人EDDM3A基因的用途及相关产品的制作方法

文档序号:20491641发布日期:2020-04-21 22:05阅读:251来源:国知局
人EDDM3A基因的用途及相关产品的制作方法
本发明属于生物医药研究领域,具体涉及人eddm3a基因的用途及相关产品。
背景技术
:eddm3a(epididymissecretoryspermbindingprotein)是一种由附睾上皮细胞分泌的精子结合蛋白。睾丸精子起始于生精干细胞的分化,但最初并不能渐进性地运动,因此不能使卵子受精。精子在睾丸中进一步成熟的过程,需要暴露于附睾腔的微环境,并经历一系列变化,包括酶的修饰、附睾分泌物中原有成分的丢失和新的糖蛋白的增加。这些修饰蛋白和酶是由排列在附睾管内壁的上皮细胞合成的,并分泌到管腔的顶端,而后与精子膜接触,并可能被精子膜吸收。此过程赋予精子一定的活动力。通过对人类附睾cdna文库的差异筛选,分离并鉴定了一个主要的附睾特异性cdna克隆家族,称为eddm3a。eddm3a在染色体定位于14q11.2。通过eddm3a更详细的序列和pcr手段分析确定了两个不同但同源的基因转录本,he3α和he3β。southernblotting对人类基因组dna的分析表明,人类基因组中至少存在三个独立的eddm3a相关基因。northern杂交分析表明,eddm3a基因产物在人附睾中特异性表达。此外,除了猪以外,没有其他非灵长类物种被鉴定出在附睾中表达同源序列(kirchhoffc1,perai,rustw,ivellr.majorhumanepididymis-specificgeneproduct,he3,isthefirstrepresentativeofanovelgenefamily.1994feb;37(2):130-7)。he3a(也可以称附睾蛋白3a、附睾分泌蛋白e3-alpha、人类附睾特异性蛋白3-α、he3-alpha、ep3a、fam12alpha、ram1),是由eddm3a编码的人类基因。eddm3a编码的蛋白氨基酸数量为147,质量为17.6kda。目前检索不到关于eddm3a在肿瘤相关领域的报道。技术实现要素:为了克服现有技术中所存在的问题,本发明的目的在于提供人eddm3a基因的用途及相关产品。为了实现上述目的以及其他相关目的,本发明采用如下技术方案:本发明的第一方面,提供人eddm3a基因作为靶标在制备胃癌治疗药物中的用途。所述人eddm3a基因作为靶标在制备胃癌治疗药物具体是指:将eddm3a基因作为作用对象,对药物或制剂进行筛选,以找到可以抑制人eddm3a基因表达的药物作为胃癌治疗备选药物。如本发明所述的eddm3a基因小分子干扰rna(sirna)即是以人eddm3a基因为作用对象筛选获得的,可用作具有抑制胃癌细胞增殖作用的药物。除此之外,诸如抗体药物,小分子药物等也可将eddm3a基因作为作用对象。所述胃癌治疗药物为能够特异性抑制eddm3a基因的转录或翻译,或能够特异性抑制eddm3a蛋白的表达或活性的分子,从而降低胃癌细胞中eddm3a基因的表达水平,达到抑制胃癌细胞的增殖、生长、分化和/或存活的目的。所述核酸包括但不限于:反义寡核苷酸、双链rna(dsrna)、核酶、核糖核酸内切酶iii制备的小干扰rna或者短发夹rna(shrna)。所述胃癌治疗药物的施用量为足够降低人eddm3a基因的转录或翻译,或者足够降低人eddm3a蛋白的表达或活性的剂量。以使人eddm3a基因的表达至少被降低50%、80%、90%、95%或99%。采用前述胃癌治疗药物治疗胃癌的方法,主要是通过降低人eddm3a基因的表达水平抑制胃癌细胞的增殖来达到治疗的目的。具体的,治疗时,将能有效降低人eddm3a基因表达水平的物质给药于患者。在一种实施方式中,所述eddm3a基因的靶标序列如seqidno:1所示。具体为:5’-ggctgtgtgtatacagtaa-3’。本发明的第二方面,提供eddm3a抑制剂在制备至少具备以下功效之一的产品中的用途:治疗胃癌;抑制胃癌细胞的增殖速率;促进胃癌细胞凋亡;抑制胃癌细胞克隆;抑制胃癌细胞转移能力;抑制胃癌生长。所述产品必然包括eddm3a抑制剂,并以eddm3a抑制剂作为前述功效的有效成分。所述产品中,发挥前述功用的有效成分可仅为eddm3a抑制剂,亦可包含其他可起到前述功用的分子。亦即,eddm3a抑制剂为所述产品的唯一有效成分或有效成分之一。所述产品可以为单成分物质,亦可为多成分物质。所述产品的形式无特殊限制,可以为固体、液体、凝胶、半流质、气雾等各种物质形式。所述产品主要针对的对象为哺乳动物。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。所述产品包括但不限于药物、保健品、食品等。所述eddm3a抑制剂可以为核酸分子、抗体、小分子化合物。如本发明实施例列举的,所述eddm3a抑制剂可以为降低胃癌细胞中eddm3a基因表达的核酸分子。具体的,可以是双链rna或shrna。本发明的第三方面,提供了一种治疗胃癌的方法,为向对象施用eddm3a抑制剂。所述的对象可以为哺乳动物或哺乳动物的胃癌细胞。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。所述胃癌细胞可以为离体胃癌细胞。所述对象可以是罹患胃癌的患者或者期待治疗的胃癌的个体。或者所述对象为胃癌患者或者期待治疗胃癌的个体的离体胃癌细胞。所述eddm3a抑制剂可以在接受胃癌治疗前、中、后向对象施用。本发明第四方面公开了一种降低胃癌细胞中eddm3a基因表达的核酸分子,所述核酸分子包含双链rna或shrna。其中,所述双链rna中含有能够与eddm3a基因杂交的核苷酸序列;所述shrna中含有能够与eddm3a基因杂交的核苷酸序列。进一步的,所述双链rna包含第一链和第二链,所述第一链和所述第二链互补共同形成rna二聚体,并且所述第一链的序列与eddm3a基因中的靶序列基本相同。所述eddm3a基因中的靶序列即为核酸分子用于特异性沉默eddm3a基因表达时,被所述核酸分子识别并沉默的mrna片段所对应的eddm3a基因中的片段。进一步的,所述双链rna的靶序列如seqidno:1所示。具体为:5’-ggctgtgtgtatacagtaa-3’。更进一步的,所述双链rna第一链的序列如seqidno:2所示。具体为5’-ggcuguguguauacaguaa-3’。进一步的,所述双链rna为小干扰rna(sirna)。seqidno:2为以seqidno:1所示的序列为rna干扰靶序列设计的、针对人eddm3a基因的小干扰rna的一条链,另一条链即第二链的序列与第一链序列互补,该sirna可以起到特异性沉默胃癌细胞中内源eddm3a基因表达的作用。所述shrna包括正义链片段和反义链片段,以及连接所述正义链片段和反义链片段的茎环结构,所述正义链片段和所述反义链片段的序列互补,并且所述正义链片段的序列与eddm3a基因中的靶序列基本相同。进一步的,所述shrna的靶序列如seqidno:1所示。所述shrna经酶切加工后可成为小干扰rna(sirna)进而起到特异性沉默胃癌细胞中内源eddm3a基因表达的作用。进一步的,所述shrna的茎环结构的序列可选自以下任一:uucaagaga、aug、ccc、uucg、ccacc、ctcgag、aagcuu和ccacacc。更进一步的,所述shrna的序列如seqidno:3所示。具体为5’-caggcuguguguauacaguaacucgaguuacuguauacacacagccug-3’。进一步的,所述eddm3a基因来源于人。本发明第五方面,公开了一种eddm3a基因干扰核酸构建体,含有编码前述核酸分子中的shrna的基因片段,能表达所述shrna。所述的eddm3a基因干扰核酸构建体可以是将编码前述人eddm3a基因shrna的基因片段克隆入已知载体获得。进一步的,所述eddm3a基因干扰核酸构建体为eddm3a基因干扰慢病毒载体。本发明公开的eddm3a基因干扰慢病毒载体是将编码前述eddm3a基因shrna的dna片段克隆入已知载体获得,所述已知载体多为慢病毒载体,所述eddm3a基因干扰慢病毒载体经过病毒包装成为有感染力的病毒颗粒后,感染胃癌细胞,进而转录出本发明所述shrna,通过酶切加工等步骤,最终获得所述sirna,用于特异性沉默eddm3a基因的表达。进一步的,所述eddm3a基因干扰慢病毒载体还含有启动子序列和/或编码胃癌细胞中可被检测的标记物的核苷酸序列;较优的,所述可被检测的标记物如绿色荧光蛋白(gfp)。进一步的,所述慢病毒载体可以选自:plko.1-puro、plko.1-cmv-tgfp、plko.1-puro-cmv-tgfp、plko.1-cmv-neo、plko.1-neo、plko.1-neo-cmv-tgfp、plko.1-puro-cmv-tagcfp、plko.1-puro-cmv-tagyfp、plko.1-puro-cmv-tagrfp、plko.1-puro-cmv-tagfp635、plko.1-puro-ubc-turbogfp、plko.1-puro-ubc-tagfp635、plko-puro-iptg-1xlaco、plko-puro-iptg-3xlaco、plp1、plp2、plp/vsv-g、pentr/u6、plenti6/block-it-dest、plenti6-gw/u6-laminshrna、pcdna1.2/v5-gw/lacz、plenti6.2/n-lumio/v5-dest、pgcsil-gfp或plenti6.2/n-lumio/v5-gw/lacz中的任一。本发明实施例具体列举了以pgcsil-gfp为载体构建的人eddm3a基因干扰慢病毒载体,命名为pgcsil-gfp-eddm3a-sirna。本发明的eddm3a基因sirna可用于抑制胃癌细胞的增殖,进一步地可以用作治疗胃癌的药物或制剂。eddm3a基因干扰慢病毒载体则可用于制备所述eddm3a基因sirna。当用作治疗胃癌的药物或制剂时,是将安全有效量的所述核酸分子施用于哺乳动物。具体剂量还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。本发明第六方面,公开了一种eddm3a基因干扰慢病毒,由前述eddm3a基因干扰核酸构建体在慢病毒包装质粒、细胞系的辅助下,经过病毒包装而成。该慢病毒可感染胃癌细胞并产生针对eddm3a基因的小分子干扰rna,从而抑制胃癌细胞的增殖。该eddm3a基因干扰慢病毒可用于制备预防或治疗胃癌的药物。本发明的第七方面,提供前述核酸分子,或前述eddm3a基因干扰核酸构建体,或前述eddm3a基因干扰慢病毒的用途,为:用于制备预防或治疗胃癌的药物,或用于制备降低胃癌细胞中eddm3a基因表达的试剂盒。所述预防或治疗胃癌的药物的应用为胃癌的治疗提供了一种方法,具体为一种预防或治疗对象体内胃癌的方法,包括将有效剂量的所述的药物施用于对象中。进一步的,所述药物用于预防或治疗对象体内胃癌时,需要将有效剂量的所述的药物施用于对象中。采用该方法,所述胃癌的生长、增殖、复发和/或转移被抑制。进一步的,所述胃癌的生长、增殖、复发和/或转移的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的部分被抑制。所述方法的对象可以为人。本发明的第八方面,提供一种用于预防或治疗胃癌的组合物,其有效物质含有:前述的核酸分子;和/或,前述eddm3a基因干扰核酸构建体;和/或,前述eddm3a基因干扰慢病毒,以及药学上可接受的载体、稀释剂或赋形剂。所述组合物可以为药物组合物。当所述组合物用于预防或治疗对象体内胃癌时,需要将有效剂量的所述的组合物施用于对象中。采用该方法,所述胃癌的生长、增殖、复发和/或转移被抑制。进一步的,所述胃癌的生长、增殖、复发和/或转移的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的部分被抑制。所述组合物的形式无特殊限制,可以为固体、液体、凝胶、半流质、气雾等各种物质形式。所述组合物主要针对的对象为哺乳动物。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。综上所述,本发明设计了针对人eddm3a基因的rnai靶点序列,构建相应的eddm3arnai载体,其中rnai载体pgcsil-gfp-eddm3a-sirna能够显著下调eddm3a基因在mrna水平和蛋白水平的表达。使用慢病毒(lentivirus,简写为lv)作为基因操作工具携带rnai载体pgcsil-gfp-eddm3a-sirna能够靶向地将针对eddm3a基因的rnai序列高效导入人胃腺癌细胞ags和人胃癌细胞mgc80-3细胞,降低eddm3a基因的表达水平,显著抑制上述肿瘤细胞的增殖能力。因此慢病毒介导的eddm3a基因沉默是恶性肿瘤潜在的临床非手术治疗方式。与现有技术相比,本发明具有如下有益效果:本发明经过广泛而深入的研究发现,采用rnai方法下调人eddm3a基因的表达后可有效地抑制胃癌细胞的增殖、促进细胞凋亡,可以有效地控制胃癌的生长进程。本发明提供的sirna或者包含该sirna序列的核酸构建体、慢病毒能够特异性抑制胃癌细胞的增殖速率、促进胃癌细胞凋亡、抑制胃癌细胞克隆、抑制胃癌细胞转移能力、抑制胃癌生长,从而治疗胃癌,为胃癌治疗开辟新的方向。附图说明图1-1:rt-pcr检测ags细胞中目的基因敲减后mrna表达丰度比较。图1-2:rt-pcr检测mgc80-3目的基因敲减后mrna表达丰度比较。图2-1:westernblot检测ags细胞靶点降低eddm3a基因蛋白水平表达情况。图2-2:westernblot检测mgc80-3细胞靶点降低eddm3a基因蛋白水平表达情况。图3-1:经shrna慢病毒感染ags细胞,3天后,eddm3a基因敲减组与对照组细胞数量(上图和左下图)及细胞数量变化倍数(右下图)随时间变化的曲线。图3-2:经shrna慢病毒感染mgc80-3细胞,3天后,eddm3a基因敲减组与对照组细胞数量(上图和左下图)及细胞数量变化倍数(右下图)随时间变化的曲线。图4-1:ags细胞中各实验组在酶标仪对波长490nm的吸光度(左图)及吸光度变化倍数(右图)随时间变化的对比。od490在这里反映了具有活力的细胞的数量。图4-2:mgc80-3细胞中各实验组在酶标仪对波长490nm的吸光度(左图)及吸光度变化倍数(右图)随时间变化的对比。od490在这里反映了具有活力的细胞的数量。图5-1:shrna慢病毒感染ags细胞后,eddm3a基因敲减组与对照组形成克隆数量的对比。图5-2:shrna慢病毒感染mgc80-3细胞后,eddm3a基因敲减组与对照组形成克隆数量的对比。图6-1:shrna慢病毒感染ags细胞,培养5天后,sheddm3a组与对照组(shctrl)凋亡率对比点图。图6-2:shrna慢病毒感染ags细胞,培养5天后,sheddm3a组与对照组(shctrl)凋亡率对比统计图。图6-3:shrna慢病毒感染mgc80-3细胞,培养5天后,sheddm3a组与对照组(shctrl)凋亡率对比点图。图6-4:shrna慢病毒感染mgc80-3细胞,培养5天后,sheddm3a组与对照组(shctrl)凋亡率对比统计图。图7-1:人胃腺癌细胞ags各实验组在transwell小室转移细胞数对比图。图7-2:人胃腺癌细胞ags各实验组在transwell小室内转移细胞数相比shctrl的变化值对比。(柱形图中为共3次实验,每次实验9张代表图片的平均值)图7-3:人胃癌细胞mgc80-3各实验组transwell小室转移细胞数对比图。图7-4:人胃癌细胞mgc80-3各实验组在transwell小室内转移细胞数相比shctrl的变化值对比。图8-1:ags细胞划痕24h迁移图。图8-2:ags细胞划痕24h迁移率统计图。(柱形图代表5次实验的平均值)图8-3:mgc80-3细胞划痕24h迁移图。图8-4:mgc80-3细胞划痕24h迁移率统计图。(柱形图代表5次实验的平均值)附图中,未明确标注时,柱形图代表3次实验的平均值,误差线表示标准偏差(sd)。**,shctrl与目的基因shrna慢病毒处理组相比,p<0.01。*,shctrl与目的基因shrna慢病毒处理组相比,0.01≤p<0.05。具体实施方式本发明从细胞功能学角度出发证实eddm3a基因在胃癌发生中的作用。通过构建目的基因shrna慢病毒后转染不同的胃癌细胞,与转染对照慢病毒做对比,分别检测两组胃癌细胞系内mrna及蛋白质水平目的基因的表达情况;随后通过细胞功能学实验进行细胞增殖、凋亡等检测,结果显示shrna组与对照组对比,shrna组两株胃癌细胞增殖抑制程度均明显高于对照组,细胞凋亡率增加程度较对照组高。eddm3a抑制剂指对于eddm3a具有抑制效果的分子。对于eddm3a具有抑制效果包括但不限于:抑制eddm3a的表达或活性。抑制eddm3a活性是指使eddm3a活力下降。优选地,相比抑制前,eddm3a活力下降至少10%,较佳的降低至少30%,再佳的降低至少50%,更佳的降低至少70%,最佳的降低至少90%。抑制eddm3a表达具体的可以是抑制eddm3a基因的转录或翻译,具体的,可以是指:使eddm3a的基因不转录,或降低eddm3a的基因的转录活性,或者使eddm3a的基因不翻译,或降低eddm3a的基因的翻译水平。本领域技术人员可以使用常规方法对eddm3a的基因表达进行调节,如基因敲除、同源重组,干扰rna等。eddm3a的基因表达的抑制可以通过pcr及westernblot检测表达量验证。优选地,与野生型相比,eddm3a基因表达降低至少10%,较佳的降低至少30%,再佳的降低至少50%,更佳的降低至少70%,又佳的降低至少90%,最佳地eddm3a基因完全没有表达。小分子化合物本发明中指由几个或几十个原子组成,分子质量在1000以下的化合物。制备预防或治疗胃癌的药物可以利用降低胃癌细胞中eddm3a基因表达的核酸分子;和/或,eddm3a基因干扰核酸构建体;和/或,eddm3a基因干扰慢病毒,作为有效成分,制备预防或治疗胃癌的药物。通常,所述药物中除了有效成分外,根据不同剂型的需要,还会包括一种或多种药学上可接受的载体或辅料。“药学上可接受的”是指当分子本体和组合物适当地给予动物或人时,它们不会产生不利的、过敏的或其它不良反应。“药学上可接受的载体或辅料”应当与所述有效成分相容,即能与其共混而不会在通常情况下大幅度降低药物的效果。可作为药学上可接受的载体或辅料的一些物质的具体例子是糖类,如乳糖、葡萄糖和蔗糖;淀粉,如玉米淀粉和土豆淀粉;纤维素及其衍生物,如甲基纤维素钠、乙基纤维素和甲基纤维素;西黄蓍胶粉末;麦芽;明胶;滑石;固体润滑剂,如硬脂酸和硬脂酸镁;硫酸钙;植物油,如花生油、棉籽油、芝麻油、橄榄油、玉米油和可可油;多元醇,如丙二醇、甘油、山梨糖醇、甘露糖醇和聚乙二醇;海藻酸;乳化剂,如tween;润湿剂,如月桂基硫酸钠;着色剂;调味剂;压片剂、稳定剂;抗氧化剂;防腐剂;无热原水;等渗盐溶液;和磷酸盐缓冲液等。这些物质根据需要用于帮助配方的稳定性或有助于提高活性或它的生物有效性或在口服的情况下产生可接受的口感或气味。本发明中,除非特别说明,药物剂型并无特别限定,可以被制成针剂、口服液、片剂、胶囊、滴丸、喷剂等剂型,可通过常规方法进行制备。药物剂型的选择应与给药方式相匹配。在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本
技术领域
技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本
技术领域
的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。除非另外说明,本发明中所公开的实验方法、检测方法、制备方法均采用本
技术领域
常规的分子生物学、生物化学、染色质结构和分析、分析化学、细胞培养、重组dna技术及相关领域的常规技术。实施例1针对人eddm3a基因rnai慢病毒的制备1.筛选针对人eddm3a基因的有效的sirna靶点从genbank调取eddm3a(nm_006683)基因信息;设计针对eddm3a基因的有效的sirna靶点。表1-1列出了筛选出的针对eddm3a基因的有效sirna靶点序列。表1-1靶向于人eddm3a基因的sirna靶点序列seqidnotargetseq(5’-3’)1ggctgtgtgtatacagtaa2.慢病毒载体的制备针对sirna靶点(以seqidno:1为例)合成两端含agei和ecori酶切位点粘端的双链dnaoligo序列(表1-2);以agei和ecori限制性内切酶作用于pgcsil-gfp载体(上海吉凯基因化学技术有限公司提供),使其线性化,琼脂糖凝胶电泳鉴定酶切片段。表1-2两端含agei和ecori酶切位点粘端的双链dnaoligo通过t4dna连接酶将双酶切线性化(酶切体系如表1-4所示,37℃,反应1h)的载体dna和纯化好的双链dnaoligo连接,在适当的缓冲体系(连接体系如表1-5所示)中于16℃连接过夜,回收连接产物。将连接产物转化氯化钙制备的新鲜的大肠杆菌感受态细胞(转化操作参考:分子克隆实验指南第二版55-56页)。在连接转化产物长出菌克隆表面沾一下,溶于10μllb培养基,混匀取1μl作为模板;在以慢病毒载体中rnai序列的上下游,设计通用pcr引物,上游引物序列:5’-cctatttcccatgattccttcata-3’(seqidno:6);下游引物序列:5’-gtaatacggttatccacgcg-3’(seqidno:7),进行pcr鉴定实验(pcr反应体系如表1-6,反应条件如表1-7)。对pcr鉴定阳性的克隆进行测序和比对分析,比对正确的克隆即为构建成功的针对seqidno:1的表达rnai的载体,命名为pgcsil-gfp-eddm3a-sirna。构建pgcsil-gfp-scr-sirna阴性对照质粒,阴性对照sirna靶序列为5’-ttctccgaacgtgtcacgt-3’(seqidno:8)。构建pgcsil-gfp-scr-sirna阴性对照质粒时,针对scrsirna靶点合成两端含agei和ecori酶切位点粘端的双链dnaoligo序列(表1-3),其余构建方法、鉴定方法及条件均同pgcsil-gfp-eddm3a-sirna。表1-3两端含agei和ecori酶切位点粘端的双链dnaoligo表1-4pgcsil-gfp质粒酶切反应体系试剂体积(μl)pgcsil-gfp质粒(1μg/μl)2.010×buffer5.0100×bsa0.5agei(10u/μl)1.0ecori(10u/μl)1.0ddh2o40.5total50.0表1-5载体dna和双链dnaoligo连接反应体系试剂阳性对照(μl)自连对照(μl)连接组(μl)线性化的载体dna(100ng/μl)1.01.01.0退火的双链dnaoligo(100ng/μl)1.0-1.010×t4噬菌体dna连接酶缓冲液1.01.01.0t4噬菌体dna连接酶1.01.01.0ddh2o16.017.016.0total20.020.020.0表1-6-1pcr反应体系试剂体积(μl)10×buffer2.0dntps(2.5mm)0.8上游引物0.4下游引物0.4taq聚合酶0.2模板1.0ddh2o15.2total20.0表1-7pcr反应体系程序设定3.包装eddm3a-shrna慢病毒以qiagen公司的质粒抽提试剂盒提取rnai质粒pgcsil-gfp-eddm3a-sirna的dna,配制成100ng/μl储存液。转染前24h,用胰蛋白酶消化对数生长期的人胚肾细胞293t细胞,以含10%胎牛血清的dmem完全培养基调整细胞密度为1.5×105细胞/ml,接种于6孔板,37℃,5%co2培养箱内培养。待细胞密度达70%-80%时即可用于转染。转染前2h,吸出原有培养基,加入1.5ml新鲜的完全培养基。按照sigma-aldrich公司的missionlentiviralpackagingmix试剂盒的说明,向一灭菌离心管中加入packingmix(pvm)20μl,pei12μl,无血清dmem培养基400μl,取20μl上述抽提的质粒dna,加至上述pvm/pei/dmem混合液。将上述转染混和物在室温下孵育15min,转移至人胚肾细胞293t细胞的培养基中,37℃,5%co2培养箱内培养16h。弃去含有转染混和物的培养介质,pbs溶液洗涤,加入完全培养基2ml,继续培养48h。收集细胞上清液,centriconplus-20离心超滤装置(millipore)纯化和浓缩慢病毒,步骤如下:4℃,4000g离心10min,除去细胞碎片;(2)0.45μm滤器过滤上清液于40ml超速离心管中;(3)4000g离心,10-15min,至需要的病毒浓缩体积;(4)离心结束后,将过滤杯和下面的滤过液收集杯分开,将过滤杯倒扣在样品收集杯上,离心2min离心力不超过1000g;(5)把离心杯从样品收集杯上移开,样品收集杯中的即为病毒浓缩液。将病毒浓缩液分装后于-80摄氏度保存。病毒浓缩液中含有的sirna的第一链的序列如seqidno:2所示。对照慢病毒的包装过程同eddm3a-sirna慢病毒,仅以pgcsil-gfp-scr-sirna载体代替pgcsil-gfp-eddm3a-sirna载体。实施例2实时荧光定量rt-pcr法检测基因的沉默效率处于对数生长期的人胃腺癌细胞ags和人胃癌细胞mgc80-3细胞分别进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)分别接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数值(moi:ags为10,mgc80-3为20),加入适宜量的实施例1制备的慢病毒,培养24h后更换培养基,待侵染时间达到5天后,收集细胞。根据invitrogen公司的trizol操作说明书,抽提总rna。根据promega公司的m-mlv操作说明书,将rna逆转录获得cdna(逆转录反应体系见表2-1,42℃反应1h,然后在70℃水浴锅中水浴10min使逆转录酶失活)。采用tp800型realtimepcr仪(takara)进行实时定量检测。ags细胞eddm3a基因的引物如下:上游引物5’-cattgtggcgtagatggata-3’(seqidno:11)和下游引物5’-ataaatgtaagcggggagtg-3’(seqidno:12)。mgc80-3细胞eddm3a基因的引物如下:上游引物:5’-aaaagaggctctgaaaggcaag-3’(seqidno:13)下游引物:5’-cgctccccttctcattgatgc-3’(seqidno:14)。两株细胞均以管家基因gapdh为内参,引物序列如下:上游引物5’-tgacttcaacagcgacaccca-3’(seqidno:15)和下游引物5’-caccctgttgctgtagccaaa-3’(seqidno:16)。按表2-2中的比例配置反应体系。表2-1逆转录反应体系试剂体积(μl)5×rtbuffer4.010mmdntps2.0rnasin0.4m-mlv-rtase1.0rnase-freeh2o2.6total10.0表2-2real-timepcr反应体系试剂体积(μl)sybrpremixextaq6.0引物mix(5μm)0.3cdna0.6ddh2o5.1total12.0设定程序为两步法real-timepcr:预变性95℃,30s;之后每一步变性95℃,5s;退火延伸60℃,30s;共进行40个循环。每次在延伸阶段读取吸光值。pcr结束后,95℃变性15s,然后冷却至60℃,使dna双链充分结合。从60℃开始到95℃,每一步增加0.5℃,保持4s,同时读取吸光值,制作熔解曲线。采用2-δδct分析法计算侵染了eddm3amrna的表达丰度。侵染对照病毒的细胞作为对照。实验结果如图1-1和1-2所示,表明人胃腺癌细胞ags和人胃癌细胞mgc80-3细胞中eddm3amrna的表达水平分别下调了99.8%和52.4%。实施例3westernblotting法检测基因的沉默效率1.细胞总蛋白抽提1)将对照病毒和针对eddm3a干扰靶点的rnai病毒,分别根据侵染复数值(moi:ags为10,mgc80-3为20)侵染目的细胞(ags和mgc80-3细胞)。2)感染5天后,收集细胞样品,pbs洗涤两次。取适当量的ripa裂解液,使用前数分钟内加入pmsf,使pmsf的最终浓度为1mm。(使用ripa裂解液,说明书链接:http://www.beyotime.com/ripa-lysis-bufferm.htm)。3)加入适当量的ripa裂解液,冰上裂解10-15min。细胞刮刮下细胞转移入新的ep管中,然后超声破碎细胞(40w共20次,每次1s,间隔2s)。4)4℃、12000g,离心15min,取上清用bcaproteinassaykit(厂家:碧云天,货号:p0010s)测定蛋白浓度。5)加入新的裂解液将每个样品蛋白浓度调为一致,一般为2μg/μl。然后加入1/5体积的6xloddingbuffer混匀,100度金属浴煮10min,短暂离心后-80℃保存备用。2.sds-page1)制胶:根据目的蛋白分子量大小配制不同浓度的胶,具体体系如表3-1、表3-2、表3-3所示:表3-1sds-page分离胶(8ml体系)表3-2sds-page分离胶(10ml体系)表3-3sds-page浓缩胶(不同体系)2)上样:胶凝固后,拔去梳子,电泳缓冲液清洗上样孔,将准备好的样品上样。3)电泳:浓缩胶80ma,20min;分离胶120ma,1h。3.免疫印迹(湿转)电泳结束后,使用转移电泳装置,在4℃、300ma恒流条件下电转150min,将蛋白转移到pvdf膜上。4.抗体杂交:1)封闭:用封闭液(含5%脱脂牛奶的tbst溶液)室温封闭pvdf膜1h或4℃过夜。2)一抗孵育:封闭液稀释抗体(anti-eddm3a,sigma,1:200稀释;anti-gapdhsanta-cruz,1:2000稀释),然后与封闭好的pvdf膜室温孵育2h或4℃过夜,并用tbst洗膜4次,每次8min。3)二抗孵育:用封闭液稀释相应的二抗(anti-rabbitigg,santa-cruz,1:2000稀释;anti-mouseigg,santa-cruz,1:2000稀释),室温下孵育pvdf膜1.5h,并用tbst洗膜4次,每次8min。5.x光显影:1)采用cst公司20xreagentand20xperoxide#7003试剂盒,将试剂盒中a液和b液按1:1比例混合颠倒混匀,放置数分钟后可使用。2)将膜取出,吸水纸擦干,平铺入暗盒,滴加适量步骤1中混匀的ecl发光液,铺上保鲜膜(避免产生气泡),放上x光片(避免x光片的移动),关上暗盒,曝光时间为1s至数分钟(曝光时间需要多尝试几次,根据肉眼能否看见荧光以及荧光的强弱无适当调整曝光时间)。3)取出x光片,放入显影液中,出现条带后取出,在清水中漂洗几秒钟,后放入定影液中至少2min。4)取出x光片,晾干,分析。两株细胞结果分别如图2-1和2-2所示,westernblot实验表明靶点对eddm3a基因的内源表达有敲减作用,因而是有效靶点。实施例3celigo实验检测侵染了eddm3a-shrna慢病毒的肿瘤细胞的增殖能力处于对数生长期的人胃腺癌细胞ags和人胃癌细胞mgc80-3分别进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数(moi:ags为10,mgc80-3为20),加入适宜量的病毒,培养24h后更换培养基,待侵染时间达到3天后,收集处于对数生长期的各实验组细胞。完全培养基重悬成细胞悬液(2×104/ml),以细胞密度约为1500个/孔,接种96孔板。每组5个复孔,每孔100μl。铺好板后,置37℃、5%co2培养箱培养。从铺板后第二天开始,每天用cellomics仪器(nexcelom)检测读板一次,连续检测读板5天。通过调整analysissettings的输入参数,准确地计算出每次扫描孔板中的带绿色荧光的细胞的数量,对数据进行统计绘图,绘出5天细胞增殖曲线。结果如图3-1至图3-2所示,结果表明慢病毒侵染组(sheddm3a组)两株肿瘤细胞体外培养5天后,增殖速度显著减缓,远低于对照组肿瘤细胞的增殖速度,ags和mgc80-3活力细胞数目分别下降了82.4%和73.41%,表明eddm3a基因沉默导致人胃腺癌细胞ags和人胃癌细胞mgc80-3细胞增殖能力被抑制。实施例4mtt实验检测侵染了eddm3a-shrna慢病毒的肿瘤细胞的增殖能力处于对数生长期的人胃腺癌细胞ags和人胃癌细胞mgc80-3分别进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)分别接种于6孔板中,培养至细胞融合度达到约30%。根据不同细胞各自的侵染复数,加入适宜量的eddm3a-shrna慢病毒和对照组的病毒,培养24h后更换培养基,收集处于对数生长期的各实验组细胞胰酶消化后,完全培养基重悬成细胞悬液,并计数。根据细胞生长快慢决定在96孔板中的铺板细胞密度(1500cell/well),每组3孔重复,统一铺好后,待细胞完全沉淀下来后,在显微镜下观察各实验组的细胞密度,如果密度不均匀,则固定一组,微调其他组细胞的量再次铺板(如:发现con组细胞较多,降低细胞量再次铺板),放入细胞培养箱中培养。从铺板后第二天开始,培养终止前4h加入20μl5mg/ml的mtt于孔中,无需换液。4h后完全吸去培养液,注意不要吸掉孔板底部的甲瓒颗粒,加100μldmso溶解甲瓒颗粒。振荡器振荡2-5min,酶标仪490/570nm检测od值。数据统计分析。结果如图4-1至4-2所示,慢病毒侵染组(sheddm3a组)各肿瘤在细胞体外培养5天后,增殖速度显著减缓,远低于对照组肿瘤细胞的增殖速度,ags和mgc80-3活力细胞数目分别下降了33%和80.69%,表明eddm3a基因沉默导致人胃腺癌细胞ags和人胃癌细胞mgc80-3细胞增殖能力被抑制。实施例5侵染eddm3a-shrna慢病毒的肿瘤细胞克隆形成能力的检测将人胃腺癌细胞ags和人胃癌细胞mgc80-3分别用胰酶消化后接种于12孔板中,细胞密度为10-15%。第二天换为新鲜的培养基,内含5μg/mlpolybrene。将eddm3a-shrna慢病毒按照侵染复数(moi:ags为10,mgc80-3为20)加入到培养板中,感染12-24h后换新鲜的培养基。感染72h后,荧光显微镜下观察荧光,感染效率达到80%。将处于对数生长期的感染病毒后的细胞胰酶消化后,完全培养基重悬成细胞悬液;细胞计数后接种于6孔板中(800个细胞/孔),将接种好的细胞于培养箱中继续培养到7天,中途隔3day进行换液并观察细胞状态;实验终止前荧光显微镜下对细胞克隆进行拍照;实验终止时用多聚甲醛固定细胞,pbs洗涤细胞后,giemsa染色,拍照。结果如图5-1至图5-2所示,与对照组(shctrl组)相比,sheddm3a组rna干扰降低基因的表达后,人胃腺癌细胞ags和人胃癌细胞mgc80-3细胞形成的克隆数目显著减少、克隆体积明显减小;表明eddm3a基因沉默导致肿瘤细胞形成克隆的能力下降。平板克隆形成实验检测降低基因的表达后,肿瘤细胞的克隆形成能力下降。实施例6facs检测侵染eddm3a-shrna慢病毒的肿瘤细胞凋亡水平人胃腺癌细胞ags和人胃癌细胞mgc80-3分别用胰酶消化后接种于12孔板中,细胞密度为10-15%。第二天换为新鲜的培养基,内含5ug/mlpolybrene。将eddm3a-shrna慢病毒按照侵染复数(ags为10,mgc80-3为20)加入到培养板中,感染12-24h后换新鲜的培养基。感染72h后传代,第120h天检测,荧光显微镜下观察荧光,感染效率达到90%。将处于对数生长期的细胞分别胰酶消化后,完全培养基重悬成细胞悬液;与上清细胞收集于同一5ml离心管中,每组设三个复孔(为保证上机细胞数足够,细胞数目≥5×105/处理)。1300rmp离心5min,弃上清,4℃预冷的pbs洗涤细胞沉淀。1×bindingbuffer(ebioscience,88-8007-74)洗涤细胞沉淀一次,1300rmp、3min离心,收集细胞。200μl1×bindingbuffer重悬细胞沉淀。加入10μlannexinv-apc(ebioscience,88-8007)染色,室温避光10-15min。根据细胞量,补加400-800μl1×bindingbuffer,上流式细胞仪进行检测。对结果进行分析。如图6-1和图6-4所示为annexinv单染法检测降低基因的表达后,肿瘤细胞的细胞凋亡比例的变化。发现下调基因表达后,ags和mgc80-3肿瘤细胞的凋亡比例均增加。与对照组相比,sheddm3a组rna干扰降低基因的表达后,凋亡肿瘤细胞数显著增多;表明基因沉默导致肿瘤细胞凋亡。实施例7transwell转移检测侵染eddm3a-shrna慢病毒的肿瘤细胞侵袭水平取出transwell小室(corning),将所需数目的小室置于新的24孔板中,上室加100μl无血清培养基,37℃培养箱中放置1h。分别制备侵染过eddm3a-shrna、scr-shrna慢病毒的人胃腺癌细胞ags和人胃癌细胞mgc80-3无血清悬浮液,并计数,细胞数根据预实验调整,一般为105/孔(24孔板)。小心除去上室中培养基并加入100μl细胞悬液,下室内加入600μl含30%fbs的培养基。同时,使用该细胞悬液铺一块mts96孔板,每孔约接种5000个细胞,接种后即测定od570,作为转移参照。37℃培养箱培养一段时间(具体时间根据预实验调整)。倒扣小室于吸水纸上以去除培养基,用棉拭子轻轻移去小室内非转移细胞,滴2-3滴giemsa染色液到膜的下表面染色转移细胞3-5min后,将小室浸泡冲洗数次,空气晾干。显微镜拍照:每个transwell小室,随机选取视野,拍100x照片4张,200x照片9张。以200x的照片来计数,进行数据分析,比较实验组与对照组细胞转移能力的差异:计算各组转移细胞数(migratorycellsperfield),标准差,t-test分析得到p值,判断是否有显著性差异(p<0.05,有显著性差异,否则无显著性差异)两株细胞的侵袭结果如图7-1至图7-4所示,两株细胞实验组(sheddm3a组)与对照组(shctrl组)相比,sheddm3a组rna干扰降低eddm3a基因的表达后,ags和mgc80-3肿瘤细胞的转移能力均降低。实施例8划痕愈合实验检测侵染eddm3a-shrna慢病毒的肿瘤细胞侵袭水平按照实验设计的组别,在96孔板各孔中分别加入约100μl/well侵染eddm3a-shrna、scr-shrna慢病毒的人胃腺癌细胞ags和人胃癌细胞mgc80-3,细胞培养基为含10%fbs的培养基,以次日细胞达到90%以上汇合度为准。第二天换低浓度血清培养基(0.1%fbs),使用划痕仪对准96孔板的下端中央部位,向上轻推形成划痕。使用无血清培养基轻轻漂洗2-3遍,加入低浓度血清培养基(0.1%fbs),拍照。37℃、5%co2培养箱培养,根据预实验选择合适的时间点拍照(一般可选择0h、8h、16h、24h等)。荧光显微镜拍照(以96孔中心阴影区域为参照,划痕在图片的正中)。根据划痕后的图片,计算各组细胞迁移率。两株细胞的结果分别如图8-1至8-4所示,实验组(sheddm3a组)与对照组(shctrl组)相比,sheddm3a组rna干扰降低eddm3a基因的表达后,ags和mgc80-3肿瘤细胞的转移能力降低。以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本
技术领域
的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。序列表<110>中国人民解放军第四军医大学<120>人eddm3a基因的用途及相关产品<160>16<170>siposequencelisting1.0<210>1<211>19<212>dna<213>人工序列(artificialsequence)<400>1ggctgtgtgtatacagtaa19<210>2<211>19<212>rna<213>人工序列(artificialsequence)<400>2ggcuguguguauacaguaa19<210>3<211>48<212>rna<213>人工序列(artificialsequence)<400>3caggcuguguguauacaguaacucgaguuacuguauacacacagccug48<210>4<211>58<212>dna<213>人工序列(artificialsequence)<400>4ccggcaggctgtgtgtatacagtaactcgagttactgtatacacacagcctgtttttg58<210>5<211>58<212>dna<213>人工序列(artificialsequence)<400>5aattcaaaaacaggctgtgtgtatacagtaactcgagttactgtatacacacagcctg58<210>6<211>24<212>dna<213>人工序列(artificialsequence)<400>6cctatttcccatgattccttcata24<210>7<211>20<212>dna<213>人工序列(artificialsequence)<400>7gtaatacggttatccacgcg20<210>8<211>19<212>dna<213>人工序列(artificialsequence)<400>8ttctccgaacgtgtcacgt19<210>9<211>54<212>dna<213>人工序列(artificialsequence)<400>9ccggttctccgaacgtgtcacgtctcgagacgtgacacgttcggagaatttttg54<210>10<211>54<212>dna<213>人工序列(artificialsequence)<400>10aattcaaaaattctccgaacgtgtcacgtctcgagacgtgacacgttcggagaa54<210>11<211>20<212>dna<213>人工序列(artificialsequence)<400>11cattgtggcgtagatggata20<210>12<211>20<212>dna<213>人工序列(artificialsequence)<400>12ataaatgtaagcggggagtg20<210>13<211>22<212>dna<213>人工序列(artificialsequence)<400>13aaaagaggctctgaaaggcaag22<210>14<211>21<212>dna<213>人工序列(artificialsequence)<400>14cgctccccttctcattgatgc21<210>15<211>21<212>dna<213>人工序列(artificialsequence)<400>15tgacttcaacagcgacaccca21<210>16<211>21<212>dna<213>人工序列(artificialsequence)<400>16caccctgttgctgtagccaaa21当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1