神经外科系统及相关方法与流程

文档序号:22926897发布日期:2020-11-13 16:22阅读:198来源:国知局
神经外科系统及相关方法与流程

相关申请的交叉引用

本申请要求2018年7月2日提交的美国临时专利申请第62/627,520号的优先权,该申请的全部内容以参见的方式纳入本文。

本公开涉及神经外科系统,并且更具体地涉及立体定向装置部件和相关的外科程序。



背景技术:

深度脑刺激(dbs)外科手术可以使用立体定向装置执行,并且通常涉及两个阶段,这两个阶段都需要时间、设备和人力资源。第一阶段涉及图像采集和外科手术计划。在第一阶段期间,将患者的头部固定在立体定向头架中,从而进行计划好的磁共振(mr)和/或计算机断层扫描(ct)检查,并创建外科手术计划,以使用诸如计算机程序之类的外科手术计划工具访问大脑内的一个或多个目标。患者通常在第一阶段期间处于清醒状态,并经历来自头架的不适感。在外科手术的第二阶段期间,将患者运送至手术室(or),使得可以使用外科手术计划对患者执行立体定向程序。为了执行该程序,将立体定向装置附连于头架,并将由外科手术计划确定的值应用于该立体定向装置。值包括笛卡尔坐标(例如x,y,z)和角度。电极附连于立体定向装置的可调节部件,并根据外科手术计划的值被递送至目标。该过程的冗长和复杂性给患者、医生和手术室资源带来了负担。



技术实现要素:

本公开涉及外科手术系统,此类系统可以使神经外科手术的成像和计划阶段与神经外科手术的计划执行阶段分离,从而减少在手术室(or)中所需的时间量以及执行该程序所需的相关设备和人力资源。这种外科手术程序的例子包括深度脑刺激、电生理学、外部心室引流和其它技术。

在一方面,外科手术系统包括构造成附连至骨结构的锚定螺钉、限定出用于将锚定螺钉相对于彼此定位在固定位置的布置的模板、以及外科手术框架,该外科手术框架包括限定在该布置中的连接点,使得这些连接点可以与所述锚定螺钉并置。外科手术框架能够可逆地连接至锚定螺钉。

实施例可包括以下特征。

在一些实施例中,外科手术系统还包括能够可逆地附连至锚定螺钉的支脚。

在某些实施例中,支脚包括球形构造。

在一些实施例中,支脚包括圆柱形构造。

在某些实施例中,支脚包括v形边缘。

在一些实施例中,外科手术系统还包括构造成将支脚连接至外科手术框架的臂。

在某些实施例中,外科手术系统还包括构造成将锚定螺钉连接至外科手术框架的臂。

在一些实施例中,锚定螺钉包括构造成皮下地定位的自攻螺钉末端。

在某些实施例中,锚定螺钉包括构造成固定于骨结构的锚定主体。

在一些实施例中,锚定螺钉包括两个锚定螺钉。

在一些实施例中,锚定螺钉包括三个锚定螺钉。

在某些实施例中,锚定螺钉包括四个锚定螺钉。

在一些实施例中,锚定螺钉包括多于四个的锚定螺钉。

在某些实施例中,锚定螺钉构造成附连至颅骨。

在一些实施例中,外科手术框架包括成像框架。

在某些实施例中,外科手术系统还包括立体定向装置,该立体定向装置包括外科手术框架。

在一些实施例中,立体定向装置包括仪器引导件。

在某些实施例中,立体定向装置提供五个自由度,通过该五个自由度可以调节仪器引导件。

在一些实施例中,自由度包括线性自由度和角自由度。

在某些实施例中,立体定向装置构造成手动调节。

在一些实施例中,立体定向装置构造成以自动化方式调节。

在某些实施例中,立体定向装置限定有圆柱形的工作范围。

在一些实施例中,立体定向装置构造成利用7.0tmri操作。

在某些实施例中,外科手术框架是第一外科手术框架,并且连接点是第一连接点,外科手术系统还包括第二外科手术框架,该第二外科手术框架包括限定在布置中的第二连接点,使得第二连接点可以与锚定螺钉并置,第二外科手术框架能够可逆地附连至锚定螺钉。

在一些实施例中,图像引导的基于框架的立体定向系统可以包括颅骨固定部件、三维(3d)定位器、图像定位部件和外科手术计划软件。

在某些实施例中,颅骨固定部件包括:用于将立体定向装置锚定至患者或大型实验动物的颅骨的颅骨锚定螺钉,以及用于植入锚定螺钉的其它仪器和装置。螺钉放置模板可用于以精确的样式将颅骨锚定螺钉(例如,四个颅骨锚定螺钉)植入颅骨。在一些实施例中,与模板一起使用的器械包括四个尖锐的杆,以在螺钉植入期间稳定模板。每个尖锐的杆用钻孔引导件顺序地替换,该钻孔引导件用于在颅骨上为锚定螺钉创建精确的孔型。由模板来引导与颅骨锚定螺钉的螺纹匹配的丝锥,以在孔中创建螺纹。用来捕获颅骨锚定螺钉的改锥被插入到模板中并前进到螺纹孔中。模板锁定到改锥上,以将模板固定在位。

在某些实施例中,颅骨锚定螺钉由钛、聚醚醚酮(peek)、蓝宝石、熔融石英或不锈钢制成。在一些示例中,peek对于磁共振成像(mri)兼容性是最佳的。每个颅骨锚定螺钉的主体具有与颅骨中的螺纹孔匹配的螺纹。颅骨锚定螺钉的顶部具有六角凸缘。每个颅骨锚定螺钉前进到螺纹孔中,直到凸缘邻接颅骨。六角顶部用于将颅骨锚定螺钉拧入到位。颅骨锚定螺钉顶部的螺纹孔用于将立体定向系统的各种装置附连至颅骨。

在一些实施例中,立体定向定位器具有矩形基部,该矩形基部具有朝向立体定向定位器的中心延伸的多个(例如四个)支承件。支承件是植入颅骨的颅骨锚定螺钉的连接部位。在某些实施例中,y轴导轨被结合到基部上。3d滑块附连到y轴导轨上。3d滑块允许定位器围绕颅骨平移,以调节至外科手术目标的位置。上述平移使弧形象限运动,该弧形象限用于将外科手术仪器和电极引导至目标。弧形象限有两个自由度来改变仪器对目标的角度投影。

在某些实施例中,图像定位器附连至颅骨锚定螺钉。图像定位器用作在相对于立体定向定位器的已知物理位置的图像上生成参考标记,从而允许将图像空间转换为物理空间。

在另一方面,外科手术系统包括颅骨附连装置,该颅骨附连装置包括:支承基部,该支承基部构造成抵靠患者的颅骨安置;以及一个或多个销,这些销从支承基部的底表面延伸并且构造成刺穿头皮,以使颅骨附连装置抵靠颅骨安置。外科手术系统还包括沿支承基部的顶表面配置的交界部,该交界部的形状与立体定向装置的匹配特征的轮廓互补,用于在交界部与匹配特征配合时限定出立体定向装置相对于支承基部的位置和定向。

各实施例可包括以下特征中的一个或多个。

在一些实施例中,支承基部的顶表面和底表面一起限定出在约0度至约40度的范围内的角度。

在某些实施例中,颅骨附连装置还包括侧向突起,这些侧向突起从支承基部延伸并且分别限定有孔,锚定螺钉可穿过这些孔,以将颅骨附连装置附连至颅骨。

在某些实施例中,支承基部包括一个或多个特征部,支承基部可以在这些特征部处附连于立体定向装置。

在一些实施例中,交界部从支承基部的顶表面突出。

在某些实施例中,交界部是径向不对称的。

在一些实施例中,当颅骨附连装置抵靠颅骨安置时,支承基部的顶表面限定出包括立体定向坐标系的原点的平面。

在某些实施例中,外科手术系统还包括立体定向装置。

在一些实施例中,立体定向装置包括图像定位器。

在某些实施例中,立体定向装置包括仪器引导件。

在一些实施例中,立体定向装置可在三个线性自由度上调节,并且可在两个或更多个旋转自由度上调节,以将仪器引导至位于患者的大脑中的目标点。

在某些实施例中,立体定向装置包括:可沿着x轴导轨运动的x轴承载件,可沿着y轴导轨运动的y轴承载件,可沿着z轴导轨运动的z轴承载件,可沿着环向角(collarangle)导轨运动的环向角承载件以及可沿着弧角导轨运动的弧角承载件。

在一些实施例中,x轴导轨安装至环向角承载件,并且其中,弧角导轨安装至x轴承载件。

在某些实施例中,环向角承载件和弧角承载件一起限定出球体,该球体的中心点与患者的大脑中的目标点重合。

在一些实施例中,环向角承载件和弧角承载件彼此正交。

在某些实施例中,环向角导轨具有约160mm至约190mm的曲率半径,并且其中,弧角导轨具有约160mm至约190mm的曲率半径。

在一些实施例中,z轴导轨可绕其自身的轴线旋转。

在某些实施例中,外科手术系统还包括成像参考工具,该成像参考工具构造成附连于立体定向装置,以验证仪器在目标点的准确放置。

在一些实施例中,成像参考工具包括十字准线以及配置在成像参考工具的相对侧上的圆。

在某些实施例中,立体定向装置是第一立体定向装置,并且匹配特征部是第一匹配特征部,外科手术系统还包括具有第二匹配特征部的第二立体定向装置,第二匹配特征部具有第一匹配特征部的轮廓。

附图说明

图1-5示出了用于定位锚定螺钉的模板的各种视图。

图6示出了图1-5的模板的平台的各种视图。

图7示出了图1-5的模板的锁定螺钉的各种视图。

图8示出了图1-5的锚定螺钉的各种视图。

图9示出了图1-5的锚定螺钉的锚定主体的各种视图。

图10示出了图1-5的锚定螺钉的螺钉末端的各种视图。

图11示出了图1-5的模板的改锥组件以及图1-5的锁定螺钉在一起的各种视图。

图12示出了图11的改锥组件的保持杆的各种视图。

图13示出了图11的改锥组件的螺丝起子的各种视图。

图14示出了具有螺钉接头的图1-5的锚定螺钉。

图15示出了具有支脚的图1-5的锚定螺钉。

图16示出了包括支脚的锚定螺钉。

图17示出了具有支脚的锚定螺钉。

图18示出了皮下螺钉末端的各种实施例的多个视图。

图19示出了图18的锚定螺钉的多个视图。

图20示出了附连于颅骨的各种锚定螺钉。

图21和22示出了与图17的锚定螺钉配合的成像框架的各种视图。

图23示出了与附连于锚定螺钉的支脚配合的成像框架。

图24示出了与图17的锚定螺钉配合的立体定向装置的平台。

图25示出了与图1-5的锚定螺钉配合的立体定向装置。

图26-29示出了图25的立体定向装置的各种视图。

图30示出了与固定于患者颅骨的锚定螺钉配合的立体定向装置。

图31示出了由图30的立体定向装置所限定的工作范围。

图32示出了由图30的立体定向装置提供的各种自由度。

图33示出了由图30的立体定向装置提供的各种自由度。

图34-38示出了颅骨附连装置的各种视图。

图39示出了附连于患者的颅骨的颅骨附连装置。

图40示出了由图34-38的颅骨附连装置限定的立体定向坐标系。

图41示出了被设计成与图34-38的颅骨附连装置匹配的各种立体定向装置。

图42和图43示出了立体定向定位装置的一部分的各种视图,该立体定向定位装置被设计成与图34的颅骨附连装置匹配。

图44-47示出了图42和43的立体定向定位装置的各种附加视图。

图48示出了图42-47的立体定向定位装置的一部分,该部分包括用于与图34-38的颅骨附连装置相交界的匹配特征部。

图49示出了图42-47的立体定向定位装置的环向角旋转和弧角旋转。

图50示出了图42-47的立体定向定位装置的各种视图,该立体定向定位装置经由图34-38的颅骨附连装置固定于颅骨以用于外科手术计划。

图51示出了附连于图42-47的立体定向定位装置的成像参考工具。

图52示出了准线的侧向x射线以及成像参考工具的对应圆。

图53示出了颅骨附连装置与颅骨的的固定附连。

图54-59示出了颅骨附连装置与颅骨的替代附连的各种实施例。

图60a-60d示出了用图42-47的立体定向定位装置执行的体模测试。

图61a-61f示出了ct图像,这些ct图像展示了使用图42-47的立体定向定位装置实现的双边瞄准精度。

在各个附图中,相似的参考符号指示相似的元件。在一些示例中,附图中所示的图示可能未按比例绘制。

具体实施方式

图1-7示出了螺钉模板2及其各部分,这些部分可以用于将一个或多个锚定螺钉4固定至哺乳动物的颅骨。各种外科手术装置(例如,用于医学成像模式的图像定位器框架,比如mri、ct、pet和dsa;外科手术平台;钻孔引导件和遥测装置)能够可逆地安装至锚定螺钉4以执行神经外科手术。神经外科程序的示例包括深部脑刺激(dbs)、立体脑电图(seeg)、光纤消融、颅内活检、脑室内分流、脑室引流(evd)、第三脑室造口术和肿瘤通路(例如活检/切除术)。

模板2包括平台6、容易且快速地定位锚定螺钉4的四个通道8、以及改锥组件10,通过该改锥组件10,锚定螺钉4可以前进到颅骨中。通道8以所限定的布置(例如,精确的几何图案)定位锚定螺钉4,该所限定的布置确定锚定螺钉4相对于彼此的位置。该布置对应于用来执行神经外科手术的外科手术装置上的附连点。例如,外科手术装置与锚定螺钉4之间的界面可设置为由三个或更多个锚定螺钉4限定的平面,或者设置为能够实现宽范围目标的弧。该布置还允许所附连的立体定向装置以90°增量旋转,从而减少死区,此类死区在其它情况下可能是由于对颅骨锚定部件的机械干扰而引起的。因此,该布置允许外科手术计划中的双侧和后侧轨迹。螺钉模板2还包括四个锁定螺钉12,其分别将改锥组件10固定在通道8内。

参考图8-10,每个锚定螺钉4包括锚定主体14和螺钉末端16,锚定主体14保持与颅骨的配合,螺钉末端16在颅骨中生成用于锚定主体14的通道。螺钉末端16具有自攻螺纹30。螺纹30具有每英寸范围在12-20的螺纹,并且在远端处具有细间距,以便于驱动锚定螺钉4。螺钉末端16焊接至锚定主体14。锚定主体14包括与改锥组件10交界的内螺纹18。

参照图11-13,每个改锥组件10包括螺丝起子20和保持杆22。螺丝起子20包括形成为与锚定主体14交界的凹穴24。固定杆22的尺寸设计成能够穿过螺丝起子20,并且包括螺纹端26,该螺纹端26拧入锚定主体14的内螺纹18中,以将螺丝起子20固定至锚定螺丝4。保持杆22包括止挡部27,该止挡部抵接螺丝起子20,并且该止挡部27通过与锚定螺钉4螺纹配合而可用于将锚定螺钉4钻入颅骨。

锚定螺钉4通常由与1.5t、3.0t和7.0tmri兼容的一种或多种材料制成,比如钛、陶瓷、合成蓝宝石、聚甲醛(pom)、peek和其它聚合物。根据锚定螺钉4的材料配方和结构,锚定螺钉4足够坚固以支承在神经外科程序期间附连于锚定螺钉的各种外科手术装置。锚定螺钉4可以通过包括3d打印、注射成型和机器操作的一种或多种工艺来制造,比如使用计算机数控(cnc)铣床和车床的制造。模板2通常由包括铝、钛和不锈钢的一种或多种材料制成,并且通常经由包括cnc铣床和车床的一种或多种工艺来制造。

虽然在图6、7、9、10和12中示出了螺钉模板2和锚定螺钉4的示例性尺寸,但是本领域的普通技术人员将理解,在其它情况下,螺钉模板和锚定螺钉在构造和功能上与螺钉模板2和锚定螺钉4基本上相似,并且锚定螺钉4的一个或多个尺寸可能与所示的尺寸不同。在一些实施例中,此种尺寸可以根据将要固定锚定螺钉4的哺乳动物的类型而变化。

神经外科手术的初始阶段包括在施加了局部麻醉之后,对模板2进行定位在颅骨顶上的预定位置处(例如,在颅骨的外表和二倍体处),其中四个锚定螺钉4锁定在通道8中。每个锚定螺钉4被按顺序地植入并固定到颅骨中,直到锚定螺钉4的锚定体14的止挡部28通过在颅骨上钻孔、对该孔攻丝并将螺丝4拧到孔中的过程而接触颅骨的外表面。然后,将锁定螺钉12从通道8移除(例如,拧下),并且将固定杆22从锚定螺钉4移除(例如,拧下)。将坐落于锚定螺钉4顶上的螺丝起子20从锚定螺钉4的锚定主体14移除(例如,向上拉动),同时螺钉末端16保持在颅骨内的皮下位置处。在一些实施方式中,锚定螺钉4可以与导向孔一起使用。一旦将锚定螺钉4固定于颅骨,就可以将多个装置附连于锚定螺钉4,以执行不同的外科手术程序。

在一些实施例中,支脚可以在移除模板2之后固定于锚定螺钉4,以便将外科手术装置定位在距颅骨期望的间隔处。例如,图14示出了螺纹螺钉接头32,该螺纹螺钉接头32被拧入锚定螺钉4的内螺纹18内,并且图15示出了支脚34,该支脚34包括将支脚34固定至螺纹螺钉接头32的内螺纹。

图16示出了可以与模板2一起使用以执行神经外科手术程序的锚定螺钉36。锚定螺钉36包括具有自攻螺纹40的螺钉末端38、包括内螺纹44的锚定主体42以及可以拧到锚定主体42的内螺纹44中的支脚46。在外科手术期间,锚定主体42从颅骨突出。支脚46是可拆卸的球形结构,其可以与外科手术装置的适当的接纳部件交界(例如,提供用于其的附连部位)以附连于锚定螺钉36。

在一些实施例中,锚定主体42具有约0.5cm至约0.8cm(例如,约0.7cm)的高度,并且支脚46具有约0.5cm至约0.7cm(例如,约0.6cm)的直径(例如宽度)。锚定主体42和螺钉末端38由与上述锚定螺钉4相同的一种或多种材料制成。支脚46通常由陶瓷(例如,供成像期间使用)或不锈钢(例如,供神经外科手术期间使用)制成。虽然支脚46被显示为球形顶部设计,但是在一些实施例中,在构造和功能上与锚定螺钉36基本上相似的锚定螺钉包括具有圆柱形形状的可拆卸支脚。这样的支脚可以与外科手术装置的适当的接纳部件交界(例如,提供用于其的附连部位)以附连于锚定螺钉。

图17示出了可以安装至锚定螺钉41的球形类型的支脚3的另一种实施例。

本文讨论的锚定螺钉可以包括各种设计的螺钉末端。例如,图18和19示出了锚定螺钉48、50、52的侧视图和立体图,这些锚定螺钉具有不同的螺钉末端54、56、58以及不同类型的自攻螺纹60、62、64。还示出了锚定螺钉48的附加视图。锚定螺钉48、50、52的锚定主体67、69、71包括用于连接至支脚的内螺纹。

图20示出了锚定螺钉4,锚定螺钉36(省略了支脚46)和锚定螺钉52在颅骨内的示例性植入。锚定主体从头皮(红色层)66突出,并且螺钉末端在颅骨68(蓝色层)和二倍体70(绿色层)的外表内延伸,但没有颅达颅骨72(粉红色层)的内表。

锚定螺钉4、36、48、50、52可以在发生mri的神经外科手术的初始阶段提供参考标记。例如,锚定螺钉4、36、48、50、52可以允许图像空间和立体定位空间的配准。因此,锚定螺钉4、36、48、50、52的任何部分(例如,螺钉末端、锚定主体或支脚)可包括用于跟踪的直达线或非直达线式路径。在一些实施例中,锚定螺钉4、36、48、50、52包括具有射频(rf)发射器的有源元件、红外led、反射红外球或在mri中可见的水性或非水性金属或非金属化学物质中的一个或多个。例如,支脚可包含填充有物质(例如,cuso4水溶液、维生素e油、矿物油、凡士林等)的腔体,该物质在立体定向空间中的已知位置处提供图像参考标记。参考标记的轮廓可以被扫描并用于在神经外科手术程序期间与各种外科手术装置进行表面匹配。在一些情况下,可以使用3d扫描相机生成患者和支脚的物理轮廓。

神经外科手术的第一阶段包括成像和计划拟定。图21和22示出了锚定螺钉36(锚定在颅骨80中)与成像框架74(例如图像定位器)之间的界面。成像框架74包括四个臂76,这些臂76具有配合支脚46的圆形凹穴78。在另一种实施例中,图23示出了锚定螺钉82(锚定在颅骨92中)与成像框架88(例如图像定位器)之间的界面。锚定螺钉82包括柱形支脚86。成像框架88利用相应的盖90固定于支脚86。一旦完成成像和计划拟定,就从支脚移除成像框架,从锚定螺钉移除支脚,并将锚定螺钉(例如,不包括支脚)保持固定于颅骨80,使得在神经外科手术程序的第二阶段中,立体定位装置可以附连于锚定螺钉。以这种方式,锚定螺钉到颅骨的附连使神经外科手术的第一阶段与第二阶段分离,从而允许患者在第一阶段完成后离开医疗机构,再返回医疗机构开始神经外科手术程序的第二阶段。

神经外科手术程序的第二阶段包括执行在神经外科手术程序的第一阶段期间生成的外科手术计划。图24示出了锚定螺钉36(锚定在颅骨84中)与立体定向装置100之间的界面。(在一些情况下,立体定向装置100还可称为立体定位装置。)四个臂94附连于立体定向装置100的平台96。臂94在底侧上限定有配合支脚46的圆形凹穴,从而将立体定向装置100附连至图24中的颅骨84或附连至图23中的颅骨92(示意性地显示为方盒)。在另一种实施例中,图25示出了锚定螺钉4(锚定在颅骨98中)与立体定向装置100之间的直接交界。四个臂102附连于立体定向装置100的平台96,并且臂102附连于锚定螺钉4的锚定主体42,从而将立体定向装置100附连至颅骨98。

参照图25-29,立体定向装置100提供多个自由度,通过这些自由度,立体定向装置100的引导件104(例如,仪器承载件)可以手动地定位,以根据手术计划将电极引线插入大脑。引导件104连接于弧部108(例如,直角弧)108并可沿着弧部108在第一自由度(例如,弧角)中运动。弧部108连接于上水平导轨110并可沿着上水平导轨在第二自由度中运动(例如,线性平移)。上水平导轨110连接于两个相对的枢转接头112并且可绕这两个相对的枢轴接头112在第三自由度(例如,环向角)中运动。枢转接头112连接于垂直侧导轨114并可沿着垂直侧导轨在第四自由度中运动(例如,线性平移)。垂直侧导轨114连接于相应的相对水平端部导轨116并可沿着水平端部导轨在第五自由度中运动(例如,线性平移)。水平端部导轨116附连于平台96(例如,固定于颅骨92)的相对侧,使得最终引导件104相对于颅骨92定位,以适当地插入电极引线。立体定向装置100还包括将可运动部件固定在期望位置的多个锁定螺钉、夹具和其它紧固机构。

各种臂构造(例如,臂94、102或其它臂构造)可以附连于平台96,这取决锚定螺钉的构造(例如,并且在某些情况下为所附接的支脚),这些锚定螺钉附连于颅骨以连接至立体定向装置100。立体定向装置100足够小,以装配在1.5t、3.0t和7.0tmri设备以及计算机断层摄影(ct)设备内。在一些实施例中,立体定向装置100的总长度为约20cm至约22cm,总宽度为约30cm至约32cm,并且总高度为约23cm至约25cm。立体定向系统100的各种部件通常由一种或多种材料制成,包括铝、陶瓷、钛、不锈钢、聚甲醛(pom)和peek。可经由包括cnc铣削和车床、注塑成型以及3d打印的一种或多种工艺来制造各种部件。

在一些实施方式中,并且在神经外科手术的第一阶段期间,外科手术计划软件系统生成可以用于自动立体定向装置的外科手术计划。参照图30-33,立体定向装置200提供多个自由度,通过这些自由度,立体定向装置200的引导件202(例如,仪器承载件)可以经由图像引导机器人技术自动地沿着圆柱形的工作范围214定位(参见图31),以根据外科手术计划将电极引线插入大脑。引导件202连接于导轨204并可沿着导轨在第一自由度z中运动(例如,线性平移)。导轨204连接于上弧结构206,该上弧结构206连接于下弧结构208并沿着下弧结构208在第二自由度θ中运动(例如,角度运动)。弧结构206、208的半径r(例如,以及因此图31中所示的圆柱形工件范围的半径)通过立体定向装置200的构造而固定,并且限定出引导件202的第三位置坐标。第一自由度和第二自由度以及第三位置坐标一起来定位如由手术计划所限定的进入点。

引导件202具有另外三个自由度,这些自由度将电极引线设置到手术轨迹上,使得立体定向装置200具有五个自由度。这些自由度包括滚动、俯仰和深度,如图33所示。俯仰和滚动的组合调节引导件202的倾斜,并且由外科手术计划软件系统确定。下弧结构208附连于平台210(例如,在锚定螺钉204处固定于颅骨212)的相对侧,使得最终引导件202相对于颅骨212定位,以适当地插入电极引线。递送电极引线的轨迹取决于万向节的角度。驱动控制是使用彼此垂直安装的压电线性马达执行的。这是将马达的线性运动转换为双框架装置的俯仰和滚动旋转的独特设计。

立体定向装置100、200的引导件102、202允许在钻孔中进行低轮廓固定,并且在移除引线递送插管后允许自动捕获深度电极引线。此外,引导件102、202被设计成两者在连接至脉冲发生器或另一装置之前都容纳和保护电极引线。

图34-40示出了可用于将各种立体定向外科手术装置固定至颅骨以执行神经外科手术的颅骨附连装置300。颅骨附连装置300与7.0tmri兼容,可将立体定向系统的所有部件固定至患者的颅骨。例如,立体定向系统可包括立体定向定位装置、ct图像定位器、mri定位器和其它立体定向装置。颅骨附连装置300在立体定向过程的持续期间保持附连于颅骨,使得只要颅骨附连装置300的位置保持不变,图像空间和立体定向空间的空间定向就对准。该功能允许在一天内进行计划性mri检查和手术计划的获取,而手术则在随后的一天(例如,第二天)执行。有利的是,这允许计划性mri检查和外科手术计划在手术室之外进行,使得只需要利用手术室来进行外科手术程序。这种方法大大改善了手术时间的效率,并减少了与执行立体定向手术相关联的开销。在一些示例中,如果期望,则外科医生可以在一天内完成外科手术序列。

颅骨附连装置300包括基部302、前突起304、两个相对的侧向突起306、三个尖锐的钛销308以及从基部302的顶表面312向上延伸的交界部310。基部302限定有四个孔314,协配的立体定向装置可以通过这些孔经由螺钉、销等附连于颅骨附连装置300。销308从前突起304和基部302的后部向下延伸。销308设计成穿透病人的头皮并安置到颅骨301的外表中。如图39所示,每个侧突起306限定有孔316,钛制颅骨锚定螺钉318可以穿过该孔而将颅骨附连装置300牢固地附连至颅骨301。由螺钉318和销308施加的相对力使颅骨附连装置300固定在颅骨301上。

颅骨附连装置300限定有基部302的顶表面312与下表面320之间的角度α。颅骨附连装置300可设计成,使得从一系列值中选择角度α以适应人类颅骨的可变形貌,以确保立体定向装置的定向正交于人体的长轴。例如,顶表面312水平定向,而下表面320可以在角度定向中变化。在一些实施例中,角度α在约0度(如图34-48所示)至约40度(如图39所示)的范围内。在一些实施例中,角度α可在10度增量的范围中选择(例如,约0、10、20、30或40度)。

交界部310用作分度轮廓(例如,键接表面),其确定并维持协配的立体定向装置相对于经由孔314附连于立体定向装置的颅骨附连装置300的方向和位置。即,颅骨附连装置300保持在立体定向装置与患者的颅骨301之间的恒定空间关系。因此,尽管交界部310具有侧向对称性,但是交界部310是径向不对称的。特别参照图40,颅骨附连装置300的顶表面312限定有参考平面,该参考平面建立了xyz立体定向坐标系的空间定向,工作范围322定位在该xyz立体定向坐标系中。例如,参考平面(例如,顶表面312)位于z=0的垂直位置,并且参考平面的中心具有x=100和y=45的水平位置。

在一些实施例中,颅骨附连装置300可经由3d打印来制造,并且可以由诸如pom之类的热塑性材料制成,以使颅骨附连装置300与mri系统兼容。在其它实施例中,颅骨附连装置300可由铝或钛制成。颅骨附连装置300的基部302通常具有约45mm至约48mm的长度、约45mm至约48mm的宽度,以及约12mm至约45mm的最小厚度。颅骨附连装置300通常重约13g至约70g。

将颅骨附连装置300附连至颅骨301开始于在销308和螺钉318的每个部位处麻醉头皮。首先将两个后销308安置到颅骨301上,然后再安置前销308。螺钉318穿过孔316而插入并拧入颅骨301。每个螺钉318施加相等的扭矩。将颅骨附连装置300应用于患者的颅骨301的过程简单且安全到足以在手术室(or)外进行。例如,检查室或病房足以执行该程序,因此不需要手术时间来执行该程序。

参照图41,多个协配的立体定向装置能够以相同的方式附连于颅骨附连装置300。示例性装置包括立体定向定位装置400、ct图像定位器401和mri定位器402,它们分别具有与交界部310互补形成的匹配特征部(例如,接纳部)430、450、460。(在一些情况下,立体定向定位装置400还可称为立体定位装置。)这种可互换性提供了如下能力:只要颅骨附连装置300保持固定在颅骨301上,就从沿颅骨301的原始位置移除协配的立体定向装置,然后在期望的时间将相同或不同的协配的立体定向装置重新定位至原始位置。因此,可以在不同的日期进行立体定向外科手术以及获取ct扫描或mri扫描。装置400、401、402中的每一个包括相同尺寸的匹配特征部(例如,接纳部、凹穴或凹入轮廓),使得装置400、401、402中的每一个以相同的方式并在由颅骨附连装置300限定的立体定向坐标系的相同位置处与头骨附连装置300的交界部310对准。

如上所述,立体定向深度脑刺激(dbs)手术对患者而言是艰辛的经历。dbs系统的植入分阶段为两个独立的程序。在第一阶段期间,将在2-3个小时内植入一个或多个dbs引线,并且是在清醒的患者身上执行,因为来自患者的反馈对于优化dbs引线的放置至关重要。第二阶段通常在第二天执行,包括植入dbs刺激器并将dbs引线连接至dbs刺激器。第二阶段需要1-2个小时,并且是在患者全身麻醉的情况下执行。

如以上关于模板2所讨论的,在一些实施方式中,植入dbs引线的工作流程始于手术室(or),并且立体定向系统利用头架附连至患者的颅骨,头架使用四个尖头螺丝固定在位。外科医生拧紧螺钉,从而将这些点驱动到颅骨外表中。患者通常认为这是手术的最糟糕部分,因为尖锐的螺钉产生的压力会造成持久的疼痛,直到程序结束时移除头架为止。

参照图42-48,立体定向定位装置400设计为解决其它立体定向dbs程序的一些缺点,包括由头架造成的不适、常规立体定向装置的重量以及dbs手术的时间。立体定向定位装置400与其它立体定向定位装置的显著不同之处在于,立体定向定位装置400设计成附连至颅骨附连装置300,以固定患者的头部而不是常规的头架。立体定向定位装置400是重量轻、可重定位的仪器引导件,其能够将各种仪器递送至颅内目标以执行诸如dbs、立体定向活检、立体定向脑室内分流放置以及室外引流(evd)放置之类的程序。在一些实施例中,与当使用常规的立体定向装置执行时需要两个人和约四到五个小时的时间相比,使用颅骨附连装置300和立体定向定位装置400来执行dbs程序可仅需要一个人和约一到两个小时的时间。

参照图49,立体定向定位装置400是以弧定中心的立体定向定位装置。即,立体定向定位装置400具有三个线性自由度(例如,x、y和z)和两个旋转自由度,旋转自由度包括环向角β和弧角γ。这些旋转自由度彼此成90度定向(例如,各旋转自由度彼此正交)。弧角γ和环向角β围绕被称为焦点403的单个点旋转。组合的旋转限定出在空间中以焦点403为中心的球体。沿该球体的法线向量保持活检仪器、dbs引线、分流器和evd引流管,从而将这些组件引导至焦点403。将大脑内的外科手术目标定位在焦点403处,并且可以使用立体定向定位装置400在约0.5mm的公差范围内将仪器准确地机械地放置在焦点403处。此外,系统的误差包括由成像限制引起的误差,且约为1.8mm。

立体定位设备400的功能是使焦点403(例如,对应于大脑内的外科手术目标)沿左/右(x)、前/后(y)和下/上(z)的方向运动。沿着每个轴线的位置均从立体定向外科手术计划软件导出,该软件将x、y和x坐标输出至手术目标。因此,具体地参照图42和43,立体定向定位装置400包括y轴导轨404、可沿着y轴导轨404线性运动的y轴承载件406,从y轴承载件406延伸的z轴导轨408、可沿着z轴导轨408线性运动的z轴承载件410、x轴导轨412以及可沿着x轴导轨412线性运动的x轴承载件414。

立体定向定位装置400还包括沿着y轴导轨404锁定y轴承载件406的位置的y轴分段部416、沿着z轴导轨408锁定z轴承载件410的位置的z轴分段部418以及沿着x轴导轨412锁定x轴承载件414的位置的x轴分段部420。y轴承载件406通常可以沿着y轴导轨404运动多达约70mm的距离。x轴承载件414通常可以沿着x轴导轨412运动多达约70mm的距离。z轴承载件410通常可以沿着z轴导轨408运动多达约80mm的距离。x、y和z轴导轨412、404、408中的每一个还具有相应的标尺432、434、436,这些标尺具有公制刻度(例如,毫米)和相应的刻度线。调节承载件406、410、414的位置,以匹配手术目标的输出坐标,这将焦点303放置在外科手术目标处。

具体参照图44和49,立体定向定位装置400还包括由z轴承载件410限定的两个相对的弯曲环向导轨422以及两个相对的环向承载件424,这些环向承载件可沿着环向导轨422成角度地运动以改变环向角β(例如,以改变x轴承载件414的前/后倾斜度)。x轴导轨412安装至环向承载件424的端部。立体定向定位装置400还包括由x轴承载件414承载的弯曲弧导轨426以及可沿着弧导轨426成角度地运动以改变弧角γ的弧承载件428(例如,以改变弧承载件428的左/右倾斜度)。环向承载件和弧承载件分别具有弯曲的标尺438、440,这些标尺具有公制刻度(例如,毫米)和相应的刻度线。

因此,环向角β提供绕经过焦点303的x轴的旋转,而弧角γ提供绕经过焦点303的y轴的旋转。环向导轨422通常具有约170mm至约180mm(例如,约172.7mm)的曲率半径,该曲率半径比半径为约50mm的本领域中的常规机械枢转环大得多。环向导轨422通常在约30度至约80度的角度β上延伸,并且通常具有约190mm至约200mm(例如约194mm)的弧长。弧导轨426通常具有约160mm至约170mm(例如,约165mm)的曲率半径,通常具有约280mm至约290mm(例如,约284.9mm)的弧长,并且通常相对于x轴承载件414的中心以约+/-50度的角度γ延伸。这种设计允许更加紧凑的单元,因为环向承载件424位于患者头部上方。弧导轨426和弧承载件428直接附接至x轴承载件424还有助于紧凑的设计。

在一些实施例中,立体定向定位装置400还提供绕z轴的旋转(参考箭头442)。例如,z轴导轨408可绕其轴线444并且相对于z轴导轨408从其所延伸而来的y轴承载件406旋转。这种铰转的附加扩展了到目标的轨迹的灵活性,从而优化了到目标的安全轨迹。

在一些实施例中,立体定向定位装置400可以由包括pom、铝和聚碳酸酯的一种或多种材料制成。立体定向定位装置400具有紧凑的占用空间(例如,不包括环向承载件424和弧导轨426),该占用空间通常具有约125mm至约165mm(例如,约140mm)的长度、约110mm至约120mm(例如,约114.3mm)的宽度、以及约135mm至约150mm(例如,约142.6mm)的高度。立体定向定位装置400通常具有约1100g至约2000g的总重量。

各种微驱动单元和递送系统可固定于弧承载件428,以在患者头部内的弧形象限的焦点303处(例如,由环向导轨422、弧导轨426和弧承载件428限定)执行外科手术程序。如以上参照图40所讨论的,立体定向坐标系的原点位于颅骨附接装置300的右后上角,使得工作范围322的中心被限定于患者头部的中心(x=100,y=100,z=100)。相反地,常规的以弧定中心的立体定向装置的原点是工作范围的中心。在一些实施例中,立体定向定位装置400可以通过设计x、y和z标度以将原点(0,0,0)放置在标度的中心来模拟这些系统。改变标度以匹配其它市售系统的能力使得能够使用相应的外科手术计划软件来计划外科手术目标。工作范围322通常具有约75mm至约95mm(例如,约80mm)的长度(例如,沿着x轴),约55mm至约90mm(例如,约60mm)的宽度(例如,沿着y轴)以及约50mm至约90mm(例如,约70mm)的高度(例如,沿着z轴)。

参照图48,y轴承载件406限定有接纳部430,该接纳部430设计成与颅骨附连装置300的交界部310匹配,以相对于颅骨301准确地定位立体定向定位装置400。因此,接纳部430的几何形状与交界部310的几何形状互补。

关于图像定位和外科手术计划,并且如上所述,ct图像定位器401和mri定位器402设计为附连于颅骨附连装置300,该颅骨附连装置300将定位器401、402维持在用于立体坐标系的特定位置和定向中。利用定位器401、402生成的图像通常具有9-12个参考标记(例如,基准点),这些参考标记用于量化图像在立体定向空间中的位置。这些图像被输入到外科手术计划计算机中,该计算机在每个图像上定位每个基准点。该软件使用基准点来创建转换矩阵,该转换矩阵允许从图像空间转换到立体定向空间。

包括定位器401、402和立体定向定位装置400的立体定向定位系统设计为与常规立体定向计划软件包一同起作用。这可以通过模拟各种图像定位器的物理尺寸,并使上述立体坐标系统的xyz值与各种图像定位器的xyz坐标相匹配来实现。这允许外科医生继续将其首选的立体定向计划软件与立体定向系统一起使用。

外科手术计划程序允许外科医生使用mri或ct图像体积来模拟立体定向装置。外科医生在图像体积中定位期望的目标,然后选择该像素作为目标点。软件输出该点的xyz坐标(xt,yt,zt)。此外,该软件还允许外科医生模拟从大脑表面到目标的轨迹。外科医生检查并更改轨迹,直到绘制出安全路径。该轨迹的软件输出提供了弧(a)角和环向(c)角的值。完整的手术计划包含值xt、yt、zt、a和c。

在完成立体定向计划之后的任何时间(例如,当天或第二天),将患者带到手术室,颅骨附连装置300仍以其原始位置固定于颅骨301。将患者定位在手术台上,并准备好手术区域进行手术。参照图50,消毒的立体定位装置400附连于颅骨附连装置300。将x轴承载件414、y轴承载件406和z轴轴承载件410设定到手术目标的坐标(xt,yt,zt)。使每个承载件414、406、410平移,直到承载件414、406、410所定位的标尺432、434、436上的值与外科手术软件输出的值匹配。如上所述,环向角β和弧角γ限定出手术轨迹。环向标尺438和弧标尺440具有1°增量的标度。环向承载件424和弧承载件428调节为匹配立体定向计划软件的输出。

参照图51和52,在递送系统固定于弧承载件428并用于将dbs引线定位在患者大脑中的位置之后,获得侧向x射线601以确认该引线确实位于弧形象限的焦点403处。成像参考工具600附连于z轴承载件410。成像参考工具600包括在立体定向定位装置400的一侧(例如,在患者头部的一侧)上的十字准线602,并且在另一侧上包括相应的圆圈准线604。十字准线602和圆圈604的重叠表明准线602、604与x射线机器正确对准。一旦对准,十字准线602的中心就指示弧形象限的焦点403的位置,如图52所示。由弧形象限引导的dbs引线(例如,或任何仪器)将向焦点403投射路径。侧向x射线601验证在弧形象限中实现了正确的定位。

已描述了一些实施例。然而,将理解的是,可做出各种修改而不偏离本公开的精神和范围。例如,尽管已经关于某些尺寸、操作参数、材料组成和形状描述了本文讨论的各种立体定向部件,但是在一些实施例中,在构造和功能上与上述那些大致相似的立体定向部件可包括不同的尺寸、操作参数、材料组成和形状。

在另一种示例中,类似于颅骨附连装置300的颅骨附连装置可适于与立体定向装置200一起使用。例如,代替使用螺钉来固定机器人装置,机器人装置的基部平台可适于与颅骨附连装置300交界。

在一些实施例中,如图53所示,在其它方面与颅骨附连装置300在构造和功能上相似的颅骨附连装置可替代地固定于头骨,该颅骨附连装置具有两条臂,这两条臂具有嵌入到颅骨内的尖锐的销。

图54示出了若干部件,通过这些部件可将构造和功能与颅骨附连装置300相似的颅骨附连装置可替代地锚定至患者的颅骨。在图54中,臂700延伸至患者头部的任一侧,并且尖头螺钉被拧入颅骨以锚定颅骨附连装置701。在图55中,颅骨附连装置703的臂702安装至铰链704。调节螺钉705将臂702朝向中心驱动,从而将尖锐的销706驱动到颅骨中。图56中的颅骨附连装置707在设计上类似于颅骨附连装置701,而在头部的后侧上增加了交叉支架708。图57和58示出了类似于颅骨附连装置707的颅骨附连装置709,除了锚定螺钉711的数量减少到一个,从而使得应用更容易。图59示出了棘轮710,该棘轮710允许用户将尖锐的销驱动到头骨中以锚定颅骨附连装置。

参照图60,立体定向系统400附连于具有35个已知坐标(a)的潜在目标的定制mri/ct兼容体模。通过将立体定向框架系统调节为瞄准9个虚点(a)来评估机械精度。为了证明可重复性,三个独立的用户在三个单独的试验中重复瞄准框架。在全部9个点上计算的真实图像位置与框架目标坐标之间的均方根误差(rmse)为1.59mm(n=4个个体)。立体定向手术计划软件用于对图像空间中的每个虚点进行定位,并提供立体定向坐标。瞄准框架的坐标与瞄准ct和mri坐标之间的rmse分别为1.72mm和1.79mm。为了可视化的目的,9个虚点的真实位置被标绘在三维立体定向空间中,其具有平均的瞄准框架的坐标、瞄准ct的坐标和瞄准mri的坐标(c)。为了检查系统在不同环向角和弧角下保持精确性的能力,还执行了附加实验,以评估当弧角和环向角增加10°时,系统击中8个虚点之一的能力。发现对于不同的弧度和环向角的平均欧几里德距离分别为0.82mm和0.67mm(n=3个个体,参照图54)。

图61示出覆盖到术后ct上的术前计划,演示了dbs电极对于计划目标的精确定位。在3具尸体标本上进行了8个dbs植入,以检查固定不同尺寸的头部的能力,并使用立体定向定位装置400检查不同标本放置的可重复性。平均tle为1.9mm±0.4(n=7个植入体,3具尸体,±sd)。框架001用于实验1、2,并且框架002用于实验3-8。框架001的平均目标定位误差为1.95mm(1.82–2.07mm),并且框架002的平均目标定位误差为1.90mm±0.48(1.13-2.53mm)。计算中排除了8次植入中的一次,因为该电极遵循精确的轨迹,但由于锚定件发生故障而导致插入过深了5mm,这是常见的临床现象。发现第二电极触点到目标的3d欧氏距离是0.58mm,但是距离第一电极触点的远侧部分是5.2mm。

此外,虽然将模板2、各种锚定螺钉和支脚以及立体定向装置100、200示出并描述为具有某些尺寸、操作参数、材料组成和形状,但是在一些实施例中,在构造和功能上与上述那些大致相似的模板、螺钉和支脚可包括不同的尺寸、操作参数、材料组成和形状。其它实施例在权利要求的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1