用于液体雾化的微流体设备的制作方法

文档序号:1200550阅读:221来源:国知局
专利名称:用于液体雾化的微流体设备的制作方法
技术领域
本发明涉及用于液体雾化的微流体设备。虽然本发明相对于其用途描述为肺部递送设备,但是应该认识到本发明不限于该应用并且也可以展望其它应用。
背景技术
基因治疗代表疾病治疗的新范例,其中通过恢复有缺陷的生物功能或重建细胞内稳态机制在分子水平上治疗疾病。有效的基因治疗需要脱氧核糖核酸(DNA)成功地进入靶细胞,开始内化进入细胞,在逃脱降解路径后穿过细胞至细胞核,随后被转录和转译以产生所需的基因产物。肺是重要的基因递送靶,因为气溶胶递送是非侵入性技术并且可直接靶向肺的巨大表面积。质粒DNA(pDNA)可通过气溶胶吸入而被引入肺中。但是,符合严格要求的基因载体的递送效率和耐久性是该方法成功的关键领域。当前肺部递送的潜在障碍包括保持气溶胶中质粒的超螺旋结构以保持其转染能力和满足产品品质的管理要求,以及生产具有适用于最优递送至肺表面的尺寸的气溶胶颗粒。已经进行了大量研究以确定肺部递送装置在递送非复合pDNA至肺的可行性。不幸的是,在射流和超声雾化器中的雾化过程中,已经发现PDNA的尺寸大于5千碱基对(IAp) 的超螺旋三级结构被流体力学剪切和冲击波严重剪切成开环DNA和片段DNA。诸如网孔式雾化器、电流体动力学(EHD)装置和微型雾化导管装置的新装置的出现据称提供更好的气溶胶化效率并且保护气溶胶中PDNA的完整性。吸入治疗已经成为哮喘和慢性阻塞性肺病(COPD)的治疗选择。与口服给药不同, 吸入治疗允许高浓度药物被施用和直接靶向肺内局部炎症位点,由此能够使用较低的总剂量,减少全身性副作用以及潜在地促进药物作用的发动。定量吸入器(MDI)和干粉吸入器 (DPI)常用于哮喘和COPD治疗的支气管扩张剂给药;患者在单次用力呼吸动作中吸入预定剂量。然而,在决定MDI或DPI是否最有效或者是否需要在至多几分钟的时间段内对患者进行经过重复波动呼吸的持续雾化方面,在研究者中存在活跃的争论。虽然争论在继续,但是作出这样的决定的关键因素通常基于临床判断,考虑诸如剂量水平、药物功效和安全性、 患者年龄组别、疾病严重性、给药方便性和成本这样的因素。雾化器能够比当前的MDI和DPI递送更多药物,因为它们运行更长的时间。此外, 与MDI不同的是,雾化器不需要来自患者的配合技巧,并且与DPI不同的是,不需要经由吸入的患者动作。雾化器常用于患者不能自主用药的COPD急性病例或严重哮喘发作。基于相同的原因,雾化器可能更适合」L科患者和老年病患者人群。在历史上,雾化器大、笨重且不易移动并且比MDI或DPI更昂贵。此外,常规雾化器通常具有低剂量效率;尽管更多的药物可被递送进入气溶胶,但是大量的气溶胶化的药物随后被浪费,其原因在于1.气溶胶持续产生,患者相对于雾化器输出呼气时浪费药物,2.气溶胶具有多分散性尺寸分布,对于深度肺沉积而言,显著分率的液滴过大,以
3及3.雾化器通常具有大的内部残留容积。为了使吸入治疗具有最高效率,微滴的空气动力学行为(受斯托克斯定律支配) 具有根本的重要性。对于深度肺沉积而言,流体力学直径小于5微米或优选3微米被认为是合适的,使得气溶胶可避免在口咽部中的惯性碰撞。对于在气道更上部的沉积而言,可优选更大的流体力学直径。因此,气溶胶微滴尺寸是吸入治疗功效的关键,所以能够有效递送高剂量药物的理想装置会允许精确控制微滴尺寸分布并且优选提供大雾化率,以在尽可能短的时间段内递送所需剂量以将患者的痛苦和不便减低至最小程度。近年来雾化技术快速进步,使用超声和电流体动力学雾化的新方法允许更好地控制雾化过程以提供具有多分散性分布下降和微滴尺寸调节能力的气溶胶。此外,这些方法可被微型化,提供针对目前可市购的大且笨重的雾化器的有吸引力的替代物。不幸的是,这些方法具有内在的限制。例如,电流体动力学雾化受限于高电压操作(通常为几千伏),产生了消费者使用时的安全和可靠性问题。多年来已经设计出多种类型的超声雾化,并且最常用的系统使用液体浴,压电盘从液体浴中产生气溶胶烟流。这些超声雾化器的尺寸也相对大,对于输出和尺寸控制存在限制并且经常使得溶解的药物由于溶剂蒸发而沉淀在雾化储库容器壁上,导致药物浪费并且需要使用者定期清洁。使用网进行雾化的更近期设计提供更好的便携性、剂量率和气溶胶单分散性。所述网具有化学或激光切割的微孔,形成数以千计的孔以在超声照射下产生微滴,但是这些网易于堵塞,这显著降低了生产量。在这些过去和当前的技术方面中,仍然没有实现小型、便携、可靠且相对成本有效的装置,尤其是能够有效产生适当单分散且直径小于5 10微米的非团聚微滴尺寸分布。

发明内容
注意,本发明提供一种用于液体雾化的设备,包括具有至少一个工作表面的压电衬底;支撑在所述压电衬底上的至少一个电极;信号产生装置,其用于施加超声信号至所述电极用以在所述压电衬底的所述工作表面中产生表面声波(SAW);液体递送装置,其包括与所述工作表面接触的用于递送其液体的芯吸物,其中被所述芯吸物递送至所述工作表面的液体通过SAW照射进行雾化。电极可以为交叉指型电极形式。更优选的是,电极配置可以是椭圆形的电极宽度受控的单相单向换能器(EWC-SPUDT)。电极优选配置为EWC-SPUDT,因为与直型标准和SPUDT式交叉指型换能器电极、圆形EWC-SPUDT以及目前已知的其它配置相比,这种配置提供进入设置在衬底上的液体的最大表面声波强度。因此,对于给定的输入功率,在这些不同配置中椭圆形EWC-SPUDT提供最佳的雾化性能,并且所选择的EWC-SPUDT的宽度和椭圆率优选调节至位于衬底上的液滴的尺寸。微滴尺寸与EWC-SPUDT的出口孔(宽度)之间的关系取决于液体性质,但是液滴直径与出口孔的比率优选为0. 5 2。 优选可以使用多于一个的EWC-SPUDT。例如,可以在非常各向异性的压电材料例如铌酸锂([3m]类)上使用两个,同时可以在各向异性较低的材料如&ι0、AlN或PZT上使用更多个。雾化频率优选为IOMHz 250MHz,取决于待雾化的液体,并且这限定了在 EffC-SPUDT中的电极手指的宽度和其间的间隙。液体递送装置的芯吸物可由至少一根纸条或纸带来提供,其中液体通过毛细作用被递送。也可以设想提供类似毛细作用的其它类型多孔材料,例如衣料织物或其它亲水材料。液体递送装置可以优选还包括液体储库容器,用于容纳待递送至设备的液体。芯吸物可从压电衬底表面延伸直至液体储库的内部。作为替代方案,毛细管可从液体储库延伸,芯吸物经由该毛细管接收液体。液体储库本身可由可更换小瓶提供。毛细管可优选具有各种形状(例如,弯曲以适合装置设计)并且在多个方向上设置芯吸物以接触衬底并形成微滴。然而,毛细管可省略,只有在液体储库和衬底之间的芯吸物。驱动器电路优选基于对使用者呼吸的测量并且在通过用户界面下达指令时对设备进行安全互锁来控制设备。表面声波(SAW)雾化的应用具有优于超声雾化的许多优点。表面声波是MHz GHz级的横轴极化椭圆电声波,位移幅值只有几个纳米。在此,其在压电衬底表面上产生并横穿该表面。与作为体积现象的常规超声不同的是,SAW被限制为接近衬底表面,其幅值在进入衬底材料中4 5个波长(几百微米)深度内快速衰减。与消耗功率约IOW的常规超声雾化器相比,根据本发明的设备可只消耗0. 5 3W,因为大部分的能量保持在接近衬底表面的局部区域中并因此以远高于超声的效率传输进入液体。此外,设备和电源可以很小, 表现出用于便携式应用的设备潜力。此外,该设备采用的10 500MHz级频率显著高于常规超声装置的20kHz 3MHz频率范围,引发周期远远小于与液体中大分子相关的分子驰豫时间尺度的振动,因此分子变性或细胞溶解的风险显著下降。此外,当频率增加时,引发空化作用所需的功率的增加远远超过雾化所需的功率,从而消除了空化作用引发的设备中的细胞溶解或剪切的作用。在本发明人针对沙丁胺醇的乙醇/辛醇溶液进行的初步实验中,利用SAW雾化得到2.84士0. 14微米的气溶胶平均直径。沙丁胺醇是用于治疗哮喘的药物,并且所得的气溶胶直径良好地处于深度肺沉积的最优范围内。虽然SAW的幅值只有几个纳米,但是表面的加速度由于高工作频率而不可置信的高(107m2/S)。因此,当SAW传输进入置于衬底上的液滴中时,能够不仅形成跨越微滴自由表面的毛细波,而且驱动其破裂成为具有1 10微米的平均受控直径的微滴雾。可以经由这些微滴的受控蒸发形成微米和纳米颗粒,但是与所期望的产物无关,挑战在于在作为雾化源的SAW设备上保持相对静态的自由液体表面。根据本发明的液体递送装置解决了这些问题。使用芯吸物从液体储库虹吸液体至设备的工作表面为其提供连续流而无需泵。因此,芯吸物允许雾化而不影响设备性能并提供足够的限制以在表面上的芯吸物周边外侧保持稳定的弯月面,如本发明人使用这样的纸芯吸物在近期实验中所注意到的。在这些实验中,发现弯月面被从纸芯吸物传输的液体 (从纸传输的液体)恒定补偿并且提供用于形成和扰动毛细波的表面以喷射气溶胶。气溶胶的喷射角度取决于弯月面的形状,而弯月面形状自身又取决于用于产生SAW的功率。纸的流体吸收率限定设备流量的上限。


根据图示根据本发明的设备的一个优选实施方案的附图将便于进一步说明本发明。本发明的其它实施方案也是可以的,因此附图的特定性不应被理解为对本发明的前述说明的普遍性的替代。在附图中图1为根据本发明用于液体雾化的设备的示意图;和图2为图1设备的交叉指型电极的平面示意图。如图1所示,根据本发明的设备1包括具有压电衬底5的换能器元件3,压电衬底 5提供用于设备的工作表面7。支撑在工作表面7上的是交叉指型电极9,已发现优选的电极配置为具有受控单相单向换能器(EWC-SPUDT)的椭圆形电极。已发现这样的电极对递送至工作表面7的液体提供最大的SAW强度。交叉指型电极9最佳示于图2,图2示出具有一系列交错的椭圆形弯曲电极手指10的电极。这些手指的宽度和间隙可优选设定为SAW波长的四分之一。提供液体递送装置11用于递送液体至工作表面7。该装置包括可为可更换小瓶形式的液体储库13。毛细管15从用于供应液体的液体储库13延伸至芯吸物17,芯吸物17 的一端与工作表面接触,其相反一端位于毛细管15内。因此,液体递送装置能够在工作表面7上形成液体弯月面19用以进行雾化。芯吸物可以为纸条或纸带的形式,芯吸物的一端与工作表面7接触。当液体通过芯吸物17供应至工作表面7时,在芯吸物17的所述端与工作表面7之间形成弯月面19。 该弯月面19通过从芯吸物17传输的液体而被连续补偿并且提供用于形成和扰动毛细波的表面以从中喷射雾化微滴。驱动器电路21施加超声信号至交叉指型电极9,通常为10 250MHz,由此得到在工作表面7中产生的SAW23。SAW23与液体弯月面19的相互作用产生雾化的微滴雾。驱动器电路21基于检测传感器25对使用者呼吸的测量来控制,并且通过在经由用户界面四控制的安全电路27中的安全互锁来控制。本发明的设备1具有多种应用并且可用于吸入基因治疗和使用基因生物分子材料的免疫,基因生物分子材料可包括质粒DNA、siRNA、蛋白质分子等。其它应用可包括DNA 包封、DNA展开/杂交和DNA微阵列印刷。已发现本发明有利地减少了分子变性的风险,这是因为利用10 IOOMHz级频率在设备1中引起振动的时间远低于液体中大分子的分子驰豫时间尺度。此外,当频率增加至超过几个MHz时,空化作用显著减少,由此消除了空化引起的细胞溶解或对于剪切敏感分子例如具有所需基因编码的裸PDNA的剪切的作用。此外,设备1产生的微滴的尺寸可通过从驻波转变为行波而以可控方式在几个微秒内改变幅值约一个数量级。由此,本发明具有显著优于代表现有技术的超声医用雾化器的优点。此外,SAW微流体动作保留了使用声场来驱动流体移动的益处,即由于惯性力使得大的动作加速和相关流动的非线性,同时解决困扰常规超声方法的限制。高兆赫兹(> IOMHz)级SAW振动有利于流体和颗粒在更加微细尺寸上操控并且通过将能量集中在狭窄
6的流体表面区域来提供更为能量有效的机制。这些额外的优点避免了损伤DNA,这是因为在这样的短时间内产生的剪切梯度不足以降解DNA。本发明提供的SAW雾化是用于产生剪切敏感生物治疗(质粒DNA)的气溶胶的可行手段,并且提供几乎可忽略不计的变性超螺旋含量。本发明可用于提供质粒负载气溶胶, 其具有用于最优深度肺沉积的< 5微米的微滴尺寸并且保持生物活性,其中测试表明在 SAW雾化之后在哺乳动物细胞中的成功基因表达。本发明的设备1因此适合用作DNA分子、 蛋白质和其它生物分子的肺部递送平台。测试已经发现,在SAW照射后,对间充质干细胞几乎没有损伤,不妨碍其生存力、增殖和分化。与常规超声雾化器所需功率相比的低功率要求 (低至1W)允许设备1微型化为便携式手掌尺寸的装置,通过电池供电并引入先进的电子检测和用于适应递送的控制。本发明提供有效且快速的方法以产生对于生物分子例如用于基因治疗的DNA生物分子的固有结构的破坏最小化的生物分子负载的气溶胶。这可以有利地使昂贵的分子例如疫苗和药物的浪费最小化,并且与所有会破坏生物分子的其它雾化方法相比能够有效治疗。本发明提供用于气溶胶基因治疗的重大突破并且提供对于使用非侵入性方式进行非病毒基因治疗的巨大希望。被认为对于本领域技术人员明显的改进和变化包括在如所附权利要求书所要求保护的本发明范围内。
权利要求
1.一种用于液体雾化的设备,包括具有至少一个工作表面的压电衬底;支撑在所述压电衬底上的至少一个电极;信号产生装置,其用于施加超声信号至所述电极用以在所述压电衬底的所述工作表面中产生表面声波(SAW);液体递送装置,其包括与所述工作表面接触的用于递送其液体的芯吸物,其中递送至所述工作表面的液体通过SAW照射进行雾化。
2.根据权利要求1所述的设备,其中所述电极为椭圆形的电极宽度受控的单相单向换能器(EWC-SPUPT)。
3.根据权利要求1或2所述的设备,其中所述液体递送装置的芯吸物由至少一个纸条或纸带提供。
4.根据权利要求3所述的设备,其中所述液体递送装置还包括用于容纳待递送至所述设备的所述液体的液体储库。
5.根据权利要求4所述的设备,还包括从所述液体储库延伸出的毛细管,所述芯吸物经由该毛细管接收所述液体。
6.一种方法,包括使用根据前述权利要求中任一项所述的设备进行核酸组合物的肺部递送。
7.一种方法,包括使用根据权利要求1 5中任一项所述的设备进行沙丁胺醇的肺部递送。
全文摘要
一种用于液体雾化的设备(1),包括具有至少一个工作表面(7)的压电衬底(5);支撑在所述压电衬底(5)上的至少一个电极(9);信号产生装置(21),其用于施加超声信号至所述电极(9)用以在所述压电衬底(5)的所述工作表面(7)中产生表面声波(SAW);液体递送装置(11),其包括与所述工作表面(7)接触的用于递送其液体的芯吸物(17),其中递送至所述工作表面(7)的液体通过SAW照射进行雾化。
文档编号A61M11/00GK102458684SQ201080026065
公开日2012年5月16日 申请日期2010年5月11日 优先权日2009年5月11日
发明者戚爱莎, 戴维·莫顿, 珍妮·霍, 米歇尔·麦金托什, 莱斯利·约, 詹姆士·弗林德, 阿努希·拉贾帕克萨 申请人:莫纳什大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1