用于测量神经反应-a的方法和仪器的制造方法

文档序号:1248189阅读:244来源:国知局
用于测量神经反应-a的方法和仪器的制造方法
【专利摘要】一种用于测量对刺激的神经反应的方法。通过将一个传感电极连接至测量电路,以允许这一测量电路朝向生物电学上定义的稳态安定下来,从而在刺激之前,使这一测量电路安定。通过将刺激电极彼此短路来回收这些刺激电极上的电荷。然后,向神经组织施加一个来自这些刺激电极的电刺激,同时保持该传感电极与这一测量电路断开。在该刺激之后,强加一个延迟,在该延迟期间这些刺激电极是开路的并且该传感电极与这一测量电路和这些刺激电极是断开的。在该延迟之后,通过将该传感电极连接至这一测量电路来测量存在于该传感电极上的神经反应信号。
【专利说明】用于测量神经反应-A的方法和仪器
[0001]相关申请的交叉引用
[0002]本申请要求于2011年5月13日提交的澳大利亚临时申请号2011901817的权益,将其通过引用结合在此。
【技术领域】
[0003]本发明涉及对刺激的神经反应的测量,并且具体地涉及通过使用被植入在神经通路的近端的一个或多个电极对复合动作电位的测量。
_4] 发明背景
[0005]使用神经调节来治疗多种失调,包括慢性疼痛、帕金森氏病、以及偏头痛。神经调节系统向组织施加一个电脉冲以产生治疗效果。当被用来缓解慢性疼痛时,将电脉冲施加至脊髓的背柱(DC)或背根神经节(DRG)。这样的一个系统典型地包括一个植入式电脉冲发生器,以及一个电源,例如可以通过经皮感应传递而可再充电的电池。将一个电极阵列连接至该电脉冲发生器 ,并且将其放置于背柱上的背侧硬膜外腔中。由电极向背柱施加的电脉冲导致神经元的去极化,以及传播动作电位的产生。被以此方式刺激的纤维抑制疼痛从脊髓中的那个区段向大脑的传递。
[0006]尽管脊髓刺激(SCS)的临床效果是明确的,但是涉及的精确机制却理解很差。DC是电刺激的靶标,因为它包含感兴趣的传入Αβ纤维。Αβ纤维介导来自皮肤的触摸、振动以及压力的感觉。普遍的看法是SCS仅刺激DC中的少数A β纤维。SCS的疼痛缓解机制被认为包括具有抑制效应的Αβ纤维的诱发逆向活性,以及在疼痛抑制中发挥作用的Αβ纤维的诱发顺向活性。还认为SCS募集主要位于DC中的Αβ神经纤维,其中诱发反应从DC进入背角的反向传播被认为以抑制方式与宽动态范围神经元形成突触。
[0007]还可以使用神经调节来刺激传出纤维,例如以诱导运动功能。通常,在神经调节系统中产生的电刺激触发神经动作电位,然后该神经动作电位具有抑制亦或兴奋效果。可以使用抑制效果来调节不希望的过程,例如疼痛的传递;或来产生希望的效果,例如肌肉的收缩。
[0008]在大量纤维之中产生的动作电位相加以形成复合动作电位(CAP)。CAP是来自大量单个纤维动作电位的反应的总和。记录的CAP是大量不同纤维去极化的结果。传播速度在很大程度上由纤维直径决定,并且对于如在背根进入区(DREZ)以及背柱附近发现的大的有髓纤维而言,速度可以超过60ms—1。由一组类似纤维的放电产生的CAP被测量为正峰电位P1、然后是负峰NI,随后是一个第二正峰P2。这是由当动作电位沿着单独的纤维传播时,激活区经过记录电极而产生的。
[0009]为了更好地理解神经调节和/或其他神经刺激的效果,记录由该刺激导致的CAP是令人希望的。然而,由于观察到的CAP信号将典型地具有在微伏范围内的最大振幅,而被施加以诱发CAP的刺激典型地是若干伏,所以这是一个困难的任务。电极假象通常由该刺激产生,并且在整个CAP出现的时间显示若干几毫伏的衰减输出,这为分离感兴趣的CAP呈现了一个显著障碍。一些神经调质使用单相脉冲并且具有电容器以确保没有DC流向该组织。在这样的一种设计中,电流(刺激电流亦或平衡电流)始终流过电极,这妨碍脊髓电位(SCP)测量尝试。此外,测量电路中的高通滤波器极点产生具有单相脉冲的增加的电假象。电容器在该刺激之后,立即按最高速率回收电荷,这不令人希望地在诱发反应发生的同时产生最大假象。
[0010]为了在5V输入刺激的存在下,以IuV的分离度分解IOuV SCP,例如需要具有134dB的动态范围的放大器,这在植入系统中是不切实际的。由于神经反应可以与刺激和/或刺激假象同时发生,所以CAP测量为放大器的设计提出一个困难的挑战。在实践中,电路的许多非理想的方面导致假象,并且由于这些假象大部分具有可以是正极性或负极性的衰减指数外观,所以其识别和消除可以是费劲的。
[0011]已经提出了多个途径用于记录CAP。King (金)(美国专利号5,913,882)使用与刺激部分物理隔开的电极测量脊髓电位(SCP)。为了避免在刺激假象期间的过程中的放大器饱和,在该刺激之后至少1-2.5ms开始记录。在典型的神经传导速度中,这需要这些测量电极与刺激位点隔开约IOcm或更远,这是不令人希望的,因为此测量然后必然出现在不同脊柱区段并且可能具有减少的振幅。
[0012]Nygard (尼加德)(美国专利号5,785,651)测量在耳蜗中的听觉神经上的诱发CAP,并且目的在于通过续发事件来处理假象,这些续发事件包括:(I)通过将刺激电极与传感电极相互短路来平衡电极;(2)经由刺激电极施加一个刺激,同时传感电极与刺激电极并且与测量电路都是开路的;(3) —个延迟,其中刺激电极被切换至开路并且传感电极保持开路;以及(4)测量,通过将传感电极切换进测量电路。Nygard (尼加德)还教授了在该刺激之后,使放大器归零的方法。当电极不处于平衡时,在刺激之后的期间的过程中,为该放大器设置一个偏置点。因为在每个周期中都要重新设置该偏置点,所以它易受噪声影响。在归零相位 期间,Nygard (尼加德)测量放大器是微分器,这使得当使用具有有线增益和带宽的非理想放大器用于实施时,它易受噪声摄取和输入瞬变的影响。
[0013]Daly (戴利)(美国专利申请号2007/0225767)利用双相刺激加上一个经由反馈精制的(refined)第三相“补偿”刺激以对抗刺激假象。至于Nygard (尼加德),Daly (戴利)的焦点是耳蜗。Daly (戴利)测量续发事件包括:(I)静止相位,其中刺激电极和传感电极被切换至Vdd ; (2)施加刺激并且然后是补偿相位,同时传感电极与刺激电极并且与测量电路都是开路的;(3)约I μ s的负载安定相位,其中刺激电极和传感电极与Vdd短路;以及(4)测量,其中刺激电极与Vdd和电流源开路,并且其中传感电极被切换至这一测量电路。然而,Iys的负载安定周期对于电极的平衡而言太短,电极的平衡典型地具有约100 μ S的时间常数。另外,将传感电极连接至Vdd将电荷推动到传感电极上,这恶化了设计该电路来解决的非常问题。
[0014]当诱发反应晚于假象出现的时间出现时、或当信噪比足够高时,测量它们更不困难。假象通常被限制在刺激之后的l-2ms的时间并且因此其条件是在这个时间窗之后测量神经反应,可以获得数据。这是在手术监测中的情况,其中在刺激电极和记录电极之间存在大的距离,这样使得从刺激位点到记录电极的传播时间超过2ms。由于耳蜗中的独特的构造以及更紧的连接,所以耳蜗植入物使用相对于有时SCS所需的几十mA小的刺激电流,并且因此在耳蜗系统中测量的信号呈现出相对更低的假象。然而,为了表征来自背柱的反应,需要高的刺激电流和电极之间的靠近,并且因此与现存的“手术监测”技术相反,测量工艺必须直接克服假象。
[0015]已经被包括在本说明书中的文献、作用、材料、装置、物品或类似物的任何讨论唯一用于提供本发明的背景的目的。这并不被看作是承认任何或所有这些事项形成现有技术基础的一部分或任何或所有这些事项是与本发明相关的领域中的公共常识,虽然它在本申请的每个权利要求的 优先权日:之前存在。
[0016]贯穿本说明书,“包括(comprise)” 一词或变化形式(例如“包括了(comprises)”或“包括着(comprising),,)应被理解为意指包括所陈述的要素、整体或步骤,或者多个要素、整体或步骤的群组,但不排除任何其他要素、整体或步骤,或者多个要素、整体或步骤的群组。
[0017]发明概沭
[0018]根据一个第一方面,本发明提供了用于测量对刺激的神经反应的方法,该方法包括:
[0019]通过将一个传感电极连接至测量电路,以允许这一测量电路朝向生物电学上定义的稳态安定下来,从而在刺激之前,使这一测量电路安定;
[0020]通过将刺激电极彼此短路来回收这些刺激电极上的电荷;
[0021]向神经组织施加一个来自这些刺激电极的电刺激,同时保持该传感电极与这一测量电路断开; [0022]强加一个延迟,在该延迟期间这些刺激电极是开路的并且该传感电极与这一测量电路和这些刺激电极是断开的;并且
[0023]在该延迟之后,通过将该传感电极连接至这一测量电路来测量存在于该传感电极上的神经反应信号。
[0024]根据一个第二方面,本发明提供了用于测量对刺激的神经反应的可植入装置,该装置包括:
[0025]多个电极,包括一个或多个标称(nominal)刺激电极以及一个或多个标称传感电极;
[0026]一个用于提供待从该一个或多个刺激电极递送至神经组织的刺激的刺激源;
[0027]用于放大在该一个或多个传感电极上感测的神经信号的测量电路;以及
[0028]一个被配置为控制向该神经组织施加刺激并且测量诱发的神经反应的控制单元,该控制单元被配置为:通过将该传感电极或每个传感电极连接至这一测量电路,以允许这一测量电路朝向生物电学上定义的稳态安定下来,从而在刺激之前,使这一测量电路安定,该控制单元被进一步配置为:通过将这些刺激电极相互短路来回收这些刺激电极上的电荷,该控制单元被进一步配置为:使该刺激源将来自这些刺激电极的电刺激施加至神经组织,同时保持该传感电极或每个传感电极与这一测量电路断开,该控制单元被进一步配置为:强加一个延迟,在该延迟期间,这些刺激电极是开路的并且该传感电极与这一测量电路以及这些刺激电极是断开的,并且该控制单元被进一步配置为:通过在该延迟之后,将该传感电极或每个传感电极连接至这一测量电路来测量在该传感电极上存在的神经反应信号。
[0029]在此应理解的是,电极的开路涉及确保该电极与其他电极、刺激源、测量电路并且与电压轨断开。在该延迟期间的过程中,确保传感电极与刺激电极断开避免了电荷转移至这个或这些传感电极上以及相关联的假象。本发明认识到,在刺激后延迟期间,将传感电极连接至刺激电极可以不令人希望地导致这样的电荷转移和相关联的假象,特别是当该延迟相对于这些刺激电极的时间常数短时,后者典型地是约100 μ S。在该刺激后延迟期间,传感电极优选是开路的,以便与该阵列中的所有其他的电极断开,以阻止此类电荷从其他非刺激电极转移至该传感电极。具体关于脊髓反应测量的情况,本发明认识到,在脊髓中,在用于慢性疼痛的刺激速率下,刺激电极可能永远不能达到平衡,这样使得在任何时候将其连接至刺激电极将增加假象。这种平衡的缺乏是由于亥姆霍兹层(Helmholtz layer)的性质,亥姆霍兹层导致电极阻抗中的部分极点随频率变化,其中时间常数长达几十毫秒。[0030]本发明认识到,提供预刺激使这一测量电路朝向生物电学上定义的稳态安定下来是有益的。这确保电荷回收发生于刺激之前并且不是在该刺激过程中或就在该刺激之后的安定阶段,并且因此在该刺激过程中或就在该刺激之后不会引起假象。因此,当系统处于其最稳定的状态时,本发明将生物电学上定义的稳态捕获为测量周期结束时的参考点电压。然后,该系统将捕获的电压与参考点电压之间的差异放大。当进行重复的测量周期时,本发明进一步允许测量放大器在多个周期上积攒一个偏置点,而不是在每个周期中都要重新设置该偏置点。安定周期优选足够长以允许电极和电路达到平衡,并且例如这一安定周期可以是如被刺激率所允许的约Ims或更长。例如,如果以约IOOHz将治疗刺激施加至背柱并且不引起慢的神经反应,那么在诱发的快速反应的约2ms持续时间直到约8ms之后将可用于这一安定周期。然而,这通常比需要的更长并且这一安定周期可能实质上短于8ms。
[0031]该延迟可以在大体上零至Ims的范围内,并且例如可以是约0.3msο此类实施例允许待观察的神经反应的开始,针对离刺激位点3cm远的电极而言,这典型地发生在该刺激之后约0.3ms。在其中测量电路的放大器具有非常高的动态范围、和/或假如使用离刺激电极更近的测量电极的实施例中,可以将该延迟设置为更小的值,例如在50-200μ s的范围内。优选地,将该延迟设置为确保该测量放大器不被饱和的值,并且因此当被连接而未经历限幅时始终线性地执行,并且例如可以实施一个反馈环路,以确定针对一个给定的刺激避免放大器饱和的适合的延迟。
[0032]在本发明的优选实施例中,将来自该传感电极或每个传感电极的信号传递至测量放大器的输入端的一个采样保持电路。在此类实施例中,可以从多个传感电极获得单个的诱发反应的测量,即使如在植入式电极阵列中通常需要的,每个电极的测量电路仅通过两线总线或类似物连接至控制单元。
[0033]额外地或可替代地,在一些实施例中,在传感电极与测量放大器之间优选地提供缓冲放大器或跟踪放大器。在没有插入开关的情况下,优选将该缓冲器连接至该传感电极,这样使得该缓冲器的高反向阻抗有效地阻止开关瞬变现象被传送至该传感电极,由此避免当经受这样的瞬变时,在该传感电极上可能出现的假象。还优选地是,该缓冲放大器被配置为:给出用来驱动取样保持电路的储能电容器的电流增益。在该放大器故障的事件中,在传感电极与缓冲器之间插入一个串联电容器以避免与该组织的DC传输。该电容器还允许该放大器的偏置电压平衡,因为电极电压可以随着几十秒的时间段漂移。
[0034]在本发明的优选实施例中,这些刺激电极和传感电极选自植入式电极阵列。该电极阵列可以例如包括被安排在沿着该阵列的单列中的电极的线性阵列。可替代地,该电极阵列可以包括具有沿着该阵列安排的两列或更多列的电极的二维阵列。优选地,该电极阵列中的每个电极配备有一个相关联的测量放大器,以避免将这个或这些传感电极切换至一个共享测量放大器的需要,因为这样的切换可以增加测量假象。为每个传感电极提供一个专用的测量放大器在允许待从多个传感电极同时获得的记录中是进一步有利的。
[0035]该测量可以是通过将来自单个的传感电极的信号传递至单端放大器而获得的单端测量。可替代地,该测量可以是通过将来自两个传感电极的信号传递至差分放大器而获得的微差测量。[0036]当通过将这些刺激电极一起短路来回收电荷时,在一些实施例中,将该传感电极与这一测量电路断开可以是有利的,例如通过将采样保持电路设置为“保持”。
[0037]如与更易受假象影响的系统相比,本发明的实施例可以证明在获得具有更低的动态范围以及更简单的表面波度的CAP测量中是有益的。本发明的此类实施例可以因此减少植入式放大器的动态范围要求,并且可以避免或减少用于特征提取、简化并且小型化植入式集成电路的信号处理系统的复杂性。此类实施例可以因此特别地可适用于自动植入式诱发反应反馈系统,用于刺激控制。因此,在一个另外的方面中,本发明提供了一种用于神经刺激的反馈控制的方法,该方法包括根据第一方面的方法获得CAP测量的植入式控制单元,以及使用获得的CAP测量的植入式控制单元,用来通过植入物控制随后神经刺激的递送。
[0038]在本发明的一些实施例中,可以通过以下来获得平均CAP测量:(i)递送一个第一双相刺激,该第一双相刺激以一个第一极性的脉冲开始并且然后递送与该第一极性相反的一个第二极性的脉冲,并且获得由该第一刺激诱发的CAP的第一测量;(ii)递送一个第二双相刺激,该第二双相刺激以该第二极性的脉冲开始并且然后递送该第一极性的脉冲,并且获得由该第二刺激诱发的CAP的第二测量;并且(iii)取第一测量与第二测量的平均值以获得平均测量。此类实施例利用以下观察,假象极性通常反映刺激极性,而CAP极性独立于刺激极性之外并且反而由脊髓膜的构造和生理机能决定,这样使得平均第一测量和第二测量将倾向于选择性地抵消假象。进一步注意的是,对于一些电极极性配置(例如单极的)而言,“阳极第一”双相刺激通常具有比“阴极第一”双相刺激低的用于神经募集的刺激阈值,平均测量可以具有以下表面波度:(i)半振幅的典型CAP,如果只有阳极第一刺激超过刺激阈值;(?)两个不同振幅的CAP的平均值,如果两个刺激都超过刺激阈值但阴极第一刺激不导致饱和募集(saturation recruitment);亦或(iii)典型的CAP,如果两个刺激都超过饱和募集。一些实施例可以因此获得平均测量对比刺激振幅的曲线,以便获得关于由每个刺激所造成的募集的信息,并且这样的信息可以用于对该植入物的反馈控制。
[0039]在一些实施例中,为了量规药物递送的疗效,可以将本发明的方法与药物的给予同时施用。例如,该植入物可以包括或被操作性地连接至一个药物容器和药物递送泵,其中通过基于CAP测量的反馈来控制该泵。
[0040]根据另一个方面,本发明提供了一个计算机程序产品,该产品包括用来使植入式处理器执行用于测量对刺激的神经反应的程序的计算机程序代码工具,该计算机程序产品包括用于进行第一方面的方法的计算机程序代码工具。
[0041]本发明认识到,当考虑脊髓刺激时,获得关于正在发生刺激的脊髓区段内的活性的信息是高度令人希望的。观察高于(的of))和低于(的尾部(caudallyof))刺激水平两者的传播的活性和范围也是高度令人希望的。本发明认识到,为了记录与该刺激相同的脊髓区段内的诱发活性需要能够记录在其来源的约3cm内(即在该刺激的约0.3ms内)的SCP的诱发电位记录系统;并且进一步认识到,为了记录使用与施加该刺激相同的电极阵列的诱发活性需要能够在其来源的约7cm内(即在该刺激的约0.7ms内)的SCP的诱发电位记录系统。
[0042]在优选实施例中,该刺激包括双相脉冲,并且这些刺激电极没有电容器。与单相脉冲和电容器安排相反,此类实施例允许这些刺激电极电流在那些它将干扰测量的时候被中断或强制置零。为了最小化植入式装置的尺寸,省略电容器也是令人希望的。
[0043]附图简要说明
[0044]现在将参照以下附图对本发明的一个实例进行描述,其中:
[0045]图1图示了可以有助于SCP测量的电流和电压;
[0046]图2图示了本发明的一个实施例的电路图,贯穿一个测量周期的五个阶段;
[0047]图3图示了在该测量周期的每个阶段过程中,在图2的电路中出现的理想化波形;
[0048]图4图示了利用图2的实施例的SCP测量;
[0049]图5图示了实施微差CAP测量的本发明的替代性实施例的电路图;
[0050]图6图示了测量放大器的延迟激活以避免限幅;
[0051]图7图示了其中使 用交替相位的刺激以获得平均CAP测量的一个实施例;
[0052]图8a图示了由图7的方法诱导的“阳极第一” CAP反应和“阴极第一” CAP反应,而图Sb图示了从其中获得的平均测量;
[0053]图9分别图示了伴随递增的刺激振幅的阳极第一刺激和阴极第一刺激的CAP反应;
[0054]图10图示了脊髓中的微差CAP测量的性质;
[0055]图11图示了导电溶液中的金属电极的模型;
[0056]图12图示了分段电极,这些分段电极可以用来减少假象而不影响噪声、阻抗或载
流量;
[0057]图13a和图13b图示了利多卡因的硬膜外给予对脊髓诱发反应的抑制的效果;并且
[0058]图14a是示出当进行电极短路时出现的假象的图,并且图14b是示出在刺激之后,当传感电极与测量电路和刺激电极断开时出现的假象的图。
[0059]优选实施例的i兑明
[0060]图1示出了有助于SCP测量的电流和电压。这些信号包括由两个刺激电极施加的刺激电流102,该刺激电流是电荷平衡双相脉冲以提供低的假象。替代性实施例反而可以使用三个电极以施加三极电荷平衡刺激。在脊髓刺激的情况下,用来提供感觉异常和疼痛缓解的刺激电流102典型地由具有典型地在100-400 μ s范围内的脉冲宽度的3-30mA振幅范围内的脉冲组成,或可替代地可以是无感觉异常的,例如神经或自动扶梯式刺激。刺激可以包括单相脉冲或双相脉冲。
[0061]刺激102在相邻电极上感应出电压,被称为刺激串扰104。当刺激102是SCP刺激时,它们典型地在SCP传感电极上感应出在约1-5V范围内的电压104。
[0062]刺激102还感应出电极假象,它是由电极表面的不均匀电荷分布导致的电极上的残余电压。在刺激串扰中断之后,在电压波形104中指示出电极假象。刺激102干扰该传感电极与该组织之间的电流相互作用,这样使得在电压104中的刺激串扰结束之后,被称为电极假象的电压在该电极上继续,如在图1中的波形104中所指示。电极假象非常难以测量,并且取决于以下因素,例如刺激脉冲、电极的几何结构以及围绕这些电极的组织的生物电学性质。在刺激中止之后的50 μ S时,电极假象可以具有500 μ V的典型值。电极假象难以测量,因为它与电假象是不能区分的,后者由放大器向高刺激电压的暴露导致。另外,电假象的原因可以是隐约的,并且因此难以鉴别和消除。
[0063]适当的刺激102还将诱导神经放电,并且由此产生诱发的神经反应106。在脊髓中,神经反应106具有两个主要组分:持续约2ms的快速反应和持续约15ms的缓慢反应。缓慢反应仅在大于引起快速反应所需的最小刺激的刺激振幅时出现。通过硬膜外电极看到的诱发反应的振幅典型地不大于几百微伏,但是在一些临床情形中可以仅是几十微伏。
[0064]在实际实施时,用来测量诱发反应的测量放大器不具有无限带宽,并且将通常具有无限脉冲响应滤波器,并且所以刺激串扰104将在诱发反应106过程中产生输出108,该输出被称为电假象。
[0065]与处于几十微伏的感兴趣的SCP相比,电假象可以处于几百毫伏。然而,电假象可以通过高通滤波器极点频率的合适选择来减少。
[0066]测量放大器输出110将因此包含这些不同贡献物(contribution) 102-108的总和。将感兴趣的诱发反应(106)与假象104和108分离是主要的技术挑战。例如,为了以I μ V分离度来分解10 μ V SCP,并且在输入端处具有5V刺激,需要具有134dB的动态范围的放大器。因为该反应可以使刺激重叠,所以这代表放大器设计的困难挑战。
[0067]图2a_2e是根据本发明的一个实施例的取样与保存(S/Η)测量放大器的操作的五个阶段的示意图。刺激和测量电路200包括一个一直被连接至传感电极202的缓冲放大器206,这样使得在传感电极202与缓冲放大器206之间没有开关。缓冲放大器206的输出端驱动取样保持电路208,后面是在DC处具有单位增益的高增益放大器210。前置放大器206具有足够宽的带宽,这样它可以跟踪由刺激脉冲在传感电极202上感应出的电压,并且在SCP开始之前安定下来。可以将电流源212选择性地连接至刺激电极204以递送刺激。刺激电极204和传感电极202位于单个的植入式装置的同一电极阵列中。
[0068]运行刺激和测量电路200以获得使用五个阶段的SC测量。示于图2a中的第一阶段使刺激电极204开路,并且通过将取样保持电路设置为“取样”使传感电极202连接至测量放大器210。示于图2a中的第一阶段允许放大器链206、210安定下来,其中没有来自刺激电极204的干扰。
[0069]在示于图2b中的第二阶段中,将刺激电极204彼此短路。这允许刺激电极204回收电荷,以便避免如电植入物所需的向该组织的DC注入。在该阶段过程中,将取样保持208设置为“保持”,这样使得刺激电极204上的电荷转移不破坏测量放大器210。
[0070]在示于图2c中的第三阶段中,施加刺激。将刺激电极204切换至电流源212,并且将取样保持208设置为“保持”,这样使得在电极202上见到的大的刺激串扰不被呈递至测量放大器210。
[0071]示于图2d中的第四阶段提供了刺激后延迟。在这个阶段中,刺激电极204是开路的,并且取样保持仍留在“保持”位置,以允许电极202、204朝向平衡安定,如由生物电学条件所定义。[0072]最后,在示于图2e中的第五阶段中,通过将取样保持208切换为“取样”来测量存在于传感电极202上的SCP。
[0073]当以这种样式进行重复的测量周期时,应该注意的是在阶段1“安定”和阶段5“测量”状态中开关位置是相同的。因此,借助后续阶段I使阶段5的状态维持,直到电极和电路处于平衡,甚至在有用的SCP数据不再存在或不再被捕获的时候之后。此类实施例因此提供了更长的“安定”状态。
[0074]图3示出了在图2的SCP测量过程中出现的理想化波形。图3图示了在该测量周期的五个阶段的每一个的过程中,刺激电极204的电流302、以及放大器210的输出电压304。重要地,可以看到阶段I允许将放大器偏置点向如由传感电极上的生物电学条件定义的稳态安定下来,同时阶段2-4不干扰放大器210偏置点。
[0075]这种电路的一个优点是在阶段2平衡中,放大器210周围的电路是低通滤波器,并且因此相对地不受噪声和输入瞬变的影响。这还允许放大器210在连续测量周期中积攒其偏置点,因为不需要为每个周期重新设置偏置点。此外,由于取样/保持208前的缓冲器206,注入进取样/保持208中的电荷的输入参考(input-referred)效应(即对传感电极202的效果)是更低的。
[0076]在图2的实施例中,传感电极202从未被短路至刺激电极204,认识到这在传感电极产生不平衡并且增加假象,而非具有如产生先前想到的产生平衡的效果。在一些实施例中,将图2a中的“安定”(平衡)阶段与图2b中的“电荷回收”阶段重叠可以是可能的,尽管预期假象将更 高并且达到平衡所用的时间更长。
[0077]图4是利用图2的实施例的绵羊SCP的22个单独测量的图。顺序地获得这些测量用于区分刺激,刺激包括具有40 μ s脉冲宽度以及从O-1OmA变化的电流振幅的双相电流脉冲。然后,将这些测量标绘在单个图表中以产生图4。记录的信号由神经反应和小的电极假象组成。神经反应是三相的,由正峰Ρ1、随后是负峰NI并且然后是第二个正峰Ρ2组成。图4中的神经反应表面波度的特征是轴突复合动作电位的胞外记录。由于初始膜去极化,第一阶段Pl由电容电流占主导地位。由于在神经元膜动作电位的过程中Na+的流入,所以阶段2由Na+离子电流占主导地位并且是阴性的。由于在复极化过程中K+离子传导,所以第三阶段是阳性的。
[0078]由于不存在刺激串扰以及减少的假象,所以图4的波形具有比先前途径产生的测量更低的动态范围和更简单的表面波度。当希望提供建立在植入式集成电路上的系统时,与用于特征提取的信号处理系统一样,难以设计宽动态范围的放大器。有益地,示于图4中的测量的波形的性质允许例如用于提取峰到峰SCP振幅的电路具有在由先前途径所产生的波形上运行将所需的部件更少的部件。因此,本发明用于减少假象的技术大大协助建立实用的植入式、诱发反应反馈系统。
[0079]此外,值得注意的是,在40 μ s脉冲宽度的情况下,在诱发的CAP开始之前,使测量系统安定下来并且准备记录。传感电极离刺激电极小于50mm,并且在将测量放大器切换之前观察到50 μ s的刺激后延迟,用来获得示出于图4中的记录。如在图4中可见,最大的峰到峰反应是约2.4mV,显著小于当施加IOmA刺激时存在的电压。此外,绵羊的硬膜外腔比人类小得多,并且所以预期电极离绵羊神经组织更近并且在绵羊中传感的三相电位的强度相对应地高于预期人类的强度,这强调了做出这样的记录的难度。[0080]图5图示了本发明的替代性实施例的电路图,其中使用微差测量放大器,并且经由电压轨Vdd回收电荷。如可见,根据本发明,不管使用不同的硬件,以一种相对应的方式实施测量阶段。
[0081]在图2亦或图5的实施例中,假象可以导致高增益测量放大器210限幅,并且随后该放大器可以缓慢恢复。然而,在优选实施例中,作为由“刺激”阶段向“测量”阶段的跃迁的采样点被延迟,这允许避免限幅。图6图示了确定通常在50-200 μ s的范围内的适合的延迟602的方式,注意到快速反应典型地在约2ms内结束。此类实施例可以允许使用比将以另外的方式成为这种情况的更高的放大器增益。具体地,在希望高增益并且感兴趣的SCP不立即跟随该刺激的情况下,可变延迟和增加的放大器增益可以是特别恰当的。因此,延迟测量的开始将避免限幅的副作用。
[0082]在示于图7中的本发明的另一个实施例中,一种用来消除来自SCP测量的假象的方法是交替刺激波形的阶段并且取获得的测量的平均值。当这些刺激电极具有不同面积时,这种方法是有效的。例如,在三极刺激中,在第一阶段中一个中心电极被阳极地驱动并且由该阵列的单个电极组成,而在第一阶段中被阴极地驱动的电极由该阵列的两个平行连接的电极组成。平行的电极将通常在其他刺激电极的任一侧。类似地,如果刺激是在硬膜外腔中的一个电极与其他地方(例如被附接至植入体)的一个电极之间,那么获得被称为“单极”刺激的刺激模式。
[0083]图7示出了阳极“阳极第一”刺激702的刺激电流、以及阴极“阴极第一”刺激704的刺激电流。在这个实施例中,在每次刺激之后,与获得的对应的CAP测量顺序地施加这些。还示出了由每次这样的刺激产生的对应的测量电极电压706和708。当在波形706、708中指示时,将观察到来自这两个刺激的每个的假象具有大体上相同的强度,但是符号相反。在大多数情形下,将发现假象极性依赖于刺激极性。一个实例是由前置放大器206的高通极点导致的电假象。清楚地,尽管它们的效果不同,但是可以使用任一阶段用于刺激神经组织。
[0084]相反,正相刺激702和负相刺激704产生具有不同振幅但近似相似形状并且重要的是相似极性的SCP,因为这是由脊髓神经纤维膜的构造和生理机能决定的。因此,当记录并且平均由正相刺激702和负相刺激704产生的电压706、708时,反相刺激假象大体上相互抵消,留下SCP或两个SCP710的组合。注意的是,在实际情形中,假象可以具有比SCP远远更高的振幅,与从图7中清楚的情况相比,使得远远更难以检测SCP。
[0085]脊髓对这两种极性的刺激的反应被称为“阳极” SCP反应和“阴极” SCP反应,如参照被认为是离记录电极最近的电极。即,阳极三极刺激使得中心刺激电极在刺激的第一阶段是阳极的。通常,与阳极刺激的情况相比,阴极刺激具有用于神经激活的更低阈值。不过,SCP极性与该刺激是阳极的702或阴极的704无关。
[0086]图8a图示了分别响应阳极单相刺激和阴极单相刺激而获得的脊髓测量,刺激具有相等的振幅。注意的是,响应阳极刺激而获得的测量缺乏特有的P1-N1-P2形式,这表明在这种情况下阳极刺激不诱发神经反应。相反,响应阴极刺激而获得的测量展示出显著的诱发神经反应。
[0087]图8b示出了图1Oa中的两个反应的平均值。如可见,虽然SCP的特有形式已经被改变,但是因为具有相反极性以及相等振幅的刺激产生具有当平均时相互抵消的相反极性以及相等振幅的假象,假象被基本上去除。
[0088]本发明的这个实施例进一步认识到,不管非典型的SCP形式,可以使用图Sb的平均波形来获得信息的范围。在此方面,图9图示了针对阳极单相刺激和阴极单相刺激两者的针对刺激振幅的SCP增长曲线。图9还示出了平均SCP针对刺激振幅的增长行为。从图9中可以看出,对于阴极刺激而言,平均反应的阈值与更敏感的反应的阈值相等。
[0089]当刺激振幅在范围902内,这样使得只有阴极刺激产生SCP时,然后平均SCP波形将具有正常的SCP表面波度,但是由于取平均值,与真正的阴极SCP相比,将是一半振幅。在阳极反应和阴极反应两者都有助于平均SCP的范围904中,合成的平均SCP波形将具有在两个测量之间的表面波度。这将并不直接表示SCP,而是两个不同SCP的平均值。不过,因为这种波形给出与神经募集成比例的值,所以它仍然可以是有价值的,例如在实施用于刺激调节的自动控制环中。
[0090]进一步应该注意的是,由图9描绘的原理以类似方式应用于其他刺激极性。例如,一些实施例可以用具有一个操作为阴极的中心电极并且具有两个操作为阳极的边缘电极(立即至该中心电极的各侧的那些)的三极安排进行刺激。三极安排意指在两个边缘电极之间共享电荷回收。对于双相三极刺激而言,在第二相中的阴极电荷在两个电极之间共享并且因此是第一相中的阴极电荷的一半。因此,示于图9中的原理对于三极刺激而言是真实的,至少直到电流是阈值电流的两倍的点处,在该点处边缘电极电流各自处于阈值处并且将因此开始产生动作电位。 [0091]本发明的一些实施例,例如图5的实施例,可以使用差分放大器,以便检测两个传感电极之间的电压差。差分放大器简化了分离电极假象的任务。如果它们被连接至具有相似面积的电极,并且以一种相似的方式与刺激电极分离,那么它们接受类似水平的电极假象并且当获得其电压差时将去除电极假象。然而,在这样的一个系统中,由该放大器记录的电压是沿着一束神经元的两个点处的电压差,并且因此可以是难于解释的。当进行SCP测量时,优选的是使用单端放大器,因为它们更加精确地测量SCP,并且它们在测量SCP中更灵敏。
[0092]通常使用差分放大器,因为当其他手段不充分时,差分放大器提供用于减少电极假象的手段。然而,图10图示了一个用差分放大器测量SCP的问题。它示出了脊髓电位。因为这个电位以可以高达80m.S-1的速度沿着脊柱行进,所以它还可以被认为是空间波。在SCP的快速反应的峰到峰周期典型地持续Ims的条件下,这个波将在这个时间内行进8cm。使用lms=8cm的比例,在图10中画出了在SCP旁边的5cm电极阵列。与这个电极阵列连接的是被配置为进行来自独立的传感电极对的微差SCP测量的两个放大器。如可以从图10所见,在相邻电极上的电压差将相当小并且显著地小于SCP的峰到峰振幅,并且因此更易受由该放大器产生的电噪声的影响。该放大器的输出将近似于SCP的微分,并且因此比SCP本身的简单测量更难解释。如果用微型包装(miCTo-package)刺激器设计来测量诱发的SCP,例如在使用两线总线的系统中,不相邻电极之间的微差测量是不可能的。此外,如果希望测量具有约6ms的周期以及相对应地减少的信号梯度的SCP的缓慢反应,甚至更难于实现微差测量。因此,将理解的是只要假象可以被保持在一个足够低的水平,单端测量是优选的。
[0093]用本发明的测量续发事件,减少假象,这样使得一些实施例反而可以使用单端放大器,甚至在先前它们将受到太多电极假象的情形中。此外,到目前试验示出记录可以从刺激的中断的极短时间间隔开始,允许使用同一电极阵列用于记录和刺激,并且甚至允许在具有小于IOmm的电极间距的电极阵列中紧邻刺激电极的电极上进行记录。
[0094]单端放大器具有另外的优点,即与差分放大器相比,它们由更少的电容器和放大器部件组成,所以在硅片上将占据更少的空间,当旨在用于在具有许多电极的植入式系统中使用时以及在每个放大器的硅面积受限的情况下,这具有显著的益处。
[0095]对每个电极而言,本发明的优选实施例可以包括以平行方式组织的单独的放大器链(例如206、208、210,参见图2 ),这允许来自多个平行的传感电极的单个CAP的同时记录,并且还消除在将传感电极切换至共享测量放大器的系统中出现的开关噪声。
[0096]本发明的另外的实施例可以采用可分割电极,如下面参照图11和图12所讨论的。当具体考虑电极假象时,对电极假象的来源相对理解很差。金属电极的表面可以模制为RC网络。对于一个精确的模型而言,需要无限相元件(infinite-phase element),但是对于解释假象而言,简单的RC模型将足够,如示于图1la中。导电溶液可以模制为电阻器的网格。当导电溶液与一块具有有限尺寸的金属相遇时,该金属提供至该溶液的替代性传导通路。这在具有相反极性的电极的“末端”处装载电极对组织(electrode-to-tissue)电容。该电极不获得净电荷,但是它的确中断,以处于平衡。在外电流中断之后,然后电极将电流通过溶液而传递,因为在刺激之后,它重新平衡一段短的时间。该电流将影响溶液中的另一个电极的电位,并且在多电极阵列的情况下,响应在那个电极上经历的局部条件,在每个电极上将出现独特的这样的电流。这样的重新平衡电流的累积效果通过传感电极作为电极假象而见到。
[0097]当电流在两个电极之间流动时发生类似效应,如图1lb所示。在施加刺激过程中,电流优先在电极最接近的 部分之间流动。当电流中断时,位于电极的表面的电荷必须重新平衡;这还导致残余电流并且有助于通过传感电极可见的电极假象。
[0098]图11的模型预测使用更小的电极将减少假象。然而,当用作测量电极时,更小的电极将具有更高的噪声,并且当用作刺激电极时,将具有更高的电阻以及更低的载流量。用来减少假象而不影响噪声、阻抗或载流量的两个手段示于图12a和图12b中。图12a的电极配置减少在单个金属电极上诱导的假象;该电极由在刺激阶段可以被断开并且在测量阶段可以被重接的两个或更多个更小的电极组成。在图12b的配置中,将电极分段,并且为每个区段提供单独的电流源。这迫使区段中的电流匹配,并且因此减少假象。
[0099]在一些实施例中,可以使用本发明的诱发反应遥测术来监测递送的化合物的效果。给予化合物(药物或其他化学疗法)来实现神经系统的改变普遍用于为数众多的疾病和失调的治疗。向脊髓给予不同类型的麻醉剂用于缓解疼痛。也许最常见形式是在硬膜外腔中给予麻醉剂,用于缓解分娩过程中的疼痛。
[0100]在此类实施例中,包括药物递送管的导管可以配备有电极元件并且对其进行配置以获得根据本发明的神经反应测量,以便监测对神经反应的药物诱导的效果。可替代地,可以临时地或永久地植入并且使用电极阵列来施加神经刺激并且监测神经反应。在药物给予过程中可以重复地获得神经反应测量,以便直接测量给予的药物的效果并且控制递送的剂量。
[0101]图15a和图15b图示了向脊髓给予麻醉剂的效果,其中在给予之前神经反应存在并且在给予之后在很大程度上不存在。如可见,在测量的诱发反应与麻醉剂的剂量之间存在直接相关性。一旦神经反应振幅降至所希望的水平,可通过中断麻醉剂的给予来实现“部分阻断”。在此所描述的技术适合受试者的体内的全植入并且因此诱发电位监测可以用于活性化合物的给予以产生治疗益处。该系统可以被整合在可植入的泵内以控制化合物的给予。
[0102]图14示出了将进行电极短路时出现的假象与在刺激之后,当传感电极与测量电路和刺激电极断开时出现的假象进行比较的两个图。
[0103]图14的图是从放置于盐水浴中的阵列获得的,并且是在以下条件下得到的。使用三极配置施加一个刺激,该刺激包括IOmA振幅和历时400 μ s的双相脉冲,其中电极El和Ε3接地并且电极Ε2以40Hz的刺激率进行刺激。在每个图的电极4上获得感兴趣的假象测量(1502、1512)。在两个图中使用本发明的方法,在电极5至7上还获得了测量,这些测量被集体地表明在1504、1512上。每个图的测量参数包括在刺激之前,通过将刺激电极相互短路100 μ s来回收刺激电极上的电荷。如图14a所示,当将传感电极如由现有技术方法所教授的进行短路时,在测量1502中的假象远大于存在于测量1504中的假象。相反,如由本发明所教授,在刺激之后,当传感电极E4与测量电路和刺激电极断开时,来自电极E4的测量1512中的假象被大大减少。在优选实施例中,这种益处的作用是可以在具有足够的信噪比的单个测量中记录诱发反应,以允许单独的诱发反应测量的分析。此外,在一些实施例中,响应正常的治疗刺激可以获得这样的“单发”测量。这避免浪费电池电能以递送一系列具有远远地在正常的治疗设置之外的参数的大功率刺激,并且因此不具有治疗益处,以使能够在大量测量上提取平均反应,如在具有差的假象性能的系统中所需要的。
[0104]本领域技术人员应理解,在不偏离广泛描述的本发明的精神或范围的情况下,可以对如具体实施例所示的发明做出众多的变化和/或修改。例如,在电荷回收(图2b)、刺激(图2c)以及延迟(图2d)的测量阶段,将这些传感电极描述为与传感电路断开。在图2的实施例中,这是通过将取样与保持208设置为“保持”而实现的,并且应该注意的是,在替代性实施例中,可以将取样与保持208放置在测量链中的其他位置。此类实施例应该全部被理解为在短语“将传感电极 与测量电路断开”或如在此使用的类似短语的范围内。因此,现有的这些实施例在所有方面都被认为是说明性的而非限制性的。
【权利要求】
1.一种用于测量对刺激的神经反应的方法,该方法包括: 通过将一个传感电极连接至测量电路,以允许这一测量电路朝向生物电学上定义的稳态安定下来,从而在刺激之前,使这一测量电路安定; 通过将刺激电极彼此短路来回收这些刺激电极上的电荷; 向神经组织施加一个来自这些刺激电极的电刺激,同时保持该传感电极与这一测量电路断开; 强加一个延迟,在该延迟期间这些刺激电极是开路的并且该传感电极与这一测量电路和这些刺激电极是断开的;并且 在该延迟之后,通过将该传感电极连接至这一测量电路来测量存在于该传感电极上的神经反应信号。
2.如权利要求1所述的方法,其中在该刺激后延迟期间,该传感电极是开路的,以便与该阵列中的所有其他的电极断开,以阻止电荷从其他非刺激电极转移至该传感电极。
3.如权利要求1或权利要求2所述的方法,其中进行重复的测量周期,并且其中允许该测量放大器在多个周期上积攒一个生物电学上定义的稳态偏置点而无需在每个周期中重新设置该偏置点。
4.如权利要求1至3中任一项所述的方法,其中这一安定周期足够长以允许这些电极和电路达到一个如被刺激率所允许的平衡。
5.如权利要求1至4中任一项所述的方法,其中该延迟在大体上零至Ims的范围内。
6.如权利要求5所述的方法,其中该延迟在大体上50μ s至200 μ s的范围内。
7.如权利要求1至6中任一项所述的方法,其中将该延迟设置为确保该测量放大器不被饱和的值,并且因此当被连接而未经历限幅时始终线性地执行。
8.如权利要求7所述的方法,其中应用一个反馈环路,以确定针对一个给定的刺激避免放大器饱和的适合的最小延迟。
9.如权利要求1至8中任一项所述的方法,其中将来自该传感电极或每个传感电极的信号传递至测量放大器的输入端的一个采样保持电路。
10.如权利要求1至9中任一项所述的方法,其中在该传感电极与该测量放大器之间提供一个缓冲放大器或跟踪放大器,这样使得该缓冲器的高反向阻抗有效地阻止开关瞬变现象被传送至该传感电极,由此避免当经受这样的瞬变时,在该传感电极上可能出现的假象。
11.如权利要求1至10中任一项所述的方法,其中该缓冲放大器被配置为:给出用来驱动取样保持电路的储能电容器的电流增益。
12.如权利要求10或权利要求11中任一项所述的方法,其中在该传感电极与该缓冲器之间插入一个串联电容器以避免与该组织的DC传输。
13.如权利要求1至12中任一项所述的方法,其中该刺激和这些传感电极选自植入式电极阵列。
14.如权利要求1至13中任一项所述的方法,其中该电极阵列中的每个电极配备有一个相关联的测量放大器,对其进行配置,以便避免将这个或这些传感电极切换至一个共享测量放大器的需要。
15.如权利要求1至14中任一项所述的方法,其中该测量是通过将来自单个的传感电极的信号传递至单端放大器而获得的单端测量。
16.如权利要求1至15中任一项所述的方法,其中该测量是通过将来自两个传感电极的信号传递至差分放大器而获得的微差测量。
17.如权利要求1至16中任一项所述的方法,其中当通过将这些刺激电极一起短路来回收电荷时,该传感电极与这一测量电路是断开的,例如通过将采样保持电路设置为“保士土”f寸ο
18.如权利要求1至17中任一项所述的方法,其中通过以下来获得平均CAP测量:(i)递送一个第一极性的第一刺激,并且获得由该第一刺激诱发的CAP的第一测量;(ii)递送在该第一极性对面的一个第二极性的第二刺激,并且获得由该第二刺激诱发的CAP的第二测量;并且(iii)取第一测量和第二测量的平均值以获得平均测量。
19.如权利要求18所述的方法,进一步包括获得平均测量对比刺激振幅的曲线,以便获得关于由每个刺激所造成的募集的信息。
20.如权利要求19所述的方法,其中使用该募集信息用于对该植入物的反馈控制。
21.如权利要求1至20中任一项所述的方法,其中为了量规药物递送的疗效,与药物的给予同时施用。
22.如权利要求21所述的方法,其中通过基于CAP测量的反馈来控制药物递送。
23.如权利要求1至22中任一项所述的方法,其中在约3cm的刺激位点内记录CAP。
24.如权利要求1至23中任一项所述的方法,其中该刺激包括双相脉冲,并且这些刺激电极未配置有电容器,以便允许刺激电极电流被中断或强制置零,例如在那些它将干扰测量的时候。
25.一种用于测量对刺激的神经反应的可植入装置,该装置包括: 多个电极,包括一个或多个标称刺激电极以及一个或多个标称传感电极; 一个用于提供待从该一个或多个刺激电极递送至神经组织的刺激的刺激源; 用于放大在该一个或多个传感电极上感测的神经信号的测量电路;以及一个被配置为控制向该神经组织施加刺激并且测量诱发的神经反应的控制单元,该控制单元被配置为:通过将该传感电极或每个传感电极连接至这一测量电路,以允许这一测量电路朝向生物电学上定义的稳态安定下来,从而在刺激之前,使这一测量电路安定,该控制单元被进一步配置为:通过将这些刺激电极相互短路来回收这些刺激电极上的电荷,该控制单元被进一步配置为:使该刺激源将来自这些刺激电极的电刺激施加至神经组织,同时保持该传感电极或每个传感电极与这一测量电路断开,该控制单元被进一步配置为:强加一个延迟,在该延迟期间,这些刺激电极是开路的并且该传感电极与这一测量电路以及这些刺激电极是断开的,并且该控制单元被进一步配置为:通过在该延迟之后,将该传感电极或每个传感电极连接至这一测量电路来测量在该传感电极上存在的神经反应信号。
26.一种用于神经刺激的反馈控制的方法,该方法包括根据权利要求1至24中任一项的方法获得CAP测量的植入式控制单元,以及使用获得的CAP测量的植入式控制单元,用来通过植入物控制随后神经刺激的递送。
【文档编号】A61N1/36GK103648583SQ201280033909
【公开日】2014年3月19日 申请日期:2012年5月11日 优先权日:2011年5月13日
【发明者】约翰·路易斯·帕克, 彼得·斯科特·瓦尔莱克·辛格, 迪安·迈克尔·卡兰托尼斯 申请人:萨鲁达医疗有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1