微波手术器械的制作方法

文档序号:909951阅读:119来源:国知局
专利名称:微波手术器械的制作方法
技术领域
本发明涉及一种微波手术器械。
背景技术
专利文件I公开了用于将微波发射到生物组织以便凝固组织或止血的已知微波手术器械的示例。该微波手术器械由微波产生单元以及用于利用从微波产生单元产生的微波照射生物组织的手术电极构成。微波手术器械使用通过利用来自手术电极的微波照射生物组织产生的介电热(dielectric heat)对生物体中的生物组织进行凝固、止血、切开等。引文列表专利文件PTD (专利文件)1:第3782495号日本专利公开

发明内容
技术问题在上述微波手术器械中,微波产生单元和手术电极经由连接器通过同轴电缆连接。同轴电缆将来自微波产生单元的微波传输到手术电极。然而,同轴电缆的功率损耗非常大,传输效率为大约30%至50%。并且传输效率由于生物组织中的阻抗不匹配而进一步降低。为了补偿同轴电缆中这种大的功率损耗,有必要使用高功率微波产生单元。这造成了有关增加微波产生单元的尺寸的必要性的问题。鉴于这个问题,本发明的目的是提供一种能够减小尺寸的微波手术器械。解决方案根据本发明的微波手术器械由以下部分构成:手术器械主体,具有用于将微波发射到生物组织的电极部;微波振荡器,设置在手术器械主体的内部,用于振荡微波;以及放大器,通过被连接在电极部和微波振荡器之间而设置在手术器械主体的内部,用于放大来自微波振荡器的微波,并将微波传输到电极部。在迄今已知的微波器械中,具有微波振荡器和放大器的微波产生单元与手术器械主体分离。因此,微波产生单元和手术器械主体(更具体地,放大器和电极部)通过大约2m至3m长的柔性同轴电缆连接。然而,本发明的微波手术器械构造为使得具有微波振荡器和放大器的微波产生单元被设置在手术器械主体的内部。在该结构中,和迄今已知的器械不同,不需要用长的柔性同轴电缆将电极部和放大器连接。因此,电极部和放大器能够利用例如大约Icm至15cm,更优选为大约IOcm至14cm的刚性同轴电缆连接,从而减少功率损耗。因此,微波产生单元不再需要确保高功率,这允许微波手术器械减小尺寸。这也使微波手术器械的整个主体能够在尺寸上减小。另外,虽然迄今已知的微波手术器械因其大的主体而被固定地安装,然而根 据本发明的能够在尺寸上减小的微波手术器械能够被用作便携式器械;因此,本发明的微波手术器械能够被用作可移动手术器械。额外地,这种优点也解决了由于柔性同轴电缆的柔软性不足而引起的手术器械主体的操作性不足的问题。更具体地,如上文提到的,本发明的微波手术器械被构造为使得微波振荡器和放大器被设置在手术器械主体的内部;因此,不需要用于将手术器械主体和微波产生单元连接的同轴电缆。因此,本发明提高了手术器械主体的操作性。另外,具有微波振荡器和放大器的微波产生单元也可以被构造为半导体微波产生单元,该半导体微波产生单元包含作为用于产生和放大微波的装置的半导体元件。在迄今已知的器械中,微波产生单元由包含铁磁性物质的磁控管制成,从而补偿同轴电缆中的功率损耗。然而,由于本发明的微波手术器械不包含同轴电缆,因而不需要功率损耗的这种补偿。因此,微波产生单元能够使用半导体元件来构造。包含半导体元件的该微波产生单元不包含铁磁性物质,因此,微波产生单元能够与MRI (核磁共振成像)器件一起使用。另外,微波产生单元还可以包括:可变输出匹配电路,设置在放大器和电极部之间,用于对放大器的输出阻抗和生物组织的阻抗进行匹配;检测电路,用于对放大器与电极部之间的反射功率和入射功率分别进行检测;以及控制装置,用于基于通过检测电路检测的反射功率和入射功率来控制可变输出匹配电路。因为生物组织在电磁阻抗上经受很大变化,所以返回到微波产生单元的反射功率也得以增大,因此,微波照射功率效率为大约10%至20%。另一方面,如上所述,通过基于入射功率和反射功率控制可变输出匹配电路,可以匹配生物组织的可变阻抗与放大器的输出阻抗,从而提高微波照射功率效率。额外地,在迄今已知的器械中,设置有包含铁磁性物质的保护器件(例如隔离器),以防止由于反射功率和入射功率的综合作用引起的微波产生单元的损坏。然而,上述结构不需要保护器件(例如隔离器)。因此,上述微波产生单元能够与MRI器件一起使用。

另外,微波产生单元还可以包括用于将低频交流电供应到电极部的低频恒定电流源。利用该结构,可以将低频交流电施加到生物组织,允许监控生物组织中的电阻的改变。根据由微波照射造成的生物组织的改变而使组织中的电阻改变的事实,例如可以在电阻值减小大约30%至50%时确定止血的完成。所述“低频”并无限制,只要其对生物组织中比0、Na离子等的电解(electrolysis)没有影响。例如,频率优选为大约500Hz至10kHz。波形优选为矩形。额外地,微波产生单元还可以包括:壳体,用于存储具有微波振荡器、放大器等的电子电路部;以及冷却水袋,设置在壳体附近,使冷却水供应到其中。利用该结构,可以通过冷却水有效地将热量从壳体释放。另外,通过采用根据微波照射的时机来调节将要供应到冷却水袋的冷却水量的结构,可以更加有效地释放热量。额外地,生理盐水溶液可以被用作冷却水。这种情况下,可以设置具有用于将生理盐水溶液排放到电极部的排水路径的结构。该结构使所排放的溶液用来清洗电极部,从而防止碳化组织附着到电极部,并防止周边组织的温度增加。手术器械主体优选还包括端部具有电极部的插入单元。该插入单元优选从主体可拆卸。利用该构造,可以在将插入单元从手术器械主体拆卸之后,仅将插入单元浸泡在抗菌溶液中,即,可以仅浸泡插入单元,而不浸泡包含电子电路部的手术器械主体。发明的有益效果本发明提供一种能够减小尺寸并因此能够易于携带的可移动微波手术器械。


图1为根据本实施例的微波手术器械的前视图。图2为根据本实施例的微波手术器械的仰视图。图3(a)和图3(b)为本实施例的壳体的前视图(a)和侧视图(b)。图4为根据另一个实施例的壳体的侧视图。图5为根据本实施例的设置有冷却水袋的壳体的侧视图。图6为图5的平面图。图7为根据另一个实施例的设置有冷却水袋的壳体的侧视图。图8为示出根据本实施例的电子电路部的电路图。图9为根据另一个实施例的设置有冷却水袋的壳体的侧视图。
具体实施例方式在下文中,参考附图来描述根据本发明的微波手术器械的实施例。如图1和图2所示,微波手术器械I包括顶端具有电极部24的手术器械主体2。手术器械主体2主要由以下部分构成:主体握柄(grip) 21 ;滑动握柄22,可摇动地附接至主体握柄21 ;以及插入单元23,可拆卸地安装在主体握柄21的顶端。在手术期间,插入单元23被插入到人体中,因此,生物组织或血液更容易附着至插入单元23。在插入单元23的顶端,设置有电极部24。 电极部24由第一电极241和第二电极242构成。第一电极241和第二电极242被构造为使得它们通过滑动握柄22向主体握柄21的移动(如箭头A所标示)而彼此更靠近,这允许它们挤压生物组织。第二电极242用于供应微波,且第一电极241充当GND电极(其是返回电极)。主体握柄21包括用于打开和关闭微波照射的开关25。通过按压开关25,从电极部24发射微波。通过释放开关25停止微波照射。在主体握柄21的后端,用于将功率供应到电子电路部5(稍后描述)的供电电缆26以及用于供应将热量从电子电路部5释放的冷却水的供水管41向外延伸。供电电缆26和供水管41连接至电源或冷却水源或者是可连接至电源或冷却水源的。手术器械主体2的整个长度(从电极部24的顶端到主体握柄21的后端的长度)L为大约250nun至300mm。当滑动握柄22离主体握柄21最远时,手术器械主体2的高度H为大约25mm至30nun。手术器械主体2的宽度W为大约120nun至140mm。然而,长度、高度以及宽度不限于上述范围。在手术器械主体2内,更具体地,在主体握柄21内,设置有矩形壳体3,如图3所示。虽然没有特别限制,然而鉴于铝的轻质和优良的热传导,壳体3可由铝等形成。壳体3包含包括微波振荡器51、放大器52、可变输出匹配电路53、检测电路54、微控制器55等的电子电路部5 (稍后描述)。微控制器55可以作为分离单元被存储在手术器械主体2 (尤其是在主体握柄21中)中的另一部分中,而不是被存储在壳体3中。这种情况下,微控制器55可以经由连接器与设置在壳体3内的上述元件连接。由SMA连接器等制成的连接器31被设置在壳体3的顶端上。通过将插入单元23拧进主体握柄21中,连接器31与设置在插入单元23中的馈送线(feed line) 231的端部上的连接器232连接。馈送线231例如由长度为大约Icm至15cm,更优选为大约IOcm至14cm的刚性同轴低损耗电缆形成。另外,当主体握柄21的内部具有复杂形状时,壳体3可以被设置为两个分离的部分,以更容易安装。例如,如图4所示,可以设置包含微波振荡器51和放大器52的第一壳体3a以及包含可变输出匹配电路53、检测电路54等的第二壳体3b。由于微控制器55的尺寸能够通过将其大部份合并到微型计算机芯片中而被大大减小(例如,大约2X2X Icm),因而微控制器55可以被存储在主体握柄21中的额外空间或被存储在壳体3内。当微控制器55被存储在壳体3中时,其可以被存储在壳体3a和壳体3b两者中。这种情况下,第一壳体3a中的电子电路和第二壳体3b中的电子电路经由刚性同轴低损耗电缆32或控制信号线(未示出)连接,该刚性同轴低损耗电缆32具有大约Icm至15cm,更为优选大约IOcm至14cm的长度。为了防止诸如微波功率降低或运行不稳定等问题,有必要有效地释放在壳体3中的电子电路部5中产生的热量。因此,在本实施例中,如图5和图6所示,冷却水袋4通过几乎覆盖壳体3的整个上表面而被设置在壳体3上方。冷却水袋4经由供水管41连接至外部冷却水源(未示出),从而将冷却水供应到此。冷却水源可以是例如充满生理盐水溶液的输液袋。冷却水袋4中从壳体3吸收热量的水通过排水管42向外排出。从排水管42排出的水被供应到电极部24,从而清洗电极部24。这防止碳化部分附着到电极部24,还防止周边组织的温度增加。冷却水袋4的材料没有特别限制,只要其能够将来自壳体3的热量传递到生理盐水溶液。所述材料的示例包括聚对苯二甲酸乙二醇酯(polyethyleneterephthalate, PET)。如图7所示,冷却水袋4也可以被设置在壳体3下方以及壳体3上方,以更加有效地释放热量。这种情况下,供水管41和排水管42可以被构造为使得它们中的每一个各自被分支成两个冷却水袋4,或者构造为使得两个供水管41和两个排水管42单独连接至两个冷却水袋4。接下来,下面详细描述设置在壳体3内的电子电路部5。电子电路部5由表面安装器件构成,且其在 介电基板上被整体设置为微带线等。如图8所不,电子电路部5包括由微波振荡器51和用于放大微波的放大器52构成的微波产生单兀50。微波振荡器51可以是由半导体兀件(例如GaAs MES场效应晶体管)构成的已知微波振荡器。将从微波振荡器51振荡产生的微波放大的放大器52可以是例如由适合于高功率器件的高效GaN场效应晶体管形成。另外,在手术期间,生物组织的阻抗取决于应用手术器械的刀刃(bladeedge)的方式或组织中的热变化而有很大改变。因此,如果放大器52和电极部24直接连接,则微波产生单元50 (尤其是放大器52)的输出阻抗和生物组织的阻抗不匹配,且反射功率增大。因而,微波能量被吸收到生物组织中的效率降低。在本实施例中,设置可变输出匹配电路53以便首先在微波产生单元50 (尤其是放大器52)和电极部24之间进行阻抗匹配。可变输出匹配电路53包括电感器531、第一可变电容器532a和第二可变电容器532b,并通过调节第一可变电容器532a和第二可变电容器532b的静电电容进行阻抗匹配,从而使反射功率最小化。可变电容器532a和532b不受限制,只要其能够调节静电电容,例如为高压变容二极管(可变电容二极管)。可变电容器532a和532b的静电电容基于微波产生单兀50 (尤其是放大器52)与电极部24之间的入射功率和反射功率来确定。为了使该控制可行,电子电路部5包括检测电路54和微控制器55。检测电路54连接在可变输出匹配电路53和电极部24之间,并且主要由定向检波器541和双向耦合器542构成。微控制器55主要由用于进行计算或控制的微处理器551、模拟/数字转换器(ADC) 552a至552c、数字/模拟转换器(DAC) 553a至553c、存储器(未示出)等构成。用于通过检测电路54和微控制器55控制可变电容器532a和532b的静电电容的方法描述如下。检测电路54检测微波产生单元50 (尤其是放大器52)和电极部24之间的入射功率和反射功率,且微控制器55基于所检测的数据控制可变电容器532a和532b的静电电容。更具体地,首先,通过双向耦合器542检测的微波信号被供应到检波器541。因此供应到检波器541的微波信号由检波器541根据其功率水平被转换成直流电压。得到的电压通过模拟/数字转换器552a和552b被转换成数字信号,且得到的信号被供应到微处理器551。微处理器551基于从检测电路54传输的入射功率和反射功率进行计算,以找到用于确保可能的最大Pi/Pr (入射功率Pi与反射功率Pr之比)的可变电容器的控制数据。控制数据通过数字/模拟转换器553a和553b被转换成模拟信号(直流电压),以控制可变输出匹配电路53的第一可变电容器532a和第二可变电容器532b的静电电容。重复这一系列的控制,以保持最大Pi/Pr,即进行所谓的反馈控制。在电子电路部5中,低频恒定电流源56经由高频扼流圈(RFC) 57连接至电极部24。低频恒定电流源56经由电极部24将恒定值的低频交流电供应到生物组织。由于电容器58的设置,低频恒定电流仅被供应到电极部24。如此一来,能够通过经低频恒定电流源56供应低频交流电的这一操作来确定生物组织的止血的完成。更具体地,当完成止血时,电阻改变(具体地,电阻减小了大约30%到50% );因此,能够通过电阻的改变来确定生物组织的止血的完成。更具体地,通过经由模拟/数字转换器552c将低频交流电压的幅值Vs和低频恒定电流的幅值Ic获取到微处理器551中来进行所述确定。根据Rs = Vs/Ic,幅值被转换成电阻Rs。当电阻Rs减小了大约30%至50%时,微处理器551经由数字/模拟转换器553c使微波产生单元50 (尤其是放大器52)停止微波振荡。微控制器55还能够根据预先存储在存储器(未示出)中的与电阻的变化或者对于逝去时间的最佳功率施加有关的数据来使微波产生单兀50 (尤其是放大器52)施加微波`功率。当按压开关25时,微控制器55使微处理器551控制微波产生单元50 (尤其是放大器52),因而使得微波产生单元50从电极部24发射微波。本发明不限于上述实施例,而是包含处于本发明的预定范围内的任何和所有的实施例。例如,虽然上述实施例公开了冷却水被接连供应到冷却水袋4的结构,然而本发明也可以被构造为使得仅在微波照射时供应冷却水。例如,如图9所示,可以在冷却水袋4和排水管42之间设置电磁阀6,并通过微控制器55控制电磁阀6。在该结构中,响应于开始微波照射的指令,微控制器55通过打开电磁阀6控制冷却水的流动的开始。响应于停止微波照射的指令,微控制器55通过关闭电磁阀6控制冷却水的流动的停止。该结构防止没有用于散热的不必要水流。电磁阀6也可以被连接在冷却水袋4和供水管41之间。工业实用性本发明提供一种能够减小尺寸并因此能够易于携带的可移动微波手术器械。参考标记I微波手术器械
2手术器械主体24 电极部3壳体4冷却水袋5电子电路部51微波振荡器52放大器·
权利要求
1.一种微波手术器械,包括: 手术器械主体,具有用于将微波发射到生物组织的电极部; 微波振荡器,设置在所述手术器械主体的内部,用于振荡微波;以及 放大器,通过连接在所述电极部和所述微波振荡器之间而设置在所述手术器械主体的内部,用于放大来自所述微波振荡器的微波,并将所述微波传输到所述电极部。
2.根据权利要求1所述的微波手术器械,其中,所述微波手术器械包括包含所述微波振荡器和所述放大器的微波产生单元,所述微波产生单元是包含用于产生和放大微波的半导体元件的半导体微波产生单元。
3.根据权利要求1所述的微波手术器械,还包括: 可变输出匹配电路,连接在所述放大器和所述电极部之间,用于对所述放大器的输出阻抗和所述生物组织的阻抗进行匹配; 检测电路,用于分别检测所述放大器与所述电极部之间的反射功率和入射功率;以及 控制装置,用于基于由所述检测电路检测的所述入射功率和所述反射功率的值来控制所述可变输出匹配电路。
4.根据权利要求1所述的微波手术器械,还包括: 低频恒定电流源,用于将低频交流电供应到所述电极部。
5.根据权利要求1所述的微波手术器械,还包括: 壳体,用于存储电子电路部;以及 冷却水袋,使冷却水供应到其中,所述冷却水袋被设置在所述壳体附近。
6.根据权利要求5所述的微波手术器械,其中,供应到所述冷却水袋的冷却水量根据微波照射的时机来调节。
7.根据权利要求5所述的微波手术器械,其中,所述冷却水是生理盐水溶液。
8.根据权利要求7所述的微波手术器械,还包括: 排水路径,用于将所述生理盐水溶液从所述冷却水袋排放到所述电极部中。
9.根据权利要求1所述的微波手术器械,其中,所述手术器械主体在其顶端包括具有所述电极部的插入单元,所述插入单元从所述手术器械主体可拆卸。
10.根据权利要求1所述的微波手术器械,其中,所述手术器械主体具有便携式尺寸。
全文摘要
本发明的目的是提供一种能够使手术工作更为便利的缩小尺寸的微波手术器械。该微波手术器械(1)设置有手术器械主体(21),具有用于将微波照射到生物组织的电极(24);微波生成器(51),设置在手术器械主体(21)的内部,用于生成微波;以及放大器(52),设置在手术器械主体(21)的内部且连接在电极(24)和微波生成器(51)之间而被,用于放大来自微波生成器的微波,并将该微波传输到电极(24)。
文档编号A61B18/18GK103237517SQ201180057739
公开日2013年8月7日 申请日期2011年11月17日 优先权日2010年11月30日
发明者谷徹, 北村全利, 小野晃义, 河村英明, 斋藤茂 申请人:东方微波公司, 国立大学法人滋贺医科大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1