200000到600000的粘度分子量的生物可降解和生物可吸收的聚合物。
作为要被包含在该网形主体8的生物可降解和生物可吸收的聚合物中的生物陶瓷粉末,可以使用要被包含在多孔制品1中的所有前述生物活性的生物陶瓷粉末,且需要控制其百分比含量在从10到60%的重量百分比的范围内。当其小于10%的重量百分比时,通过生物陶瓷粉末形成骨传导变得不充分,当其超过60%的重量百分比时,网形主体8变脆。
在这个方面,例如通过将包含生物陶瓷粉末的生物可降解和生物可吸收的聚合物的经线和纬线(除了圆形截面的以外,包括平的截面的作为纱线)在它们的交叉点处熔合来制备的网形主体可以用来替代前述的网形主体8。
另一方面,要被填充到前述网形主体8的每个网眼8a中的多孔制品1与前述的有机-无机复合多孔制品相同,即,具有连续孔的生物可降解和生物可吸收的多孔制品,其中,生物活性的生物陶瓷粉末大致均匀地散布在生物可降解和生物可吸收的聚合物中,其中,生物陶瓷粉末的一部分暴露到孔的内表面或者孔的内表面和多孔制品的表面。该多孔制品1的孔隙率、连续孔的孔尺寸、连续孔占据全部孔的比例、生物可降解和生物可吸收的聚合物、生物陶瓷粉末、所述粉末的百分比含量等都如前所述。
前述骨化因子、生长因子、药物等可以以合适的量包含在该多孔制品1中,且通过将前述氧化处理应用到该多孔制品1和网形主体8的表面可以改进可湿性。
例如,如图12所示,具有前述结构的植入物材料15放置在头骨20上覆盖头骨20的缺陷部分21,其边缘区域的几个位置用包括生物可降解和生物可吸收的聚合物的螺钉30固定。在那样的情况下,植入物材料15优选地经过弯曲来使其与头骨20的缺陷部分21的弯曲面匹配。
当头骨20的缺陷部分21以这样的方式用植入物材料15来覆盖时,网形主体8的水解通过其与体液的接触来从表面逐渐进行,且多孔制品1的水解由于体液通过连续孔渗透到其内部而快速进行。此外,造骨细胞渗透到多孔制品1的内部部分,以通过包含在多孔制品1中的生物陶瓷粉末的骨传导能力来实现骨组织的传导形成,以致多孔制品1在相对短的时间周期内由骨组织替代。另一方面,网形主体8的水解落在多孔制品1的后面进行,且网形主体8在直到多孔制品1由骨组织在一定程度上替代的周期期间保持足够的强度,以便保护头骨20的缺陷部分21。此后,网形主体8也通过由骨组织替代而最终消失。
由于该植入物材料15的多孔制品1和网形主体8通过它们的降解和吸收来由骨组织替代,且不保留在活体中作为外来物,所以可以消除在活体中存在延长的时间周期以后显示如在传统地用作骨的缺陷部分的假体材料的金属打孔板中可能的有害作用的危险,且头骨20的缺陷部分21可以通过替代的骨组织来修复和重建。
此外,该植入物材料15的网形主体8包含生物陶瓷粉末,且包括生物可降解和生物可吸收的聚合物,不像烘烤的紧密的陶瓷的情况,其没有太硬和脆的缺点,由于其韧性,其不容易缺陷,且在常温下可以热变形。此外,块形的多孔制品1也包含大量的生物陶瓷粉末,但是由于其使用生物可降解和生物可吸收的聚合物作为基体,即使当其孔隙率高时,其也不显示在高放大多孔陶瓷中共有的缺点,即,由于相当大的脆度,即使在它们填充时也导致撕碎碎片的散落,且当必要时,其可以热变形。这样,植入物材料15没有脆度,具有足够的实际强度,可以热变形和具有极好的处理能力。
可以这样来使该植入物材料15制造为具有大的面积和较少的材料的活体骨的替代物,即,通过使网形主体起高强度皮质骨的作用,以及通过增加起松质骨作用的多孔制品的孔隙率,以及为网形主体和多孔制品的组合,它们的材料的总量限制于尽可能小的级别,以便其为包含小含量的在其降解吸收过程期间要被活体处理的植入物材料,且具有极好的生物相容性。
在这个方面,除了如图12所示的应用例子以外,该植入物材料15用于骨的相对大的缺陷部分的恢复和重建,诸如填充中间面的凹下的破裂,以及填充在抽取骨瘤等病灶以后的部分,以及也用作用于骨延伸的基料。
根据前述的为多孔制品1和网形主体8的组合类型的植入物材料15,不但将多孔制品1填充到网形主体8的网眼8a中,而且通过在网形主体8的一侧或者两侧上进一步层状设置多孔制品1来构造一种结构为主要的实施例。图13和图14示出了这样的实施例的植入物材料16和17,其中,在植入物材料16的情况下,前述的有机-无机复合多孔制品1以层形设置在前述的植入物材料15的一侧上,且在植入物材料17的情况下,前述的有机-无机复合多孔制品1以层形设置在前述的植入物材料15的两侧上。
层形多孔制品1等同于前述的有机-无机复合多孔制品1,其通过本发明的前述生产方法来制备成层形(片形)。该层形多孔制品1通过热熔合或者类似的方法来整体地层压在植入物材料15的一侧或者两侧上。该成形多孔制品1的厚度没有特别限制,但是当考虑其紧紧地附着到缺陷骨部分的周围骨、其降解和吸收所要求的周期,以及随后的由骨组织的替代时,需要将其设置为近似从0.5到3mm的厚度。
由于在相对短的时间周期期间骨组织几乎均匀地形成在这样的植入物材料16和17的一侧或者两侧上,所以快速进行缺陷骨部分的面部恢复和重建。此外,由于设置为层形的多孔制品1通过起衬垫材料的作用来紧紧地接触到缺陷骨部分的周围骨,且造骨细胞容易地渗透到层形的多孔制品1中,骨组织在早期阶段在多孔制品1的表面层区域上传导和形成,且植入物材料16或者17直接地结合到缺陷骨部分的周围骨,且牢固地固定。
此外,根据前述的植入物材料15,其为多孔制品1和网形主体8的组合类型,凹进弯曲或者凸起弯曲网形主体8,且进一步在其内部设置多孔制品1来构造的结构也是主要的实施例。图15示出了这样的实施例的植入物材料18,且在这样的植入物材料18中,前述植入物材料15的网形主体8凹进弯曲成U形,且等同于填充在其网眼中的多孔制品1的多孔制品1也填充在网形主体8的内部,即,凹进弯曲的内部。作为网形主体8,由于其高的机械强度和其在常温下执行弯曲的可能性,特别优选地使用通过在前述的生物可降解和生物可吸收的聚合物片或者板上形成网眼,通过改变其机械方向来锻造两次以提供好的弯曲可操作性来制备的网形主体。
这样的植入物材料18制备为这样的尺寸,即,其可以植入和填充到例如颚骨等的缺陷部分中,以及用于颚骨的缺陷部分的恢复和重建,如在图12中由虚线显示的。此外,由于填充和再生由事故或者癌症而损失的活体骨的目标,这也可以合适地用于不但是头骨的缺陷部分、中间面和上部颚、下部颚或者类似颚面,而且在整形外科手术的区域中的其它大的骨的缺陷部分的恢复和重建。
在这个方面,虽然前述植入物材料18的网形主体8为凹进弯曲成U形,所以植入物材料18可以通过将网形主体8凹进弯曲或者凸起弯曲成相应于或者匹配要被重建的缺陷骨的部分的形状,以及将多孔制品1填充到其内部来制备,在必要时,多孔制品1可以进一步以层形设置在植入物材料18的外部。此外,其可以制成具有这样的结构的植入物材料,其中,网形主体8折叠,且多孔制品1也填充在折叠的网形主体8中,或者其可以制成为具有夹层结构的植入物材料,其中,两片植入物材料15堆积,且层形多孔制品1介于它们之间。
图16和图17示出了用于人造软骨使用的植入物材料19。该用于人造软骨使用的植入物材料19具有前述的有机-无机复合多孔制品1、作为生物不可吸收的部件的芯材料9,以及作为生物可降解和生物可吸收部件的用于固定使用的销22,其中,多孔制品1层压和结合在生物不可吸收的部件的芯材料9的上部和下部两侧上,且用于固定使用的销22的尖端从多孔制品1的表面突出。
用于人造软骨使用的植入物材料19形成为具有平的形状的块形,由于如图16所示将矩形与半圆形结合,其在头部大约为方形,在底部为圆形,且合适地用作人造椎间盘。
芯材料19包括纹理结构主体,其中,有机纤维制成为三维织造纹理或者针织纹理,或者其复合纹理,且具有类似于椎间盘或者类似的软骨的机械强度和柔性,且其形变明显地为仿生的(活体模仿)。该芯材料19的纹理结构主体类似于在日本专利申请No.Hei.-6-254515中描述的已经由本发明人应用的纹理结构主体,且当其几何形状由维的数量表示,以及其纤维结构方向的数量由轴的数量表示时,合适地使用包括三轴或者更多的多轴三维纹理的结构主体。
该三轴三维纹理是这样一种产品,其中,在长度方向、宽度方向和垂直三轴方向上的纤维被三维地织造或者针织,该结构主体的典型形状是具有像前述的芯材料19的情况一样的厚度的大块形(板形或者块形),但是可以制成为圆柱形或者蜂窝形。基于不同的纹理,该三轴-三维纹理分类成正交纹理、非正交纹理、纱罗纹理、圆柱纹理等。此外,关于四轴或者更多的多轴三维纹理的结构主体,在结构主体的强度中的各向同性可以通过设置4、5、6、7、9、11轴和类似的多轴方向来改进。通过选择这些条件,可以获得更加仿生和更加接近地类似于活体的软骨组织的芯材料。
需要包括前述纹理结构主体的芯材料9的内部半部的孔隙率在从20到90%的范围内,因为当其小于20%时,芯材料9变得紧密,以破坏其柔性和形变特性,因此作为用于人造软骨的植入物材料的芯材料,变得不令人满意,且当超过90%时,该芯材料9的压缩强度和形状保持特性降低,使得其不适于作为用于人造软骨的植入物材料的芯材料。
作为构成芯材料9的有机纤维,优选地使用诸如聚乙烯、聚丙烯、聚四氟乙烯等的纤维之类的生物无活性的合成树脂纤维,通过用前述生物无活性的树脂涂覆有机芯纤维而生物无活性的涂覆纤维等。尤其是,考虑到强度、硬度、柔性、容易织造和针织等,通过用直链低密度聚乙烯的涂层涂覆由超高分子量的聚乙烯制成的芯纤维(麻线)来制备的、具有直径近似从0.2mm到0.5mm的涂覆纤维是最合适的纤维。或者,也可以选择具有生物活性的纤维(例如,具有骨传导或者诱导能力的)。
在这个方面,构成芯材料9的纹理结构主体在前述的日本专利申请No.Hei.-6-254515中详细公开,所以省略了进一步的描述。
要被层压在芯材料9的上部和下侧两者上的多孔制品1与前述的有机-无机复合多孔制品相同,即,具有连续孔的生物可降解和生物可吸收的多孔制品,其中,生物活性的生物陶瓷粉末大致均匀地散布在生物可降解和生物可吸收的聚合物中,其中,一部分生物陶瓷粉末暴露到孔的内表面或者孔的内表面和多孔制品表面。该多孔制品1通过本发明的前述生产方法来制备,其孔隙率、连续孔的孔尺寸、连续孔占据全部孔的比例、生物可降解和生物可吸收的聚合物、生物陶瓷粉末、所述粉末的百分比含量等如前所述。
由于当该多孔制品1层压在芯材料9的两侧上,该多孔制品1具有作为垫片的功能,且当该植入物材料16插入颈椎、腰椎或者类似的椎体(比较图6中的颈椎C3和C4或者腰椎L4和L5)时,该多孔制品1通过上部和下部椎体的夹紧压力和没有间隙地与椎体的紧密接触来压缩变形,且由于其与体液的接触而伴随着多孔制品1的水解,通过生物陶瓷粉末的骨传导能力,骨组织传导和形成在多孔制品1的内部部分中,且多孔制品1在相对短的时间周期内被骨组织代替,且椎体和芯材料9直接结合。在这样的情况下,当通过将生物陶瓷粉末喷射到芯材料9的表面来生物激活表面层时,传导的活体骨结合到该激活的表面层,以致椎体和芯材料9的直接结合在相对短的时间周期内实现,且还维持强度。此外,当骨诱导因子包含在该多孔制品1中时,展现骨诱导,以便其更加有效。
需要设置多孔制品1的厚度为近似从0.5到3mm,因为当其比0.5mm薄时,在椎体的表面上吸收不规则性由于压缩变形而变得困难,以致可能会降低与椎体紧密接触的特性,另一方面,当比3mm厚时,用于降解和吸收以及用骨组织替代所要求的时间周期变长。此外,如图17所示,需要以这样的方式层压多孔制品1,即,大约其厚度的一半埋入芯材料9中,从而用芯材料9的外围部分围绕多孔制品1,因为多孔制品1的外围的磨损可以由这样的结构来抑制。
在这个方面,合适量的前述骨化因子、生长因子、药物等可以包含在该多孔制品1中,且在这样的情况下,多孔制品1的内部半部的骨化被相当大地加速,且在早期阶段有效地建立芯材料9与椎体的直接结合。此外,要被增生的造骨细胞的渗透和生长的效果可以通过将前述氧化处理施加到多孔制品1的表面来增加,从而改进了其可湿性。
固定销22在其两侧通过前述的芯材料9和多孔制品1,且销的两端从多孔制品1突出。在这样的固定销22存在的情况下,当植入物材料19插入到上部和下部椎体直接时,从多孔制品1突出的固定销22的两端通过上部和下部椎体的夹紧压力来切入椎体的接触面,以致植入物材料19在椎体之间固定,且不产生错位。
需要该固定销22的数量为两个或者多个,最优选的为3个,如图所示,在这样的情况下,优点在于该材料可以通过三点支撑来实现稳定地安装在上部和下部椎体之间。需要将固定销22的两端形成为圆锥或者类似尖的形状,需要将销22直径设置为近似从1到3mm,以便确保其强度。此外,需要将固定销22的两端的突出尺寸设置为近似从0.3到2mm。
由于当植入物材料19插入椎体之间时,在开始时将大的夹紧压力从上部和下部椎体施加到固定销22,所以需要具有大的强度的固定销。因此,需要使用晶体聚乳酸、聚乙醇酸和类似的具有150000或者更高的,优选的为近似从200000到600000的粘度平均分子量的生物可降解和生物可吸收的聚合物来产生该固定销22,使用进一步与生物活性的生物陶瓷粉末混合的这些聚合物也是需要的。此外,在必要时,强度通过压缩模制、锻造模制、伸展或者类似方法来使聚合物的分子定向来改进。
当用于前述结构的人造软骨的植入物材料19安装为上部和下部椎体之间的人造椎间盘时,从多孔制品1的表面突出的固定销22的两端切入椎体的接触面,如前已经描述的,以便植入物材料19在椎体之间固定,且不产生位移。因此,由于没有必要使用辅助固定工具等来固定活体材料,所以可以容易地执行操作。此外,当植入物材料19以这样的方式安装在椎体之间时,在芯材料9的表面上的多孔制品1通过上部和下部椎体的夹紧压力和没有间隙地与椎体的紧密接触来压缩,且随着多孔制品1的降解和吸收的进行,骨组织传导和形成在多孔制品1的内部部分中,以致多孔制品1在相对短的时间周期内被骨组织代替,且椎体和芯材料9直接结合。然而,由于芯材料9是生物无活性的合成树脂纤维,所以骨组织不在其内部传导和形成,且保持其柔性。由于该芯材料9包括通过将有机纤维转化为多轴三维织造纹理或者三轴或多轴的针织纹理或者其复合纹理来制备的纹理结构主体,如前所述,所以其具有类似于那些椎间盘或者类似的软骨的机械强度和柔性,且其变形相对容易,以便其可以起椎间盘的作用,显示椎间盘的几乎相同的行为。此外,固定销22也由活体在相对短的时间周期内降解和吸收,以致其不剩余。
如上所述,关于用于人造软骨的植入物材料19,该芯材料9是仿生的,且其行为类似于软骨组织,除此以外,其具有与椎体和类似的骨端板直接结合的能力和早期阶段独立于椎体和类似的骨端板的能力,其自身的侧滑和滚动通过刺入骨组织中的固定销22的尖端来防止,且多孔制品1直接结合到骨组织且组织集成为一体。因此,用于人造软骨的该植入物材料19可以解决包括在传统的独立类型的夹层结构的人造椎间盘中的所有已经描述过的缺点。
在这个方面,在用于人造软骨的前述植入物材料19中,多孔制品1层压在芯材料9的两侧上,且固定销22的两端从多孔制品1突出,其可以制成这样一种结构,其中,多孔制品1层压在芯材料9的一侧上,且固定销22的一侧尖端突出。由于用于这种结构的人造软骨的植入物材料可以通过固定销22来将其一侧固定到椎体之一,所以固定强度减小,但是可以防止植入物材料19的位移。此外,多孔制品1的厚度可以从其方形头部朝着圆形底部逐渐增加,当以这样的方式设置时,上部和下部椎体直接的间距变得在头部侧稍微窄,在底部侧稍微宽,以便其变成可以通过正确地装配到所述空间来安装的植入物材料。此外,在必要时,替代要通过的固定销22,短的固定销可以植入芯材料9的表面层区域中,且销尖端可以从多孔制品1突出。
这样,描述了用于人造椎间盘的植入物材料19,但是,不用说,当其形状可选择地改变时,其可以变成用于半月板和除了人造椎间盘以外的各种类型的关节软骨的植入物材料。
虽然参考其具体的实施例来详细描述了本发明,但是对于本领域中的普通技术人员很明显,在不偏离本发明的精神和范围的情况下,可以进行各种变化和修改。
本申请是基于2001年9月27日提交的日本专利申请(日本专利申请No.2001-360766)、2001年12月3日提交的日本专利申请(日本专利申请No.2001-368558)、2002年2月20日提交的日本专利申请(日本专利申请No.2002-043137)、2002年8月23日提交的日本专利申请(日本专利申请No.2002-242800)和2002年9月30日提交的日本专利申请(日本专利申请No.2002-285934),其整个内容通过引证在此引入。
工业实用性本发明的植入物材料实际上用作用于活体骨组织的重建的骨架、假体材料、骨填料、其它植入物和活体骨组织之间的内含物、松质骨的替代物、持续药物释放的载体等。此外,通过与其它生物可降解和生物可吸收的部件和/或生物不可吸收的部件的结合,本发明的植入物材料实际上用作各种骨固定材料、椎体固定材料、活体骨之间的各种垫片、缺陷骨部分的填充材料、假体材料或者填料、人造软骨材料等。
权利要求
1.一种人造软骨用植入物材料,在将有机纤维制成三轴以上的多轴三维织造纹理、或者针织纹理、或者他们的复合纹理的纹理结构主体形成的芯材料的至少一面上层压了具有骨传导性的生物可降解和生物可吸收的垫片。
2.如权利要求1所述的人造软骨用植入物材料,具有生物可降解和生物可吸收的固定用销,并使其前端从所述垫片的表面突出。
3.如权利要求1或2所述的人造软骨用植入物材料,垫片是生物可降解和生物可吸收的聚合物与生物陶瓷形成的复合体。
4.如权利要求3所述的植入物材料,所述复合体的生物可降解和生物可吸收的聚合物是完全可吸收的聚D,L乳酸、L乳酸与D,L乳酸的嵌段共聚物、乳酸与乙醇酸的共聚物、乳酸与p二恶烷酮的共聚物以及乳酸与乙二醇的嵌段共聚物中的任何一种。
5.根据权利要求3所述的植入物材料,所述复合体的生物陶瓷粉末的百分比含量为从60到90%的重量百分比。
6.根据权利要求3所述的植入物材料,所述复合体的生物陶瓷粉末的百分比含量为从50到85%的体积百分比。
7.根据权利要求3所述的植入物材料,包含在所述复合体中的生物陶瓷粉末的平均粒径为从0.2到10微米。
8.根据权利要求3所述的植入物材料,包含在所述复合体中的生物陶瓷粉末为完全可吸收的未煅烧或者未烧结的羟磷灰石、磷酸二钙、磷酸三钙、磷酸四钙、磷酸八钙、方解石、ceravital、透辉石、天然珊瑚中的任何一种粉末。
9.如权利要求1或2所述的人造软骨用植入物材料,上述芯材料的有机纤维是用低密度聚乙烯的涂层涂覆超高分子量聚乙烯纤维束来制备的。
10.一种人造软骨用植入物材料,是由将有机纤维制成三轴以上的多轴三维织造纹理、或者针织纹理、或者他们的复合纹理的纹理结构主体所形成的人造软骨用植入物材料,在该纹理结构主体的上下表面具有生物可降解和生物可吸收的固定用销。
11.如权利要求10所述的人造软骨用植入物材料,固定用销的前端从上述纹理结构主体的表面突出出来。
12.如权利要求2或10所述的人造软骨用植入物材料,固定用销是在生物可降解和生物可吸收的聚合物中混合了生物活性的生物陶瓷粉末制备的。
13.一种人造软骨用植入物材料,是生物活性的生物陶瓷粉末均匀地分散在生物可降解和生物可吸收的聚合物中的生物活性的生物可降解和生物可吸收的多孔体,将具有连续气孔、在气孔内面或者气孔内面与多孔体表面上露出了生物陶瓷粉末的一部分的有机-无机复合多孔体层压在由将有机纤维制成三轴以上的多轴三维织造纹理、或者针织纹理、或者他们的复合纹理的纹理结构主体形成的芯材料的至少一面上,合为一体,固定用销的前端从多孔体的表面突出出来。
全文摘要
一种人造软骨用植入物材料,在由纹理结构主体形成的芯材料的至少一面上层压了具有骨传导性的生物可降解和生物可吸收的垫片,所述纹理结构主体是将有机纤维制成三轴以上的多轴三维织造纹理、或者针织纹理、或者他们的复合纹理的纹理结构主体。
文档编号A61L27/58GK1981879SQ200710003839
公开日2007年6月20日 申请日期2002年11月20日 优先权日2001年11月27日
发明者敷波保夫 申请人:多喜兰株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1