基于聚合物的耐水牙科制品的制作方法

文档序号:20273975发布日期:2020-04-03 19:24阅读:235来源:国知局
基于聚合物的耐水牙科制品的制作方法

本公开涉及基于聚合物的牙科制品,诸如牙齿矫正器。



背景技术:

正畸学领域涉及朝向口腔中的正确位置监督、导引并矫正牙齿。已开发出各种正畸装置和治疗方法来解决牙齿对齐问题。传统方法大体涉及施加力来将牙齿移动到正确的咬合构造或封闭。一种治疗模式包括使用附接到患者牙齿的固定器具,和使用弓丝、施加温和的治疗力,以将牙齿从不适当的位置移动到适当的位置。此类牙科器具保持在患者口中,并且由正畸医生定期调节以检查该过程并保持对牙齿的适当压力,直到实现正确对齐。

已使用基于聚合物的组分制备牙科矫正器和其它牙科制品。在一些此类示例中,基于聚合物的组分可以是相对透明或透明的,以提供比金属、陶瓷或类似类型的装置更不显眼的外观。



技术实现要素:

在一些示例中,本公开描述了一种牙科制品,该牙科制品包括基材,该基材包含聚合物材料,其中基材的弹性模量在接触水时减小,以及基材上的耐水涂层,其中耐水涂层包含聚对二甲苯。

在一些示例中,本公开描述了牙科制品,该牙科制品包括三维打印的聚合物基材和施用在基材上的耐水涂层,其中耐水涂层包括聚对二甲苯层。

在一些示例中,本公开描述了一种方法,该方法包括形成用于牙科制品的基材,其中该基材的弹性模量在接触水时减小,以及用包含聚对二甲苯的耐水涂层涂覆基材。

在一些示例中,本公开描述了一种方法,该方法包括形成患者的牙科解剖结构的模型,在模型上施用包含聚对二甲苯的第一涂层,在第一涂层上热成形聚合物材料的片材,修剪聚合物材料的片材以形成基于聚合物的基材,将包含聚对二甲苯的第二涂层施用到基于聚合物的基材的暴露表面上,修剪第二涂层以限定牙科制品,牙科制品包括基于聚合物的基材、第一涂层和第二涂层,以及将牙科制品与模型分离。

在附图和下文的说明中将示出一个或多个示例的详情。根据具体实施方式和附图以及根据权利要求书,本发明的其他特征、目的和优点将显而易见。

附图说明

图1为包括基于聚合物的基材和包含聚对二甲苯的耐水涂层的示例牙科制品的透视图。

图2-4为示例牙科制品的剖视图,该示例牙科制品包括具有包含聚对二甲苯的多层耐水涂层的基于聚合物的基材。

图5是示出用于形成牙科制品的示例技术的流程图,该牙科制品包括基于聚合物的基材和包含聚对二甲苯的耐水涂层。

图6为示出了用于同时形成基于聚合物的基材并在基于聚合物的基材上施用包含聚对二甲苯的耐水涂层的技术的示例流程图。

图7a-7g是用于形成用包含聚对二甲苯的耐水涂层包封的牙科制品的示例层构建方法的示意性剖视图。

具体实施方式

本公开描述了牙科制品,该牙齿制品包括基于聚合物的基材和包含聚对二甲苯的耐水涂层,以及它们的制备方法。此类牙科装置可包括例如牙托矫正器、牙冠、夜间护套、保持器、植入物、假牙、部分(partial)、临时置换件、弹性带、弹簧、弹簧矫正器、聚合物弓丝和弓形构件、定制力构件、附件、支架和其它粘结的器具、用于递送治疗剂的牙托等。该描述主要集中于和描述牙托矫正器;然而,许多牙科制品可使用本文所述的部件和技术来构造。本公开并不旨在通过专注于牙托矫正器的细节来限制于特定类型的牙科制品。

本文所述的牙科制品可包括基于聚合物的基材和在基材上包含聚对二甲苯的耐水涂层。在一些示例中,用于形成此类牙科制品的基材的聚合物材料可表现出若干有用的品质,诸如可模塑性、可打印性、刚度、强度、耐久性、美观的颜色或透明性、触觉上令人愉悦的纹理等。然而,用于此类装置中的一些聚合物材料在水的存在下随时间推移经历机械特性的软化或降解,诸如降低基材的弹性模量。例如,一些聚合物材料可具有相对高的弹性模量,这部分地归因于聚合物链之间的氢键。接触水可减少或消除氢键,这可降低聚合物材料的弹性模量。该降低导致基材软化,这可使得基于聚合物的基材不太适用于某些类型的装置,包括例如用于对患者的牙齿施加或保持力的牙托矫正器或其它牙科制品。例如,牙托矫正器可用于向患者的牙齿施加机械力以将牙齿移动到新的对齐。为了移动牙齿,牙科矫正器必须向牙齿施加大于刺激骨重塑和牙齿的对应移动所需的阈值的治疗力。在接触水时,减小的弹性模量或恢复力可抑制牙托矫正器施加或保持此治疗力的能力,从而使牙托矫正器失效,或者至少在其表达牙齿的规定移动的能力方面至少有所降低。

用包含聚对二甲苯的耐水涂层涂覆此类基于聚合物的基材可显著减少由于将基于聚合物的基材接触水而造成的有害效果,以及向牙科装置赋予其它有用的有益效果。在一些示例中,耐水涂层可包括包含聚对二甲苯的层。可使用化学气相沉积方法来施加包含聚对二甲苯的层。气相沉积方法可得到具有相对高密度(低孔隙率)的层,这可有助于涂层的耐水性。除此之外或另选地,气相沉积方法可产生基本上符合基材几何形状的层。例如,层可具有基本上一致的厚度。这可有利于涂覆基于聚合物的基材,同时还实现牙科制品的目标几何形状,这对于牙科装置诸如牙托矫正器等可以是重要的,其中精密配合对于使用该装置实现期望的结果可以是重要的。

图1为示例牙科制品10的透视图,该制品包括基于聚合物的基材12和在基于聚合物的基材12上包含聚对二甲苯的耐水涂层14。在图1的示例中,牙科制品10包括牙托矫正器。然而,牙科制品10不必限于牙托矫正器。在其它示例中,牙科制品10可包括用于牙科手术中的其它基于聚合物的装置,包括但不限于牙冠、夜间护套、保持器、植入物、假牙、部分、临时置换件、弹性带、弹簧、弹簧矫正器、聚合物弓丝和弓形构件、定制力构件、附件、支架和其它粘结器具、用于递送治疗剂的牙托等。

在一些示例中,基于聚合物的基材12可包含生物相容性聚合物材料。根据用于牙科制品10的具体应用,在一些具体实施中,基于聚合物的基材12可具有大于约100mpa(诸如介于约300mpa和约5mpa之间)的弹性模量。然而,如上所述,此类聚合物的弹性模量可在接触水时降低。此外,水接触可导致变形聚合物应力松弛,从而减小施加到牙齿上的恢复力。在一些示例中,基于聚合物的基材12的相对高弹性模量可允许牙科制品10表现出足够的硬度,即使在基于聚合物的基材12相对较薄的情况下也是如此。例如,当牙科制品10为牙托矫正器时,基于聚合物的基材12的刚度可允许矫正器施加治疗力以主动地压迫患者的牙齿并将牙齿引导成新的对齐。为了引起牙齿移动,治疗力通常必须高于阈值。该阈值可略微一般化以适合一群典型患者,或者可根据多个因素定制该阈值,包括收缩血压、骨密度、免疫系统健康、抗炎药物的使用等。一旦移除牙托矫正器,牙齿将保持其初始位置,或者至少部分地返回到它们的先前位置。因此,在一些示例中,通过配制基于聚合物的基材12以具有和保持大于约300mpa的弹性模量,基于聚合物的基材12即使当此制品的厚度保持相对较薄(例如,约300微米(μm)至约1000μm)时也可对牙齿施加期望的治疗力。

除此之外或另选地,通过配制基于聚合物的基材12以限定小于约5gpa的弹性模量,基于聚合物的基材12仍可保持一定的柔性以允许牙科装置10在需要时具有一定程度的柔韧性。在牙托矫正器的示例中,基于聚合物的基材12的柔韧性可允许牙科制品10在患者牙齿的轮廓上推进,以允许在需要时插入和/或移除牙科制品10。在一些示例中,材料的弹性模量可根据astmd638进行测量。

在一些示例中,基于聚合物的基材12可包含(甲基)丙烯酸酯聚合物、环氧树脂、硅氧烷、聚酯、聚氨酯、硫醇聚合物等。合适的丙烯酸酯聚合物可包括氨基甲酸酯(甲基)丙烯酸酯聚合物、聚环氧烷二(甲基)丙烯酸酯、烷烃二醇二(甲基)丙烯酸酯、脂族(甲基)丙烯酸酯、硅氧烷(甲基)丙烯酸酯等。在一些示例中,基于聚合物的基材12可包含氨基甲酸酯(甲基)丙烯酸酯聚合物,该聚合物包含烷基、聚亚烷基、聚环氧烷、芳基、聚碳酸酯、聚酯、聚酰胺以及它们的组合。适用于用作基于聚合物的基材12的示例氨基甲酸酯(甲基)丙烯酸酯聚合物描述于授予parkar等人的共同未决的美国临时专利申请序列号62/536,568中,其标题为包含氨基甲酸酯低聚物和反应性稀释剂的可光致聚合的组合物、制品和方法(photopolymerizablecompositionsincludingaurethaneoligomerandareactivediluent,articles,andmethods),其内容全文以引用方式并入本文。此类氨基甲酸酯(甲基)丙烯酸酯聚合物由于其在体温或三维打印能力下的机械特性而尤其有用。然而,氨基甲酸酯(甲基)丙烯酸酯聚合物是亲水性的,并且氨基甲酸酯(甲基)丙烯酸酯聚合物的机械特性可在富水环境如患者口腔内降解。例如,接触水可导致氨基甲酸酯(甲基)丙烯酸酯聚合物的弹性模量或应力弛豫例如由于二次相互作用如氢键的损失而降低。因此,在牙科制品10用于向患者的牙齿施加力的应用中,牙科制品10可在一段时间内不能正常工作。在此类示例中,用聚对二甲苯施用耐水涂层14可显著减少或防止氨基甲酸酯(甲基)丙烯酸酯基材的水解降解。

在一些示例中,基于聚合物的基材12可包括基于聚对苯二甲酸乙二醇酯的聚合物,诸如聚对苯二甲酸乙二醇酯二醇(petg)。petg是在室温下表现出足够弹性模量(例如,约1.95gpa)的热塑性聚合物。petg可具有高拉伸强度、高冲击强度、高弯曲强度、良好的耐热性和良好的可打印性。

可使用任何合适的技术将基于聚合物的基材12成形为期望的形状。在一些示例中,可使用热成形模制方法将基于聚合物的基材12成形为患者牙齿的形状。例如,患者牙科解剖结构的至少一部分的模具塞或阳性模型可使用合适的技术形成,诸如通过3d打印、铣削、浇注印模浇铸或者在蜡中设定分段齿。用于形成基于聚合物的基材12的材料的片材可被加热至其玻璃化转变温度,在牙齿模型上悬垂并经受空气压差,使得比邻近模型的内表面向片材的外表面施加更高的压力。注意,如果邻近模型的压力低于环境空气压力,则该压差称为“真空”,如果施加到外表面的压力高于环境空气压力,则称为“正压力”。压差使片材适形于牙齿模型的表面,并且通过保持压差直至片材冷却至低于其玻璃化转变温度来保持形状。

在其他示例中,三维打印或添加剂制造可用于形成基于聚合物的基材12。例如,可使用例如口内扫描仪来产生患者的牙齿的数字三维表示。然后可基于牙齿的数字表示使用三维打印机直接制备基于聚合物的基材12。

然而,如上所述,用于形成基于聚合物的基材12的一些聚合物可适用于三维添加剂制造,但可在存在水的情况下吸收水或者被软化,这可导致此类聚合物不太适用于某些类型的牙科应用(例如,牙托矫正器)。此外,三维打印方法以逐层或逐体积为基准将材料添加到部件上。此类构造技术可产生由轮廓线或“梯级台阶”(也称为混叠效应)标记的纹理化表面,这在口腔应用中由于感官感觉差而不太理想。另外,使用三维打印装置形成的基于聚合物的基材(尤其是透明聚合物)可由于由逐层或逐体积构建过程所产生的阶梯式或纹理化结构而散射光。这导致基于聚合物的基材12的光学透明度降低。在美观和透明度重要的应用中,诸如在牙托矫正器中,此类与三维打印相关的缺陷使得此类构造技术由于视觉和触觉性能差而不太理想。

由混叠或表面粗糙度产生的其它不期望的效果可包括生物膜的形成以及与牙列中的相对表面的增加的摩擦或干涉作用。口腔生物膜包括可导致酸产生、气味和结石积累的细菌培养物。在制造过程期间在材料层的边界处产生的内角可用作细菌培养物的庇护所,从而保护它们免受唾液流动以及舌头和口腔粘膜的擦拭作用。在一些示例中,类似的效果可源自在用于形成基于聚合物的基材12的光聚合方法期间在曝光边界处产生的更精细水平的纹理。此类纹理可包括微观纹理(例如,尺寸小于约20μm的纹理),其特征在比像素或打印层小得多的标度上。因此,如果未将其抛光成高光泽度或者使用有光泽涂层保护,则生物膜粘附可发生在器具的表面上。

牙科制品10可包括耐水涂层14,其可解决这些不期望的效果中的一些或全部。例如,耐水涂层14可在接触水时改善牙科制品10的稳定性。在此类示例中,耐水涂层14可充当水的屏障,减少或基本上防止水进入基于聚合物的基材12中,从而允许基于聚合物的基材12在水的存在下基本上保持其机械特性。此外,在一些示例中,耐水涂层14内的聚对二甲苯的阻隔特性也可降低痕量的游离单体、引发剂或从基于聚合物的基材12扩散到口腔环境中的其它分子的透射率。

除此之外或另选地,耐水涂层14可改善牙科制品10的视觉或触觉特性。例如,如下文进一步所述,聚对二甲苯可通过使用进行聚合的对二甲苯气体的化学气相沉积来沉积。由于对二甲苯分子的小尺寸和沉积方法,聚对二甲苯可沉积为相对致密且耐水的层,尤其是与使用基于液体的涂覆方法沉积的其它聚合物涂层相比。在一些示例中,包含聚对二甲苯的形成耐水涂层14的层可限定小于约5%的孔隙率。孔隙率被定义为孔的体积除以耐水涂层14的相应的层的总体积,并且可使用光学显微镜法、压汞法等来测量。

除此之外或另选地,施用包含聚对二甲苯的耐水涂层14可降低基于聚合物的基材12的外表面的粗糙度。例如,在使用三维打印生产基于聚合物的基材12的情况下,耐水涂层14可涂覆基于聚合物的基材12的表面以及由该打印方法产生的平滑的混叠效应或一般表面纹理。除此之外或另选地,由于基于聚合物的基材12的工艺形成技术,例如三维打印或其它技术,基于聚合物的基材12可限定第一表面粗糙度。由于形成包含聚对二甲苯的耐水涂层14的气相沉积方法,聚对二甲苯可使基于聚合物的基材12的表面平滑,使得耐水涂层14的外表面限定小于基于聚合物的基材12的第二表面粗糙度。总体来讲,通过减小牙科制品10的总体表面粗糙度或表面纹理的存在,与其它未涂覆的基于聚合物的基材12相比,包含聚对二甲苯的耐水涂层14同样可抑制生物膜的形成。除此之外或另选地,与其它未涂覆的基于聚合物的基材12相比,归因于包含聚对二甲苯的耐水涂层14的存在而降低的表面粗糙度也可降低牙科制品10的摩擦系数。

在一些示例中,包含聚对二甲苯的耐水涂层14可提供有光泽的表面。例如,可使用化学气相沉积(cvd)方法(例如聚合物气相沉积(pvd)方法)来施加聚对二甲苯,其中聚对二甲苯直接在基于聚合物的基材12的表面上由单个单体分子形成。这些分子以气态形式供应并在基材的表面上冷凝为聚合物,从而允许它们沉积在最小的微观腔体中。随着越来越多的分子与表面集成,涂层变得较厚,最终在这些微观腔体上填充和平滑化。除了与基材粘结之外,聚对二甲苯填充微观腔体的能力提供优异的机械联锁。结果是抵抗分层的强界面。

通过平滑化牙科制品10的外表面,制品10可在患者口中具有改善的感官感觉。另外,由于将聚对二甲苯沉积为透明涂层,因此在其中基于聚合物的基材12为透明的一些示例中,用耐水涂层14平滑化牙科制品10的外表面可改善所得制品10的透明度和总体视觉美观性。另外,通过聚对二甲苯可建立用于透光性的更线性路径,从而改善牙科制品10的光学透明度。相比之下,作为高粘度液体树脂施用并随后聚合的涂层可具有表面中微观腔体不完全渗透的缺点。

此外,在一些示例中,包含聚对二甲苯的耐水涂层14还可有效地降低存在于口腔中的染色剂诸如咖喱、芥末、葡萄酒、咖啡等的粘附性和/或渗透,以在装置的使用寿命期间提供改善的视觉美观性。

耐水涂层14可包括这样的层,该层包含聚对二甲苯(例如,聚对二甲苯-c(聚氯代对二甲苯)、聚对二甲苯-d(聚二氯代对二甲苯)、聚对二甲苯-f(聚四氟对二甲苯)、聚对二甲苯-n(聚对二甲苯)、可得自印第安纳州印第安纳纳波利斯的特种涂料系统公司(specialtycoatingsystems,indianapolis,in)的聚对二甲苯(用氟取代n二聚物的α氢原子)、可得自特种涂料系统公司(specialtycoatingsystems)的scs抗微生物聚对二甲苯技术、可得自印第安纳州印第安纳波利斯的特种涂料系统公司(specialtycoatingsystems,indianapolis,in)的聚对二甲苯或它们的组合)。在一些示例中,包含聚对二甲苯的层可使用自引发的化学气相沉积方法沉积,其中对二甲苯二聚体(例如,为制备聚对二甲苯-c而开发的[2.2]对环芳烷)是起始组分。例如,基于聚合物的基材12可被定位在真空沉积室中,该真空沉积室被抽空至约0.1托(约13.33帕斯卡)的数量级的压力,从而导致沉积室中的气体分子的平均自由路径为0.1cm的数量级。可将固态或气态的对二甲苯二聚体加热至使对二甲苯二聚体分解成单体对二甲苯气体的温度。由于在分解过程中不形成侧分子,所得的单体对二甲苯气体将为基本上纯的。可将单体气体引入到包含基于聚合物的基材12的真空沉积室中。然后可将单体气体沉积在基于聚合物的基材12上。由于气态对二甲苯单体的平均自由路径为0.1cm的数量级,因此沉积过程可为非视线过程,并且聚对二甲苯可沉积在基于聚合物的基材12的全部或几乎所有表面上。因此,在一些示例中,聚对二甲苯可基本上包封(例如,完全包封或几乎完全包封)基于聚合物的基材12。

在一些示例中,由于聚对二甲苯经由气相沉积而不是液相沉积方法沉积,因此在沉积过程期间,聚对二甲苯不会郁积(pool)、桥接或者显示弯月特性和缺陷。因此,聚对二甲苯可作为相对薄且基本上均匀的耐水涂层14施用到基于聚合物的基材12上。例如,基于液体的涂层的厚度和均匀度可与粘度、工作温度和湿度以及施用方法(例如,喷涂或浸涂)相关。在一些示例中,使用基于液体的涂覆技术施用的涂层的厚度可变化多达液体涂层的目标最终厚度的±50%。当涂覆复杂的几何形状(诸如包含许多高和复杂曲率区域的齿形矫正器)时,可加剧该问题。相比之下,包含使用气相沉积方法沉积的聚对二甲苯的层的厚度可以是汽化二聚体的量和室保压时间的函数。在一些示例中,包含聚对二甲苯的层的厚度可被控制为目标厚度的约±5%的公差。

与耐水涂层14的厚度相关联的改善的公差可用于某些正畸应用,诸如牙托矫正器,其中牙托矫正器被设计成一次仅通过一毫米的级分来移动患者的牙齿。相比之下,基于液体的涂层(例如,由喷涂或浸涂沉积技术产生的涂层)可在涂层中产生不均匀的厚度和高点,这可导致患者牙齿上的扭点或未预期的压力点,从而导致不对准或增加的不适。耐水涂层14的均匀度可改善牙科制品10的耐磨性、准确性和有效性。

在一些示例中,包含聚对二甲苯的耐水涂层14的最终厚度可为至少约5μm、至少约15μm、至少约25μm、至少约50μm、至少约100μm或至少约150μm。在一些示例中,包含聚对二甲苯的耐水涂层14的最终厚度可小于约2mm、小于约1mm、小于约250μm、小于约100μm或小于约50μm。然而,在其它实例中,包含聚对二甲苯的耐水涂层14的厚度可大于约50μm,诸如至多约5mm。在一些示例中,耐水涂层14内的聚对二甲苯层的最终厚度可大于约25μm并且小于约200μm。使聚对二甲苯层大于至少约25μm可有助于减少上述的混叠效应。

在一些此类示例中,具有非常厚的聚对二甲苯层的牙科制品10的机械特性可主要归因于聚对二甲苯涂层而不是下面的基材。厚聚对二甲苯层可提供期望且稳定的弹性模量、高断裂韧性、低蠕变、高透明度、高耐污性等。在一些示例中,耐水涂层14包括包含聚对二甲苯的层,该层限定在垂直于基于聚合物的基材12的表面的方向上测量的大于基于聚合物的基材12的厚度的厚度。

另外,与其它类型的耐水涂层相反,对二甲苯形成聚对二甲苯的沉积反应是自引发的和自蔓延的,并且不需要存在催化剂、溶剂或其它外来物质来沉积涂层。因此,包括包含聚对二甲苯的层的耐水涂层14可具有高纯度,从而导致作为牙科制品10内的残余组分的较少或基本上不需要的加工助剂(例如,催化剂和溶剂)。此外,由于对二甲苯二聚体与对二甲苯单体气体的分解是不产生任何副产物的清洁反应,因此可基于对二甲苯二聚体原料的纯度进一步控制耐水涂层14的纯度。聚对二甲苯还具有优异的生物相容性。

在一些示例中,牙科制品10还可包括在基于聚合物的基材12内或之上的干燥剂(例如,吸湿剂)。干燥剂可与耐水涂层14粘结使用,以使水对基于聚合物的基材12的机械特性(例如,弹性模量)的影响最小化。例如,干燥剂可有助于在涂覆有耐水涂层14之前对基于聚合物的基材12中的任何残余水分进行螯合。除此之外或另选地,干燥剂可螯合透过耐水涂层14的任何水分,以防止水分劣化基于聚合物的基材12的机械特性。

在一些示例中,干燥剂可包括硅胶、硅铝酸钠、沸石、亲水性聚合物、粘土等。干燥剂可以任何合适的量添加,以便不显著改变基于聚合物的基材12的底层机械特性。在一些示例中,合适的量可包括约5重量%的基于聚合物的基材12。

在其它示例中,干燥剂可在施用耐水涂层14之前沉积在基于聚合物的基材12上。在一些此类示例中,干燥剂可在牙科制品10的选定区域中结合到基于聚合物的基材12中或其上,其中装置的机械特性不那么关键(例如,在上颚区域内)而不是在基材的其它区域中或其上。

在一些示例中,耐水涂层14可包括多个层,包括包含聚对二甲苯的至少一个层,而不包括包含聚对二甲苯的单个层。例如,图2示出了示例牙科制品20的剖视图,该牙科制品包括基于聚合物的基材12和多层耐水涂层22。除了本文所述的差异之外,包括基于聚合物的基材12的制品20可基本上与图1的制品10相同。

耐水涂层22可包括多个层,诸如在基于聚合物的基材12上包含聚对二甲苯的第一层24、第一层24上的包含无机材料或聚合物硬涂层的中间层26以及中间层26上的包含聚对二甲苯的任选的第二层28。

第一层24和第二层28可各自限定在约5μm和约50μm之间(诸如在约5μm和约25μm之间)的层厚度。第一层24和第二层28中的每一者可与上文关于耐水涂层14所述的包含聚对二甲苯的层类似或基本上相同。在一些示例中,第一层24和第二层28可共同工作以减少或基本上防止水进入耐水涂层22以及由基于聚合物的基材12吸收水。

中间层26可沉积在第一层24和第二层28之间。中间层26可包含无机材料,诸如金属、金属合金、金属氧化物、陶瓷、玻璃或结晶矿物,其与包括仅包括包含聚对二甲苯的层的耐水涂层的制品相比改善牙科制品20的耐久性和磨损抗性特性。

例如,虽然第一层24和第二层28可提供足够的水阻隔特性,但聚对二甲苯可具有相对低的磨损抗性。在一些此类示例中,包含聚对二甲苯的层可通过与其它物体诸如牙齿、食物等反复接触或摩擦而变得磨损。虽然较低的磨损特性对于某些牙科应用(例如,可移除的牙托矫正器)可以是可接受的,但对于其中牙科制品为固定的或相对永久的应用,此类磨损特性可为较不可接受。需要增加的磨损抗性等级的此类牙科应用可包括牙冠、牙桥、假牙、咬合夹板、正畸支架等,其中牙科制品20保持固定在患者口中,并且与牙齿、食物等进行反复接触(例如,咀嚼、研磨)。在此类应用中,与具有仅包括具有聚对二甲苯的单层的耐水层的制品相比,中间层26可包括在牙科制品20中以增加制品20的耐久性和磨损抗性。除此之外或另选地,中间层26可包括可向制品20提供附加阻挡特性(例如,水和/或抗微生物阻挡特性)的材料(例如,金属氧化物)。

可用于形成中间层26的示例无机材料包括例如金属(例如,金、银、铝、铜、铟或钛);金属合金;金属氧化物、玻璃或陶瓷(例如,二氧化硅、氧化铝或氧化锆);金刚石状碳;金属盐;等等。金属盐诸如氯化物、氟化物、硫酸盐和碳酸盐可通过随后接触包含这些离子的酸或气体而形成。在一些情况下,向金属层施用正电荷可有利于吸引形成盐所需的负离子。在一些示例中,中间层26本身可以是包含不同无机材料层的多层。

中间层26可包括元素金属层和通过将元素金属接触大气或富氧气体环境而形成的氧化物层。在一些示例中,如下文进一步所述,金属氧化物可用于提供抗微生物或抗菌特性,以减少或基本上防止微生物污染的不期望结果中的至少一种,诸如例如,可通过表面的微生物污染或者通过在制品20的表面上形成的生物膜引起的不想要的气味、风味或变色。

任何合适的生物相容性金属氧化物可包括在中间层26中,包括例如氧化银、氧化锌、氧化铜、氧化钛、氧化铝以及它们的混合物和合金中的至少一者,诸如银铜锌合金的氧化物(例如,agcuznox)、银掺杂氧化锌、银掺杂氧化铝、银掺杂氧化钛和铝掺杂氧化锌。在一些示例中,除了金属氧化物以外,中间层26还可任选地包含附加的金属化合物,诸如氯化银、溴化银、碘化银、氟化银、卤化铜、卤化锌以及它们的组合。关于掺入金属氧化物的层的特性的附加示例描述于美国临时专利申请序列号62/685,773中,该专利全文以引用方式并入本文。

在其它示例中,中间层26可包括聚合物硬涂层。如本文所用,“聚合物硬涂层”可用于描述具有比具有相同厚度的聚对二甲苯层更高的磨料磨损抗性的基于聚合物的涂层。在一些示例中,磨料磨损抗性特性可通过紧靠相应涂层材料层的表面摩擦牙齿替代材料并评估在模拟的两周磨损后对层的损坏来测量。与包括仅包括包含聚对二甲苯的层的耐水涂层的制品相比,包含聚合物硬涂层的中间层26可改善牙科制品20的耐久性和磨损抗性特性。除此之外或另选地,聚合物硬涂层可改善牙科制品20的研磨抗性。

适用于聚合物硬涂层的示例材料可包括例如可交联的基质单体、低聚物或者具有一种或多种官能化无机填料的聚合物。无机填料可有助于改善所得层的研磨抗性。在一些示例中,聚合物硬涂层可被制备为单组分混合物、多组分可固化制剂、分散体等。优选的聚合物硬涂层可以是相对透明/半透明的、光滑的,提供对第一层24的强粘附性,在使用期间具有一定的柔性以最小化破裂、耐污性、具有大于聚对二甲苯的研磨抗性或它们的组合。示例聚合物硬涂层可包括得自美国明尼苏达州圣保罗市的3m公司(3mcorporation,st.paul,mn,usa)的3m906磨损抗性硬涂层或美国专利公布2015-0132583中所述的硬涂层,该专利全文以引用方式并入本文。

在一些示例中,中间层26可任选地包含染料或颜料以提供期望的颜色,该颜色可为例如装饰性的或者被选择为改善患者的牙齿的外观。除了上述无机材料或聚合物硬涂层之外,还可添加染料或颜料。除此之外或另选地,第一层24或第二层28可被配置成表现出某些光学特性。例如,第一层24或第二层28可包含聚对二甲苯其包含聚对二甲苯-c和被设计成在黑光下发荧光的特殊化合物。

可使用任何合适的技术将中间层26沉积在第一层24上,该技术包括例如化学气相沉积、等离子体化学气相沉积、蒸发沉积、溅射、原子层沉积、化学镀(例如,化学或自动催化电镀)、电镀(例如,在第一导电层已沉积在基于聚合物的基材12上之后)、喷涂、浸涂等。在一些示例中,中间层26的厚度在约0.1微米和约5微米之间。

虽然牙科制品20被示出为具有各自具有聚对二甲苯的第一层24和第二层28,但在其它示例中,可仅存在第一层24或第二层28中的一者。例如,图3为示例牙科制品30的示意性剖视图,该牙科制品包括具有包含聚对二甲苯的多层耐水涂层32的基于聚合物的基材12。多层耐水涂层32可包括在基于聚合物的基材12上具有聚对二甲苯的第一层24和在第一层24上的外层34。外层34可包括无机材料的层、聚合物硬涂层的层或它们的组合(例如,在无机材料的层之上的聚合物硬涂层的层)。在一些示例中,外层34可与中间层26基本上相同(例如,相同或几乎相同),并且可包含上文关于中间层26所述的无机材料、聚合物硬涂层和/或层添加剂。

在一些示例中,多层耐水涂层32的第一层24可有助于平滑化基于聚合物的基材12的外表面并且通过第一层24降低水蒸气传输速率或其它污染物的透射率。在一些示例中,外层34可为相对薄的(例如,数十纳米的数量级),同时仍为牙科制品10提供增大的研磨或磨损抗性。除此之外或另选地,由于第一层26的平滑效果,外层34可提供更连续的涂层。

在一些示例中,外层34可包括与以上相对于中间层26所述的那些类似或者基本上相同的一种或多种金属氧化物。在一些示例中,可在外层34内使用金属氧化物以在延长的时间段内提供抗微生物、抗菌或抗生物膜特性中的至少一种,以减少或基本上防止微生物污染的不期望结果中的至少一种,诸如例如,可通过表面的微生物污染或者通过在制品30的表面上形成的生物膜引起的不想要的气味、风味或变色。在一些示例中,当制品30与醇或水基电解质诸如患者口中的体液或身体组织接触时,可发生抗微生物效果,从而释放金属离子,诸如例如ag+、al+、原子、分子、簇等。产生抗微生物效果所需的金属的浓度将因金属氧化物中的金属而异。在一些示例中,所述抗微生物效果可在体液如唾液中以小于约10ppm的浓度实现。在一些示例中,在24小时接触后,外层34内的金属氧化物可表现出对金黄色葡萄球菌和变异链球菌的至少2对数微生物减少。可在根据iso测试方法iso22196:2011“塑料和其他无孔表面上的抗菌活性的测量”(“measurementofantibacterialactivityonplasticsandothernon-poroussurfaces,”)进行测试之后,用测试方法的适当修改来测量对数减少量,以适应测试材料。除此之外或另选地,金属氧化物可防止结石积聚在牙科器具上,或者可包含添加剂以防止在患者的牙齿中形成腔体。

图4为示例牙科制品40的示意性剖视图,其包括具有包含聚对二甲苯的多层耐水涂层42的基于聚合物的基材12。多层耐水涂层42包括位于基于聚合物的基材12上的中间层26和位于第一层24之外的中间层26上的第二层28。在一些此类示例中,第二层28可包含聚对二甲苯,并且有助于使中间层26的外表面平滑化,改善中间层26的耐破裂性,或者降低通过中间层26的其它材料的水蒸气传输速率或传输速率。中间层26和第二层28均可包括与上文关于图2所述的那些类似的部件。

图5是示出用于形成图1-4的牙科制品10、20、30、40的示例技术的流程图。为了进行示意性的说明,结合牙科制品10、20、30、40的各个方面描述了图5的技术。然而,此类描述并非旨在进行限制,并且图5的技术可与其它牙科制品一起使用,或者牙科制品10、20、30、40可使用与图5中所述的那些技术不同的其它技术形成。

图5的技术包括形成用于牙科制品10的基于聚合物的基材12(50),以及用包含聚对二甲苯的耐水涂层14、22涂覆基于聚合物的基材12(52)。如上所述,牙科制品10可包括由基于聚合物的基材12构成的牙托矫正器、牙冠、夜间护套、保持器、植入物、假牙、部分、临时置换件、弹性带、弹簧、弹簧矫正器、聚合物弓丝和弓形构件、定制力构件、附件、支架和其它粘结的器具、用于递送治疗剂的牙托等。

在一些示例中,基于聚合物的基材12可包括限定弹性模量大于约300mpa的聚合物材料。基于聚合物的基材12的相对高弹性模量可允许牙科制品10表现出足够程度的强度和刚度,即使在聚合物材料保持相对薄的情况下也是如此,这可特别适用于某些牙科应用诸如牙托矫正器。在一些示例中,基于聚合物的基材12可包含丙烯酸酯聚合物、甲基丙烯酸酯、环氧树脂、聚酯、聚氨酯、聚碳酸酯、硅氧烷等。基于聚合物的基材12可以是热固性聚合物材料或热塑性聚合物材料。合适的丙烯酸酯聚合物可包括氨基甲酸酯(甲基)丙烯酸酯聚合物。此类聚氨酯丙烯酸酯聚合物由于其在体温和热成形能力方面的机械特性而尤其有用。如上所述,基于聚合物的基材12的弹性模量可随时间推移在水的存在下降低。水也可加速由已挠曲或应变的基于聚合物的基材施加的应力的松弛。

基于聚合物的基材12可使用任何合适的技术形成。在一些示例中,可使用热成形模制工艺,通过在患者的三维牙齿模具上加热用于形成基于聚合物的基材12的聚合物材料的片材,并将片材真空成形至牙齿模具的轮廓,从而将基于聚合物的基材12成形为患者牙齿的形状。在其它示例中,基于聚合物的基材12可经由基于患者牙齿的数字三维表示的三维打印来形成。

在一些示例中,可在用耐水涂层14涂覆基材之前进一步处理基于聚合物的基材12。附加的处理步骤可包括例如从基材修剪和/或移除过量的材料,在基材中钻孔/切割孔、通道、狭缝等,作为形成工艺的一部分使基于聚合物的基材12脱气,干燥基于聚合物的基材12以移除残余水分等。在一些示例中,为了从基于聚合物的基材12移除残余水分,可将基于聚合物的基材12置于干燥剂中持续一段时间,以在施用耐水涂层14、22、32或42之前从基于聚合物的基材12中汲取残余水分或其它材料。基于聚合物的基材12也可在升高的温度下干燥,或者在升高的温度或环境温度下真空干燥,以蒸发来自基材的水分、其它溶剂或其它杂质。

除此之外或另选地,干燥剂(例如,吸湿剂)可直接结合到用于形成基于聚合物的基材12的聚合物材料上或之中。在一些示例中,可抛光或以其它方式机械操纵基于聚合物的基材12以减少或消除锐角或边缘或者以其它方式更好地适形于患者的口腔。也可进行各种整理技术诸如抛光以改善部件的清晰度和表面光洁度。除此之外或另选地,可在涂覆有聚对二甲苯之前,例如通过等离子体蚀刻、喷砂或研磨翻滚来处理基于聚合物的基材12,以增强两种材料之间的粘合力。

基于聚合物的基材12可涂覆有包含聚对二甲苯的耐水涂层14(52)。在一些示例中,耐水涂层14可包括由聚对二甲苯组成的至少一个层,其基本上包封基于聚合物的基材12。包含聚对二甲苯的层可以至少5μm、至少15μm或至少25μm的层厚度进行沉积。对聚对二甲苯涂层的各种修改可例如通过使用卤化单体以及/或者结合添加剂以提供附加的特性来进行,诸如来自scs涂层公司(威斯康辛州透明湖)(scscoatings(clearlake,wi))的显微resist。在一些示例中,耐水涂层14内的聚对二甲苯可包括一层或多层聚对二甲苯-c、聚对二甲苯-d、聚对二甲苯-f、聚对二甲苯ht、scs微聚对二甲苯-n、聚对二甲苯或它们的组合。在一些示例中,耐水涂层14可包括至少一层聚对二甲苯-c。

在一些示例中,可使用自引发的化学气相沉积方法将耐水涂层14沉积在基于聚合物的基材12上,以对二甲苯二聚体作为起始组分。例如,基于聚合物的基材12可被定位在真空沉积室中,该真空沉积室被抽空至约0.1托的压力。可将对二甲苯二聚体反应物加热以形成单体对二甲苯气体,其被引入到包含基于聚合物的基材12的真空沉积室中。单体气体在基于聚合物的基材12的表面上沉积并聚合,以基本上包封具有聚对二甲苯的基材。

在一些示例中,可在基于聚合物的基材12已完全形成之后施用耐水涂层14。在其它示例中,耐水涂层14可形成为基于聚合物的基材12的构造的一部分。例如,图6是示出了用于在共电流工艺中形成基于聚合物的基材12并将耐水涂层14施加到基于聚合物的基材12上的技术的示例流程图。为了清楚起见,图6相对于图7a-7g所示的制品和层进行了描述。图7a-7g是用于形成用包含聚对二甲苯的耐水涂层包封的牙科制品的示例层构建方法的示意性剖视图。

图6的技术包括使用任何合适的技术形成患者的牙科解剖结构的物理模型80(60),并且任选地用脱模剂81诸如聚乙烯醇涂覆模型80(62)。图7a示出了涂覆有脱模剂81的牙科模型80。

接着,可使用本文所述的技术将包含聚对二甲苯的第一涂层82施用(例如,使用cvd)到模型80(64)。图7b示出了具有施用在模型80上的第一涂层82和脱模剂81的牙齿模型80。一旦形成第一涂层82,就可将基于聚合物的基材材料的片材84热成形在第一涂层82上(66),如图7c所示。聚合物材料的片材由用于形成基于聚合物的基材12的相同材料形成。

然后可使用例如cnc5轴铣削或激光切割工具将聚合物片材84沿修剪线86修剪(68)至适当的尺寸。热成形聚合物片材的任何多余材料88可任选地被移除。图7d示出了被修剪成期望尺寸的聚合物片材84。在生产的此时,将形成基于聚合物的基材(例如,修剪的聚合物片材84),其中包含聚对二甲苯的层(例如,第一涂层82)被施用到基材的一侧上,同时两种材料仍在牙齿模型80上。

如图7e所示,然后可将包含聚对二甲苯的第二涂层90施用到热成形和修剪的聚合物片材84的暴露表面上(70)。聚对二甲苯的第二涂层90可与第一涂层82合并以形成包封聚对二甲苯的聚合物片材84的连续层。然后可沿着修剪线92修剪(72)第二涂层90和第一涂层82的多余部分,如图7f所示,以限定牙科制品与基于聚合物的基材(例如,热成形聚合物片材84)和在基于聚合物的基材上形成的包含聚对二甲苯的单个连续层94(例如,组合的第一涂层82和第二涂层90)的边界。然后可例如通过将制品和模型浸泡在温水中以溶解脱模剂81(如果存在的话)来将牙科制品与牙齿模型分离(74)。图7g示出了具有形成基于聚合物的基材的热成形聚合物片材84的已完成的牙科制品96,以及形成包含聚对二甲苯的耐水层的包封涂层94。

图6的技术可在制造牙科制品96方面提供一些优点。例如,通过以上述方式构造牙科制品96,除了由脱模剂81的厚度所建立的任何差异之外,形成在牙科制品96的内表面上的包含聚对二甲苯的涂层82(例如,内表面是指制品面向患者牙齿的部分)将密切关注或模拟牙科模型80的轮廓。在一些示例中,使涂层82的外表面紧跟或模拟牙科模型80的轮廓将确保牙科制品96的内表面上的涂层82不会不利地影响牙科制品96在患者牙齿上的贴合性或者与旨在由患者的牙科解剖结构占据的空间相交。

与另选的构造相比,牙科制品可通过将基于聚合物的基材12的片材在牙科模型80上热成形,移除热成形片材,并且随后用耐水涂层14涂覆热成形片材来制备,该耐水涂层在热成形片材的内表面和外表面上均包含聚对二甲苯。然而,在此类构造中,热成形片材的内表面将紧随或模拟患者的牙科解剖结构的轮廓。当将后续的耐水涂层施用到内表面上时,耐水涂层可通过有效地添加到牙科制品的内表面上而不利地影响制品的贴合性,使得内表面不再紧跟或模拟患者牙齿的牙科解剖结构。在一些示例中,牙科模型80的尺寸可过大,以便预期所施用的耐水涂层14的预期厚度。例如,牙科模型80的尺寸可被设定(例如,经由计算机建模和三维打印而实际上偏移)为使得热成形在牙科模型80上的聚合物片材(例如,基于聚合物的基材12)与患者牙科解剖结构的对应的轮廓表面偏移耐水涂层14的预期或目标厚度。然而,在一些示例中,涂层厚度的可变性,尤其是具有不断增加的耐水涂层14的厚度,仍可不利地影响所得牙科制品的贴合。通过使用上文关于图6所述的技术形成牙科制品96,内部涂层82将不会不利地影响牙科制品96的贴合性,即使在内部涂层82相对较厚的情况下也是如此。

回到图5,一旦基于聚合物的基材12形成(50)并涂覆有包含聚对二甲苯的耐水涂层14,就可将一个或多个任选的涂层施用到制品上。例如,图5的技术还包括用中间层26涂覆基于聚合物的基材12(54)以及用包含聚对二甲苯的第二层28涂覆基于聚合物的基材12(56)的任选步骤。

如上所述,可使用任何合适的技术将中间层26沉积在第一聚对二甲苯层24上,该技术包括例如化学气相沉积、蒸发沉积、溅射、原子层沉积、浸涂、喷涂等,并且可包含如上所述的聚合物硬涂层,或者可包含任何合适的无机材料,诸如金属、金属合金、金属氧化物、陶瓷、玻璃、结晶矿物等。在一些示例中,中间层26可为透明且连续的膜。在不包括第二层28的示例中,中间层26可形成基于聚合物的基材12的外层(例如,外层34),并且可包括一个或多个层(例如,在无机材料层之上的聚合物硬涂层)。

在一些示例中,图5的技术还可包括将基于聚合物的基材12与包含聚对二甲苯的第二层28涂覆在中间层26上(56),使得中间层26位于初始耐水层(例如,第一层24)和第二层28之间。在一些此类示例中,与仅包含具有聚对二甲苯的单层的耐水涂层(例如,牙科制品10)相比,中间层26可改善牙科制品20的耐久性和磨损特性。此类改善的磨损特性可用于某些牙科应用中,诸如其中涉及牙齿的咀嚼或研磨的牙冠或夜间护套。

可使用与上文关于包括聚对二甲苯层的耐水涂层14所述基本上类似的化学气相沉积方法,将包含聚对二甲苯的第二层28沉积在基于聚合物的基材12和任何下面的层上。

实施例

实施例1—表1提供了可用于形成基于聚合物的基材12的示例聚合物制剂。将表1中所示的聚合物制剂在玻璃广口瓶中混合,并置于辊式搅拌器上以制备均一化混合物。在真空下,通过在行星搅拌器中以2000rpm的速度混合,将混合物脱气。然后将混合物倾注到硅氧烷狗骨形模具中(v型模具,astmd638)。将填充的模具放置在两块玻璃板之间并且在广谱uv室中固化大约5分钟。将测试样品脱模并且在室中再固化5分钟。

表1

*desma,如hecht等人的美国专利8,329,776中所述,该文献全文以引用方式并入本文。

然后经由化学气相沉积将聚合物基材测试样品中的一些涂覆有一层聚对二甲苯。将选择的测试样品置于真空室中,该真空室被抽空至约0.1托的压力。然后加热固体形式的对二甲苯二聚体以产生单体对二甲苯气体,将其引入包含测试样品的真空沉积室中。当单体气体接触测试样品的表面时,气体聚合形成聚对二甲苯c(例如,通过取代芳族氢之一的氯原子而改性的聚(对二甲苯))。继续该过程,直至获得约25μm的层厚度。

然后使聚对二甲苯涂覆的聚合物基础基材(根据astmd638-10具有v型几何形状的狗骨)经受水调理测试并与未涂覆的对照样品进行比较。水调理测试涉及在37℃下将测试样品浸没于磷酸盐缓冲盐水(pbs)溶液中1至6天。然后使用得自美国明尼苏达州的mts公司(mts,mn,usa)的具有5kn负载传感器的insight材料测试系统以5mm/分钟的速率测试所述测试样品的机械特性,以测定拉伸强度、夹头拉伸模量(基于夹头移动而不是应变仪)以及样品断裂时的夹头位置。结果列于下表2中。

表2.

实施例2—制备实施例1的基于聚合物的基材的测试样品,并且用具有如上所述约25μm的厚度的具有聚对二甲苯的耐水层涂覆一些。将其它测试样品涂覆有另选的和可商购获得的耐水涂层,并且在将测试样品在37℃的磷酸盐缓冲盐水(pbs)溶液中浸没24小时后,测试其机械特性。该测试观察结果记录在表3中。

表3.

实施例3—制备实施例1的基于聚合物的基材的测试样品,并且用单层聚对二甲苯的耐水层涂覆一些。与未涂覆的样品相比,测试了聚对二甲苯耐水层的耐污性。将两个测试样品置于60摄氏度的咖啡溶液中过夜。使用得自美国密歇根州的大急流城(grandrapids,mi,usa)的x-ritecolori7分光光度计对每个测试样品的颜色参数(l*、a*、b*)进行定量。染色测试结果示出在表4中。

表4.

条款1:在一个示例中,牙科制品包括基材,所述基材包含聚合物材料,其中所述基材的所述弹性模量在接触水时减小,和所述基材上的耐水涂层,其中所述耐水涂层包含聚对二甲苯。

条款2:在根据条款1所述的牙科制品的示例中的一些中,所述基材包含丙烯酸酯聚合物。

条款3:在根据条款2所述的牙科制品的示例中的一些中,所述基材包括氨基甲酸酯(甲基)丙烯酸酯聚合物。

条款4:在根据条款1所述的牙科制品的示例中的一些中,所述基材在基本上干燥的条件下的弹性模量大于约100mpa。

条款5:在根据条款1所述的牙科制品的示例中的一些中,制品包括牙托矫正器、牙冠、夜间护套、保持器、牙科植入物、假牙、部分、临时牙齿置换件、弹性带、弹簧、弹簧矫正器、聚合物弓丝、弓形构件、定制力构件、附件、支架或用于递送治疗剂的牙托。

条款6:在根据条款5所述的牙科制品的示例中的一些中,所述制品包括牙托矫正器、保持器或牙冠。

条款7:在根据条款1所述的牙科制品的示例中的一些中,所述耐水涂层包括包含聚对二甲苯的层,其中包含聚对二甲苯的层限定在约5微米(μm)和约50μm之间的厚度。

条款8:在根据条款7所述的牙科制品的示例中的一些中,包含聚对二甲苯的层限定至少约25μm的厚度。

条款9:在根据条款1所述的牙科制品的示例中的一些中,其中所述基材包括三维打印的基材。

条款10:在根据条款1所述的牙科制品的示例中的一些中,所述耐水涂层包括在所述基材上包含聚对二甲苯的第一层、在所述第一层上的中间层(所述中间层包含无机材料或聚合物硬涂层),以及在所述中间层上包含聚对二甲苯的第三层。

条款11:在根据条款10所述的牙科制品的示例中的一些中,其中所述无机材料包括金属、金属合金、金属氧化物、金属盐、陶瓷、玻璃或矿物中的至少一种。

条款12:在根据条款1所述的牙科制品的示例中的一些中,所述耐水涂层包括在所述基材上包含聚对二甲苯的第一层和在所述第一层上的外层,所述外层包含无机材料或聚合物硬涂层。

条款13:在根据条款12所述的牙科制品的示例中一些中,所述外层包括所述聚合物硬涂层,所述耐水涂层还包括在所述第一层和所述外层之间的中间层,并且所述中间层包含无机材料。

条款14:在根据条款1所述的牙科制品的示例中的一些中,所述耐水涂层包括位于所述基材上的中间层,所述中间层包含无机材料或聚合物硬涂层,以及在所述中间层上包含聚对二甲苯的层。

条款15:在根据条款1所述的牙科制品的示例中的一些中,所述耐水涂层包括包含聚对二甲苯的层,并且其中包含聚对二甲苯的所述层包括小于约5%的孔隙率。

条款16:在根据条款1所述的牙科制品的示例中的一些中,所述耐水涂层包括包含聚对二甲苯的层,并且其中包含聚对二甲苯的所述层是气相沉积的。

条款17:在根据条款1所述的牙科制品的示例中的一些中,所述牙科制品还包含干燥剂。

条款18:在根据条款17所述的牙科制品的示例中的一些中,所述干燥剂包括硅胶、硅铝酸钠、沸石、亲水性聚合物或亲水性粘土中的至少一种。

条款19:在根据条款17所述的牙科制品的示例中的一些中,所述干燥剂位于所述基材和所述耐水涂层之间。

条款20:在根据条款17所述的牙科制品的示例中的一些中,其中所述干燥剂被结合到所述基材中。

条款21:在根据条款17所述的牙科制品的示例中的一些中,所述干燥剂被包含在所述基材的分立区域之上或之内。

条款22:在根据条款1所述的牙科制品的示例中的一些中,所述聚对二甲苯包括聚对二甲苯c。

条款23:在根据条款1所述的牙科制品的示例中的一些中,所述基材包括第一表面粗糙度,并且所述耐水涂层包括小于所述第一表面粗糙度的第二表面粗糙度。

条款24:在根据条款1所述的牙科制品的示例中的一些中,其中所述基材限定第一摩擦系数,并且所述耐水涂层限定小于所述第一摩擦系数的第二摩擦系数。

条款25:在根据条款1所述的牙科制品的示例中的一些中,所述耐水涂层包括包含聚对二甲苯的层,其中所述层的所述厚度大于所述基材的所述厚度。

条款26:在根据条款1所述的牙科制品的示例中的一些中,所述耐水涂层不与旨在由患者的牙科解剖结构占据的空间相交。

条款27:在根据条款26所述的牙科制品的示例中的一些中,所述基材的内表面的尺寸被设定成使得所述基材与所述患者的所述牙科解剖结构的对应表面偏离所述耐水涂层的预期厚度。

条款28:在根据条款1所述的牙科制品的示例中的一些中,所述基材包含热固性聚合物材料。

条款29:在根据条款1所述的牙科制品的示例中的一些中,所述基材包含热塑性聚合物材料。

条款30:在一个示例中,一种方法包括形成用于牙科制品的基材,其中所述基材的弹性模量在接触水时减小,并且用包含聚对二甲苯的耐水涂层涂覆所述基材。

条款31:在根据条款30所述的方法的示例中的一些中,形成所述基材包括形成牙托矫正器、牙冠、夜间护套、保持器、牙科植入物、假牙、部分、临时牙科置换件、弹性带、弹簧、弹簧矫正器、聚合物弓丝、弓形构件、定制力构件、附件、支架或用于递送治疗剂的牙托。

条款32:在根据条款30所述的方法的示例中的一些中,所述基材在基本上干燥的条件下的弹性模量大于约100mpa。

条款33:在根据条款30所述的方法的示例中的一些中,形成所述基材包括三维打印所述基材。

条款34:在根据条款33所述的方法的示例中的一些中,面向患者的牙科解剖结构的一部分的所述耐水涂层的表面不与旨在由患者的对应牙科解剖结构占据的空间相交。

条款35:在根据条款33所述的方法的示例中的一些中,所述基材的尺寸被设定成使得面向患者的牙科解剖结构的所述基材的表面与患者的牙科解剖结构的对应表面偏离所述耐水涂层的预期厚度。

条款36:在根据条款30所述的方法的示例中的一些中,其中形成所述基材包括在患者的牙科解剖结构的三维模型上热成形所述基材。

条款37:在根据条款36所述的方法的示例中的一些中,其中所述患者的所述牙科解剖结构的所述三维模型的尺寸被设定成使得面向所述三维模型的所述基材的表面与所述患者的所述牙科解剖结构的对应表面偏离所述耐水涂层的预期厚度。

条款38:在根据条款36所述的方法的示例中的一些中,面向所述牙科解剖结构的一部分的所述耐水涂层的表面不与旨在由患者的对应牙齿解剖结构占据的空间相交。

条款39:在根据条款30所述的方法的示例中的一些中,其中用所述耐水涂层涂覆所述基材包括将包含聚对二甲苯的层化学气相沉积在所述基材上。

条款40:在根据条款30所述的方法的示例中的一些中,其中用所述耐水涂层涂覆所述基材包括在所述基材上沉积具有在约5微米(μm)和约50μm之间的厚度的包含聚对二甲苯的层。

条款41:在根据条款30所述的方法的示例中的一些中,包含聚对二甲苯的所述层的所述厚度为至少约25μm。

条款42:在根据条款30所述的方法的示例中的一些中,其中用所述耐水涂层涂覆所述基材包括将包含聚对二甲苯的第一层化学气相沉积在所述基材上,以及将包含无机材料或聚合物硬涂层的中间层沉积在所述第一聚对二甲苯层上。

条款43:在根据条款42所述的方法的示例中的一些中,所述方法还包括将包含聚对二甲苯的第二层化学气相沉积在所述中间层上。

条款44:在根据条款42所述的方法的示例中的一些中,所述无机材料包括金属、金属合金、金属氧化物、金属盐、陶瓷、玻璃或矿物中的至少一种。

条款45:在根据条款30所述的方法的示例中的一些中,形成所述基材包括将干燥剂结合到所述基材的表面上或所述基材内。

条款46:在一个示例中,牙科制品包括三维打印的聚合物基材和施用在所述基材上的耐水涂层,其中所述耐水涂层包括聚对二甲苯层。

条款47:在根据条款46所述的牙科制品的示例中的一些中,三维打印的聚合物基材限定大于约100mpa的弹性模量。

条款48:在根据条款46所述的牙科制品的示例中的一些中,所述三维打印的聚合物基材包括选自(甲基)丙烯酸酯聚合物、环氧树脂、聚氨酯、聚酯、聚碳酸酯和硅氧烷的基于氨基甲酸酯的聚合物基材。

条款49:在根据条款46所述的牙科制品的示例中的一些中,所述制品包括用于使患者牙齿、保持器或牙冠对齐的牙托矫正器。

条款50:在根据条款46所述的牙科制品的示例中的一些中,所述耐水涂层包括在所述基材上包含聚对二甲苯的第一层、在所述第一层上包含无机材料的无机层以及在所述无机层上包含聚对二甲苯的第三层。

条款51:在根据条款50所述的牙科制品的示例中的一些中,所述无机材料包括金属、金属合金、金属氧化物、金属盐、陶瓷、玻璃或矿物中的至少一种。

条款52:在根据条款46所述的牙科制品的示例中的一些中,所述牙科制品还包含干燥剂。

条款53:在根据条款46所述的牙科制品的示例中的一些中,其中所述干燥剂位于所述三维打印的聚合物基材和所述耐水涂层之间。

条款54:在根据条款46所述的牙科制品的示例中的一些中,所述干燥剂被结合到所述三维打印的聚合物基材中。

条款55:在根据条款46所述的牙科制品的示例中的一些中,所述三维打印的聚合物基材包括限定产生混叠效应的多个轮廓线的表面。

条款56:在根据条款55所述的牙科制品的示例中的一些中,其中所述耐水涂层降低所述三维打印的聚合物基材的混叠效应。

条款57:在根据条款46所述的牙科制品的示例中的一些中,所述三维打印的聚合物基材包括具有小于约20μm的纹理尺寸的第一多个表面纹理。

条款58:在根据条款57所述的牙科制品的示例中的一些中,所述耐水涂层包括具有小于所述第一多个表面纹理的所述尺寸的纹理尺寸的第二多个表面纹理。

条款59:在根据条款46所述的牙科制品的示例中的一些中,其中所述三维打印的聚合物基材包括第一表面粗糙度,并且所述耐水涂层包括小于所述第一表面粗糙度的第二表面粗糙度。

条款60:在根据条款46所述的牙科制品的示例中的一些中,所述三维打印的聚合物基材限定第一摩擦系数,并且所述耐水涂层限定小于所述第一摩擦系数的第二摩擦系数。

条款61:在根据条款46所述的牙科制品的示例中的一些中,其中面向所述牙科解剖结构的一部分的所述耐水涂层的表面不与旨在由患者的对应牙科解剖结构占据的空间相交。

条款62:在一个示例中,一种方法包括形成患者的牙科解剖结构的模型,将包含聚对二甲苯的第一涂层施用到所述模型上,在所述第一涂层上热成形聚合物材料片材,修剪所述聚合物材料片材以形成基于聚合物的基材,将包含聚对二甲苯的第二涂层施用到所述基于聚合物的基材的暴露表面上,修剪所述第一涂层和所述第二涂层以限定牙科制品,所述牙科制品包括所述基于聚合物的基材、所述第一涂层和所述第二涂层,以及将所述牙科制品与所述模型分离。

条款63:在根据条款62所述的方法的示例中的一些中,所述方法还包括在将包含聚对二甲苯的第一涂层施用到所述模型上之前用脱模剂涂覆所述模型。

条款64:在根据条款63所述的方法的示例中的一些中,所述方法还包括在将所述牙科制品与所述模型分离之前溶解所述脱模剂。

条款65:在根据条款62所述的方法的示例中的一些中,所述基于聚合物的基材在基本上干燥的条件下的弹性模量大于约100mpa。

已描述了各种示例。这些示例以及其它示例均在如下权利要求书的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1