一种基于虚拟现实技术的视网膜检测系统的制作方法

文档序号:19345328发布日期:2019-12-06 20:47阅读:182来源:国知局
一种基于虚拟现实技术的视网膜检测系统的制作方法

本发明涉及视网膜检测技术领域,具体地,涉及一种视网膜检测系统,尤其是一种基于虚拟现实技术的视网膜检测系统,能够提供多种人机交互式的多种基于虚拟现实技术的视野范围检测。



背景技术:

视网膜健康状态与人的视觉健康情况直接相关,许多视觉疾病表现为视网膜的损坏或功能衰退。包括但不限于:黄斑变性、青光眼、视网膜脱落、色盲与色弱,严重影响职业与生活功能。视网膜损坏或功能衰退的病因及发病机制多种多样,多数都存在病情逐渐恶化,初期不易察觉,视网膜病变发病机制多样,多数无法找到成因,这些疾病的基本特点是初期不易察觉,一旦发现已经病情严重无法逆转或控制。

视网膜相关疾病的诊断和治疗遵循越早越好的原则,及时而有效的早期诊断和定期复诊有助于改善病情,提高生活质量。但是,现有的视网膜健康状态检测手段是陈旧的机械式眼底扫描,过程繁琐,精度不佳,要求被测者保持眼球不动,并依赖于经验丰富的医师的个人技术,需要投入大量的人力、物力和财力,这对拥有视网膜健康问题的家庭和社会医疗资源都是极大的挑战。因此,目前亟需提供成本低、效率高、可客观量化的视野测量辅助手段。为了减少对医师的依赖,提倡采用更客观的量化指标来辅助检测视网膜健康状态,更加及时准确的发现视网膜病变。

相当比例的视网膜健康状态测试者,比如低龄儿童和老年人,很难听从指令持续专注的注视固定平面显示器或球面视网膜检测仪,并针对变化快速反应,这将导致其注视点分布可能超过视觉刺激材料的限定范围,传感器采集到的数据失效。所以,通过普通的固定平面和球面视觉刺激材料采集到的视网膜健康状态信息无法排除显示设备之外的人为和环境干扰。

同时,普通的平面眼动追踪传感器需要校准使用者的视线焦点,范围较大的头部运动会影响校准结果和实际测试过程中的注视点位置的匹配准确率,两种指标相互影响,会降低采集到的注视点数据的质量。

目前没有发现同本发明类似技术的说明或报道,也尚未收集到国内外类似的资料。



技术实现要素:

针对现有技术中存在的上述不足,本发明的目的是提供一种基于虚拟现实技术的视网膜检测系统。

本发明是通过以下技术方案实现的。

一种基于虚拟现实技术的视网膜检测系统,包括:显示子系统、头动追踪子系统、眼动追踪子系统、控制器子系统以及头戴式显示器支架,所述显示子系统、头动追踪子系统和眼动追踪子系统内置于所述头戴式显示器支架中;其中:

所述显示子系统,用于向被测者显示无视野边界的立体影像,包括:

-显示器模块,所述显示器模块用于向被测者显示具有景深的立体影像;

-透镜模块,所述透镜模块位于被测者的眼睛和所述显示器模块之间,用于将所述显示器模块投射出的光线放大映射到被测者的眼中,使所述显示器模块显示的立体影像占据被测者的全部视野;

所述控制器子系统,用于控制得到被测者的视野边界以及测试光点信息;

所述头动跟踪子系统,用于检测头部运动信息,消除头部运动对视觉检测的影响;

所述眼动追踪子系统,用于检测被测者的注视点信息。

优选地,所述显示器模块采用内嵌式双屏显示器,所述内嵌式双屏显示器的两块屏幕模拟人眼对现实景物的观察角度,以人的每只眼睛的视野范围建立球面坐标,球面顶点是人眼的视野中心;所述显示器模块包括初步测量模式和精确测量模式,其中:

所述初步测量模式为:极轴通过顶点形成0°子午线,在视野范围内从0°子午线开始逆时针每n°间隔增加一条经过球面顶点的子午线,多条子午线将视野划分为多个区域,显示器模块在黑暗背景下,从0°子午线开始逆时针依次沿各条子午线的球面顶点向视野边缘移动并向被测者双眼投射光点,当被测者发现光点消失时启动控制器子系统的客户端,记录该视野区域方向上的视野边界;所述控制器子系统的服务端还用于控制内嵌式双屏显示器增加m°间隔的子午线不同光亮及颜色光点扫描,得到被测者的测试光点信息,进而初步勾勒出被测试者视觉不敏感的区域;其中m°小于n°。

所述精确测量模式为:以视野中心为原点,建立水平和垂直坐标线,所述水平和垂直坐标线将视野范围分为四个象限区域;其中每个象限区域内平均分布若干个能够随机点亮的光点,被测者根据视野范围内是否观测到点亮的光点而对应做出选择,进而精确测量出被测试者的视觉不敏感区。

优选地,所述精确测量模式在初步测量模式的基础之上执行。

优选地,所述n°采用30°,相应地,所述视野将划分为12个区域;所述m°采用5°。

优选地,所述光点亮度及颜色可调节。

在完成动态视网膜测试后,根据动态视野范围测量的结果勾勒出被测者视野中对光敏感较弱的区域。

在勾勒出被测者视野范围弱的区域后,系统将使用静态视场测试将视觉敏感度较弱区域重点测量,视场中敏感较强区域将会被进行粗略测量,如图8所示。静态视场测量使用呈矩阵排列的光斑逐个闪烁,矩阵分为四个象限,每个象限区域内预先分布多个光点,光点数量和设定位置不影响本专利权利要求。被测者对光斑的闪烁作出反应。如此测试产生结果更加具体,但测试时间长且测试过程使人不适,选择敏感度弱的区域重点测量将缩短测试时间,但保持测试精度。

优选地,所述透镜模块包括两片透镜,分别与内嵌式双屏显示器的两块屏幕相对应,其中每一片透镜均设有圆形棱镜阵列。

优选地,所述头动跟踪子系统包括:

加速计模块,所述加速计模块用于重力监测,从而判断所述头戴式显示器支架是否正立,同时检测被测者头部在各轴上的加速度;

陀螺仪模块,所述陀螺仪模块用于跟踪被测者头部的旋转角速度及角度变化。

优选地,所述视网膜检测系统,还包括分析评价子系统;

所述分析评价子系统,包括:

-头部运动补偿模块,根据头部运动信息,得到被测者头部运动模式;

-视觉注意点跟踪模块,所述视觉注意点追踪模块根据注视点信息,通过补偿眼部运动持续追踪视网膜特定区域,提取其视觉注意模式;

-视网膜检测评价模块,所述视网膜检测评价模块,通过头部运动模式和视觉注意模式,准确定位视网膜的检测位置,

吗基于对被测者的视野边界的测量,评估视力受损的可能视野区域,同时根据测试光点信息,得到被测者在不同视野区域的感光敏感度和颜色敏感度,测量受测试者的视网膜可视区域和不可视区域的范围,输出被测者的视网膜健康状态检测结果。

优选地,所述注视点信息包括:被测者在立体影像上的注视位置信息、注视顺序信息和注视时长信息。

优选地,所述头部运动信息包括:被测者的头动速度信息、位移信息和旋转方向信息。

优选地,所述测试光点信息包括:被测者在球坐标空间中看到的光点的位置、光点的亮度以及光点的颜色。

本发明提供的基于虚拟现实技术的视网膜检测系统,是一种基于虚拟现实技术,采用动态子午线光点与静态矩阵光点相结合的方法,提供多种视野检测模式的系统,可用于测试无视野边界的立体影像。该系统中:显示器模块用于向被测者显示具有景深的立体影像(光点);透镜模块位于被测者的眼睛和显示器模块之间,用于将显示器模块投射出的光点放大映射到被测者的眼中,使显示器模块显示的立体影像占据被测者的全部视野;控制器子系统,用于控制得到被测者的视野边界以及测试光点信息;头动跟踪子系统,用于检测头部运动信息,消除头部运动对视觉检测的影响;眼动追踪子系统,用于检测被测者的注视点信息。本发明能够客观准确的跟踪并评估被测者的视网膜各个区域的健康状态检测结果,能够量化特征,准确高效。

与现有技术相比,本发明具有如下有益效果:

1、本发明提出的一种基于虚拟现实技术的视网膜检测系统,采用头戴式显示器支架,其中的显示子系统的显示模块生成的立体影像,测试过程比传统视场检测方式舒适且价格适中,有利于减轻不适感对测试准确性的影响,提高了视网膜健康状态检查的配合度;另一方面也使得虚拟现实环境中的视觉刺激材料的比平面刺激材料更立体、更具有景深,能模拟人所接触到的实际场景视觉范围,有助于提升采集数据有效性。

2、本发明提出的一种基于虚拟现实技术的视网膜检测系统,由于眼动追踪子系统内嵌于头戴式显示器支架内部,眼动追踪子系统与被测者眼睛无相对位移,因此该眼动追踪子系统可以实现头部运动同步跟随,不会由于头部大幅动作而对被测者双眼失焦。

3、本发明提出的一种基于虚拟现实技术的视网膜检测系统,头动跟踪子系统内嵌于头戴式显示器支架中,能够无相对位移的跟随头动,提高了头动检测的准确性。

4、本发明提出的一种基于虚拟现实技术的视网膜检测系统,根据视觉的注意点信息和头部运动信息两项指标,客观准确的跟踪并评估被测者的视网膜各个区域的健康状态检测结果,能够量化特征,准确高效。

5.本发明结合动态和静态的视场测量方式,使测量时间缩短但保持静态测量的精度。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

图1为本发明的一种基于虚拟现实技术的视网膜检测系统的结构框图;

图2为头动跟踪子系统的结构框图;

图3为分析评价子系统的结构框图;

图4为头戴式显示器的结构示意图;

图5为权利2子午线动态方法测试的单眼视野范围影像图。

图6为权利3矩阵静态方法测试的单眼视野范围影像图。

图7为权利4子午线动态方法初筛勾勒的单眼视野范围影像图。

图8为权利5子午线动态初筛结合矩阵静态法描绘的精确单眼视野范围影像图。

图中:1为显示子系统,11为透镜模块,12为显示器模块,2为眼动追踪子系统,3为头动跟踪子系统,31为加速计模块,32为陀螺仪模块,4为分析评价子系统,41为头动跟踪模块,42为眼动跟踪模块,43为视网膜检测评价模块,5为头戴式显示器支架,图5为动态子午线显示示意图,61为视觉区域原点62为子午线,63为动态观光点,64为动态光点沿子午线运动的起始点,65为光点的运动方向,66为光点进入被测试者的视觉敏感区的边界点,也是光点在该子午线的运动终点;图6为静态光点测试示意图,71为视觉区域中心点即原点,72为划分视觉区域的x轴,73为划分视觉区域的y轴,75为静态测试光点;图7为动态子午线勾勒的初步视觉不敏感区域,81、82、83、84为光点进入被测者视觉区域的边界点,85为利用这些边界点所勾勒的被测者的视觉不敏感区域。图8为动态方法与静态方法结合精确测量视野范围的示意图。91为静态光点,92为动态子午线勾勒的视觉不敏感区域。10为控制子模块。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。

本发明实施例提出了一种基于虚拟现实技术的视网膜检测系统,参照图1、图4和图5所示,包括:显示子系统1、眼动追踪子系统2、头动跟踪子系统3和头戴式显示器支架5,显示子系统1、眼动追踪子系统2和头动跟踪子系统均内置于头戴式显示器支架5中,显示子系统1,用于向被测者显示无视野边界的立体影像,其包括:显示器模块12,显示器模块12为具有足够像素密度和刷新速率的内嵌式双屏显示器,用于向被测者显示具有景深的立体影像;透镜模块11,透镜模块11位于被测者的眼睛和显示器模块12间,用于将显示器模块12投射出的光线放大映射到被测者的眼中,使显示器模块12显示的立体影像占据被测者的全部视野;眼动追踪子系统2,用于检测被测者的注视点信息;头动跟踪子系统3,用于检测头部运动信息,消除头部运动对视觉检测的影响。以每个眼的视野范围建立球面坐标,球面顶点61是人眼的视野中心,水平右向的子午线通过顶点,是0°子午线62,显示器模块12在在视野范围内从0°子午线62开始逆时针每n°(可以为30°)一条子午线经过顶点,将视野划分为多个区域(相应地形成12个区域),分别向被测者双眼投射黑暗背景下沿各个子午线依次从边缘向视野中心移动的光点63,当被测者发现光点63消失时按下控制器子系统的客户端,记录该视野方向上的视野边界,光点63亮度及颜色可控。在动态测量后勾勒出视觉不敏感区域,利用静态测量将不敏感区域重点测量,视觉相对敏感区域将被粗略测量。测量结果将会根据眼动和头动跟踪数据而校准结果,最终测试结果类似静态视场测量结果。所述控制器子系统的服务端还用于控制内嵌式双屏显示器增加m°间隔的子午线不同光亮及颜色光点扫描,得到被测者的测试光点信息;其中m°小于n°。进一步地,m°可以采用5°。

在完成动态视网膜测试后,根据动态视野范围测量的结果勾勒出被测者视野中对光敏感较弱的区域,如图7所示。

在勾勒出被测者视野范围弱的区域后,系统将使用静态视场测试将视觉敏感度较弱区域重点测量,视场中敏感较强区域将会被进行粗略测量,如图8所示。静态视场测量使用呈矩阵排列的光斑逐个闪烁,如图6所示,矩阵分为四个象限,每个象限区域内预先分布多个光点,光点数量和设定位置不影响本专利权利要求。被测者对光斑的闪烁作出反应。如此测试产生结果更加具体,但测试时间长且测试过程使人不适,选择敏感度弱的区域重点测量将缩短测试时间,但保持测试精度。

具体地,本发明的头戴式显示器支架5内置了显示子系统1、眼动追踪子系统2和头部跟踪子系统3,显示子系统1中的显示器模块12的像素密度需大于400ppi,刷新速率至少有60hz,显示器模块12内嵌在头戴式显示器支架5的前端,其自带的双屏显示器正对被测者双眼。在传统静态视场测量过程中,被测者的头部需要在固定位置上停留10到20分钟,且测试中被测者需要迅速对一闪而过的光斑做出反应。在此测试环境下被测者很容易产生不适,会降低测试准确率,因为视场测试结果依赖被测者的反应,若被测者无法准确做出反应,测试结果准确率会降低。如果使用本发明使用的虚拟现实显示,被测者可以在测试过程中移动头部,降低测试时的不适感。本发明的测试方法也在一定程度上降低被测者的不适感,动态测量被相比静态测量舒适,但测量精度不高,本发明结合静态测量和动态测量。首先静态测量画出视野中有问题的区域,再用静态测量重点测量视力缺陷区域。减少需要静态测量的部分,并保持测试准确性。

而透镜模块11可将显示器模块12发出的光线放大后投射至人眼上,进而可以消除显示器模块12的双屏显示器在人眼中的边框,使得被测者更能沉浸在显示子系统1营造的环境中,其对不同影像作出的反馈行为更加真实,增加了视网膜健康状态判断结果的准确性;

眼动追踪子系统2,为一种能够跟踪测量眼球位置及眼球运动信息的一种设备,内嵌于头戴式显示器支架5中。在本实施例中,眼动追踪子系统2可以通过近红外生成瞳孔所见的图像,再通过相机捕捉生成的图像。眼动追踪子系统2也可以通过辨认眼球的特征,如瞳孔外形、异色边缘虹膜、虹膜边界、近距指向光源的角膜反射来实现眼动跟踪。本发明实施例中的眼动追踪子系统2,由于内嵌在头戴式显示器支架5中,其始终和被测者头部同步运动,解决了现有的眼动追踪装置位置固定,一旦被测者头部大幅度运动,则眼动追踪装置在被测者眼部的焦点会失焦的问题。

进一步地,在上述实施例的基础上,显示器模块12的两块屏幕,模拟人眼对现实景物的观察角度,分别向被测者双眼投射同景不同角度的影像。

进一步地,在上述实施例的基础上,参照图4所示,透镜模块11在头戴式显示器支架5中左右各设有一片,每片透镜模块11均设有圆形棱镜阵列。

具体的,圆形棱镜阵列能够使透镜模块11具有与大块曲面透镜相同的效果,是来自显示器模块12的光线散射在人眼中,使双屏显示器呈现的视觉刺激材料占据被测者整个视野。圆形棱镜阵列的位置可以根据用户的实际情况(如近视、远视、眼距的宽窄等)做微调。

进一步地,在上述实施例的基础上,参照图1、图4所示,基于虚拟现实技术的视网膜检测系统还包括:头动跟踪子系统3,头动跟踪子系统3亦内置于头戴式显示器支架5中,用于检测被测者的头部动作信息;分析评价子系统4,分析评价子系统4用于从眼动追踪子系统2与头动跟踪子系统3收集注视点信息与头部动作信息,并根据收集到的注视点信息与头部动作信息得到被测者的视觉注意模式与头部运动模式,从而判断视网膜健康状态的检测结果。

进一步地,在上述实施例的基础上,如图2所示,头动跟踪子系统3包括:加速计模块31,加速计模块31用于重力监测,从而判断头戴式显示器支架5是否正立;加速计模块31,还用于检测被测者头部在各轴上的加速度;陀螺仪模块32,陀螺仪模块32用于跟踪被测者头部的旋转角速度及角度变化。

具体的,在本实施例中,加速计模块31利用传感装置的惯性力测量其在x、y、z三轴上的加速方向和速度大小。在其他实施例中,x、y二轴加速度测量传感器也可以使用,其中x轴加速度为0g,y轴加速度为1g。

陀螺仪模块32,跟踪头戴式显示器支架5沿着x、y、z三轴的旋转角速度或角度变化,来为分析评价子系统4提供更精确的物体旋转信息。该模块可以通过测量三维坐标系内陀螺转子的垂直轴与设备之间的夹角计算角速度,通过夹角和角速度来判别被测者头部在三维空间的运动状态。

进一步地,在上述实施例的基础上,如图3所示,分析评价子系统4包括:视觉注意点跟踪模块42,视觉注意点跟踪模块42根据注视点信息,基于视觉注意模式得出被测者的视觉注意模式;头部运动补偿模块41,头部运动补偿模块41根据头部动作信息,基于头部跟踪算法得出被测者的头部运动模式;视网膜检测评价模块43,视网膜检测评价模块43根据被测者的视觉注意点和头部运动补偿。在动态子午线测试中基于显示器模块对12个方向上的受测试者视野边界的测量,评估可能视力受损的区域,增加5°间隔的更细致子午线不同颜色光点63扫描,从而精确测量受测试者的视网膜可视区域和不可视区域的范围,包括可视区域的感光敏感度和对不同颜色的敏感度,输出被测者的视网膜健康状态检测结果;在静态光点测试中,整个视野区域被x轴72,y轴73分为四个象限74,显示模块将逐个随机显示呈矩阵排列的光斑75,被测试者对于光斑做出看到或者无法看到的反应,系统会根据测试者的反应绘制测试者的视野图;在动态与静态结合的测试中,动态测试画出的视野盲区的初略图,图7。系统会显示静态光斑用于精确测量视觉盲区,光斑随机逐个闪烁,但系统会在动态勾勒图中的不敏感区域分配更多的光点,视觉健康区域也会分配若干亮点,但不会重点测量如图8。测试中眼动和头动检测也会起到作用,保证测试准确。在静态测试后,系统会结合头动和眼动跟踪产生最终结果,结果将图将与传统机械静态测量类似。

具体地,头部运动补偿模块41,基于头部跟踪算法,利用头部运动随时间变化的速度、位置和方向信息,得出被测者头部运动模式。在本实施例中,该模块的输入信息来源于加速计模块31和陀螺仪模块32测量得到的头戴式显示器在多轴上的加速度方向、加速度大小以及沿着x、y、z三轴的旋转角速度及角度变化。头动运动补偿模块的信号输入还可以来源于布置于基于虚拟现实中视觉注意模式和头部运动模式的视网膜检测系统所处环境的红外检测组件测量得到的头戴式显示器的位移和旋转角度。

视觉注意点跟踪模块42,利用眼动追踪子系统2得到的被测者注视点和扫视过程的位置和时间分布,基于视觉注意模式得到被测者的关注点和不关注区域信息,提取其视觉注意模式。

视网膜检测评价模块43,利用头部运动补偿41和视觉注意点跟踪42得到的视觉注意模式和头部运动模式在同一时间线上的特征和对应关系,将这些特征和关系通过视网膜健康状态检测评价算法与视网膜缺损个体和标准发育个体特征进行比较,来评价被测者视网膜健康状态,并输出显示视网膜健康状态检测结果。该模块可以但不限于运行在个人计算机或服务器上。检测结果可以但不限于个人计算机的显示屏或额外的led显示屏等多种显示装置。

进一步地,在上述实施例的基础上,头部动作信息包括:被测者的头动速度信息、位移信息和旋转方向信息。

本发明上述实施例提供的一种基于虚拟现实技术的视网膜检测系统,检测视网膜各处的生理健康状态,包括成像范围、感光度、色觉等指标,由显示子系统,头动/眼动追踪子系统,分析评价子系统和控制器子系统组成,其中显示子系统和头动/眼动追踪子系统内置于头戴式显示器中,分析评价子系统在头戴式显示器所连接的电脑中运行,控制器子系统的客户端由受测试者手动控制,通过蓝牙与电脑无线连接。显示子系统包括:显示器模块,显示器模块为具有足够像素密度和刷新速率的内嵌式双屏显示器,用于向被测者两眼显示具有景深的立体影像;透镜模块,透镜模块位于被测者眼睛和显示器模块间,用于将显示器模块投射出的光线放大映射到被测者眼中,使显示器模块显示的立体影像占据被测者的全部视野。头动跟踪子系统:用于检测头部运动,消除头部运动对视觉检测的影响。眼动追踪子系统:用于检测眼球运动与被测者的注视点信息。本发明通过消除视野边框和增强景深,增大了的视网膜检测范围和精度,且眼动追踪子系统始终与头部同步运动,确保在眼睛运动时精确定位视网膜的检测位置。分析评价子系统:用于集成和处理各传感器信息和控制器输入信息,输出受测试者的视网膜生理健康状态。控制子系统:受测试者根据视觉效果选择性输入,用于反映受测试者的视网膜不同位置的生理状态。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1