摄像设备、摄像方法、眼科设备和眼科方法_2

文档序号:9512140阅读:来源:国知局
br>[0044]将参考图1来说明根据第一典型实施例的摄像设备。图1A是示出根据本典型实施例的0CT设备的框图。将说明如下的0CT设备,所述0CT设备利用三个测量光束作为用于照射诸如被检眼等的被检查物的多个测量光束。为简化附图,将三个测量光束整体绘制为一个光束。本典型实施例在发送多个测量光束时使用光纤,但本发明并不限于使用光纤。另外,本典型实施例适用于谱域(SD)-OCT,但本发明可以适用于其它类型的OCT(诸如时域(TD)-OCT和扫频源(SS)-OCT以及扫描激光检眼镜(SL0)等)。
[0045]首先,从光源101出射的三个光束各自由分束器102分割为参考光束112和测量光束111。在位置调整装置115对用于发送三个测量光束111的光纤端的位置进行调整后,三个测量光束111经由透镜116照射至XY镜103。XY镜103往复转动,以根据来自控制整个设备的控制器(未示出)的指令、利用测量光束111对作为观察对象的眼底进行光栅扫描。
[0046]被XY镜103反射的三个测量光束111分别照射至作为观察对象的眼105。照射至眼105的测量光束111于眼底处反射或散射,并作为返回光束113返回。然后,返回光束经由透镜116照射至分束器102,并且分束器102将返回光束与参考光束112合成,以形成三个干涉光束114 (有时被称为合成光)。
[0047]三个干涉光束114经由透镜118入射到衍射光栅107,由衍射光栅107进行分光并各自通过透镜108在行传感器109上形成图像。在该设备中使用包括三个光电转换元件阵列的三行传感器,但可以使用区域传感器。行传感器109进行光电转换得到的与三个干涉光束相对应的三条图像信息分别在图像信息处理单元110中进行模数(A/D)转换、然后进行傅立叶变换。此外,通过合成三条图像信息来获取眼105的眼底的断层图像(有时被称为光学相干断层图像)。
[0048]接着将说明光源101的周边。光源101是作为典型低相干光源的超发光二极管(SLD) ο光源101具有840nm的波长和50nm的带宽。带宽是重要的参数,因为它对要获得的断层图像的光轴方向上的分辨率有影响。
[0049]虽然这里将SLD选择为光源的类型,但是可以使用放大自发射(ASE)等,只要其可以发射低相干光即可。考虑到将对眼睛进行测量,就光源波长来说近红外线是合适的。此夕卜,因为光源的波长对要获得的断层图像的水平方向上的分辨率有影响,所以期望波长尽可能短。因而,在这种情况下,使用波长为840nm的光源。也可以根据观察对象的测量区域来选择其它波长。
[0050]由分束器102分割得到的参考光束112被镜106反射,并返回至分束器102。通过使参考光束112的光路长度等同于测量光束111的光路长度,参考光束和测量光束可以相互干涉。准备三个镜106以使这三个镜对应于三个参考光束112,而且可以独立地调整各镜的位置,但在本典型实施例中,为简化附图,镜106被示为一个镜。
[0051]由分束器102分割得到的测量光束111入射到XY镜103上。这里,为了简化附图,XY镜103被绘制成一个镜,但实际是被排列为相互靠近的两个镜、即X扫描镜和Y扫描镜。测量光束111用于通过透镜104在垂直于光轴的方向上对眼105的视网膜进行光栅扫描。透镜104用于将测量光束111集中在视网膜上。对于透镜104,可以使用能够调整焦点距离的变焦透镜。通过上述的光学系统,在测量光束111进入眼105的情况下,测量光束111被眼105的视网膜反射及散射,并成为返回光束113。
[0052]干涉光束114由衍射光栅107分光,然而分光是在与光源的中心波长和带宽相同的波长条件下进行的。更具体地,具有图4A示出的频率特性的光将经由衍射光栅107和透镜108照射到行传感器109的光电转换元件阵列109-1至109-3(以下说明)。然后,如图4B所示,作为图4A中的横轴的光波长变为行传感器109的光电转换元件阵列109-1至109-3的0?1023的像素位置(图4B中的横轴)。光纤端固定部117用于对三个干涉光束114入射到衍射光栅107的位置进行固定。
[0053]图1B示出在行传感器109上形成图像的三个干涉光束114。用于分别发送三个干涉光束114的三个光纤固定至光纤端固定部117。行传感器109包括三个光电转换元件阵列109-1至109-3。光纤117-1至117-3固定于光纤端固定部117,从光纤117-1至117-3发射出的干涉光束114分别通过透镜118、衍射光栅107和透镜108在光电转换元件阵列109-1至109-3上形成图像。
[0054]行照相机119包括透镜、行传感器和A/D转换单元等。自红外光源(未示出)发射出的光束照射在视网膜上而反射出的光被镜120反射并被引入行照相机119,并且针对各行进行读出。通过使镜120绕着相对于行照相机119的行方向平行的轴来转动,可以读出视网膜的二维图像。在控制器中(未示出),将针对各行的图像连接在一起来生成一个二维图像。通过在每次生成二维图像时重复操作镜120,可以获取视网膜的连续二维图像。
[0055]上述单元的操作可以通过控制器来控制(未示出)。上述控制器连接至个人电脑(PC),并且测量者通过使用连接至PC的诸如显示器、鼠标和键盘等的输入/输出设备来操作0CT设备。
[0056]接着,将参考图2A说明根据本典型实施例的0CT设备的摄像模式的选择方法。图2A是在连接至0CT设备的显示器(有时被称为显示单元)上显示的摄像模式选择画面。眼底的二维图像201由行照相机119拍摄。图2A示出黄斑215和视神经乳头214。
[0057]实时显示的B扫描图像203?206是通过以各光束扫描眼底而获得。在获得眼底的断层图像前,获得B扫描图像以进行焦点调整以及对用于反射参考光束112的镜106的位置调整(也就是相干门调整)。这里,图像203?206被称为实时B扫描图像。在眼底的二维图像201上,显示了针对三个激光束中各激光束的矩形和线(细节将在下面介绍)。该矩形和线表示了扫描区域和B扫描线,所述扫描区域由三个光束分别进行扫描,所述B扫描线由各激光束扫描以获得实时B扫描图像。
[0058]在区域202中设置和显示摄像模式的参数。在这种情况下,显示了八种摄像模式。可以由测量者预先设置要显示的摄像模式,或者可以根据过去的摄像历史按摄像频率的降序显示所述摄像模式。此外,可以通过诸如鼠标等的输入单元在显示屏上选择并随时改变摄像模式的参数。
[0059]可以对作为摄像模式参数的A扫描的数量、B扫描的数量、X范围、y范围、光束数量和摄像次数进行设置。X范围代表眼底的X方向、即相对于被测者的头部的水平方向上的摄像区域宽度。y范围代表眼底的y方向、即相对于被测者的头部的垂直方向上的摄像区域宽度。A扫描的数量代表眼底的X方向上的分辨率,并且B扫描的数量代表y方向上的分辨率。
[0060]例如,如果设置为X范围=10mm, y范围=5mm, A扫描的数量=500,B扫描的数量=100,则在X方向上以20微米的间距合成500个A扫描数据以生成一个B扫描图像,并且在1方向上以50微米的间距拍摄100个B扫描图像。
[0061]光束的数量是用于拍摄眼底图像的激光束的数量,并且在根据本典型实施例的设备中可以选择一个光束和三个光束。摄像的次数代表扫描重复数量,该扫描重复数量为在眼底的同一位置的B扫描线被拍摄的次数。在SD-OCT设备中,由于要使用微小图像信号(干涉信号)来生成眼底的断层图像,因此经常采用通过进行处理来减少噪音影响的方法,该处理用于增加摄像次数并对微小图像信号进行平均。然而,增加摄像的次数可能会延长摄像时间。另外,在区域202中显示根据设置参数来拍摄眼底图像的断层图像的所需时间。
[0062]在具有上述配置的SD-0CT设备中,参照图5中的流程图说明根据本典型实施例的操作。在被测者准备好接受测量的情况下,首先,在步骤S801中,测量者基于测量者的操作来设置摄像模式。在该处理中,作为例子,测量者选择包括A扫描数量为300、B扫描数量为300、X范围为10mm、y范围为10mm、激光束数量为3以及摄像次数为1的摄像模式2。摄像模式2所需的摄像时间为0.75秒。然后,在操作画面上显示如图2A所示的图像。
[0063]在处理中,参考图2B和图6A说明测量光束111的三个激光束各自如何分割并扫描眼底。在图2B和图6A中,删除了不必要的说明信息。如图2B所示,三个激光束的扫描区域自顶端以扫描区域207、208和2
当前第2页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1