一种抗菌耐火纤维毡的制备方法与流程

文档序号:14869882发布日期:2018-07-06 20:53阅读:194来源:国知局

本发明属于耐火纤维领域,尤其是涉及一种抗菌耐火纤维毡的制备方法。



背景技术:

耐火纤维与其它耐火材料相比具有密度小、导热系数小、热容小、升温速度快等特点。在冶金、机械、石油、化工、电子及轻工业等各种工业领域中得到了广泛的应用。耐火纤维多代替耐火砖用于热处理炉、加热炉等高温领域,然而自20世纪90年代以来,随新产品的开发和推广,耐火材料也逐渐进入了日常生活中。专利CN1229864A公开了一种不燃性的混纺纱及其应用,将硅酸铝陶瓷耐火纤维与玻璃纤维或高硅氧纤维进行混纺并织造得到织物,所得织物具有很好的不燃性。专利CN1253645C公开了一种防火卷帘,以耐火纤维毯为帘芯,对于大型公共场所、库房的防火起到了重要的作用。随人们安全意识的提高,对耐火纤维的生物性能,如抗菌性、溶解性提出了更高的要求。目前对于抗菌性能的耐火纤维的研究比较欠缺,专利CN104480573B公开了一种耐火抗菌纤维,将耐火纤维制成十字形,在纤维的中心贯穿圆孔,十字形内凹处设置四根抗菌纤维。该耐火纤维设计巧妙,但受设备限制以及纺丝液本身的流变性,实施起来十分困难,此外,抗菌纤维位于耐火纤维十字形内凹处,难以直接接触细菌与霉菌,不能有效地起到抗菌的作用。



技术实现要素:

为克服现有抗菌耐火纤维制品制备方法不足的问题,本发明提供一种抗菌耐火纤维毡的制备方法。

本发明是通过以下技术实现的:

一种抗菌耐火纤维毡的制备方法,步骤如下:

1)主原料准备:根据CaO,SiO2,MgO,ZrO2和TiO2的质量配比称取碳磷灰石、白云石、滑石、硅灰石、锆石和钛白粉的质量,共混并进行粉碎得到主原料;

2)抗菌粉末准备:利用机械球磨仪将抗菌剂球磨至400~800目得到抗菌剂粉末;

3)熔融:将主原料投入熔融炉中加热至1900~2100℃,直至完全融化得到熔融液;

4)过滤:过滤熔融液中的杂质,滤液流入2000~2100℃的搅拌釜并进行持续搅拌得到纺丝液;

5)抗菌纤维收集:纺丝液从出料口流出,进入离心头,在离心力作用下,经离心头的细孔甩出,细孔垂直方向喷射有携带抗菌粉末的工业氮气,在热气流辅助下,抗菌粉末粘附至纺丝液表面,同时,纺丝液快速冷却成固体纤维并由集棉器进行收集得到抗菌耐火纤维;

6)成毡:将抗菌耐火纤维投入开清棉装置进行开松、梳理并得到分布均匀的纤维网,利用针刺机对纤维网进行针刺得到抗菌耐火纤维毡坯布,对抗菌耐火纤维毡坯布进行加压热定型、切割并收集得到成品。

一般而言,玻璃体比相似成分的晶体具有更好的水解性能,其原因在于玻璃体的化学结构与晶体相比,比较松散。在本发明所制备的一种抗菌耐火纤维使用到了与生物相溶性较好的原料,即,本发明所制备的抗菌耐火纤维不但具有抗菌性,也具有良好的生物相溶性。其中,碳磷灰石、白云石主要化学成分为碳酸磷石灰,其CaO含量达50%以上,化学组成上更接近于人骨和牙齿等硬组织,具有非常好的生物相容性;硅灰石普遍认为是一种生物可溶性最好的非晶体纤维原料,其CaO含量为48%,生物溶解性能良好。经发明人反复验证,以磷灰石、白云石、滑石、硅灰石为主要原料制备的耐火纤维具有较高的生物相溶性。此外,所使用的原料都为市场上常见的无机化工原料或自然矿产,不仅成本低,而且无毒无害,无任何污染气体释放,有利于环保生产。

传统耐火纤维原材料改性剂的粉碎粒径为50~200目,本发明采用400~800目的抗菌剂粉末。虽然增加了粉碎工艺难度,但经实验验证,本发明采用这种粒径的抗菌剂能较好在工业氮气中分散,且在耐火纤维表层实现更为均匀的分布,结合更为牢固,抗菌效果更为卓越。

熔融温度的选择来自于原料的不同组成,在本说明书中,发明人经不断探讨优选了1900~2100℃作为抗菌耐火纤维毡原料的熔融温度,特别优选温度的确定则取决于原料的不同组成及粉碎的粒径。

纺丝液在离心力下,经离心头的细孔甩出,此时纺丝液温度较高,大部分仍为液态,此时在工业氮气辅助下,将抗菌粉末粘附至纺丝液表面,此时工业氮气也起到了冷却的作用,纺丝液迅速固化,也实现了抗菌粉末在耐火纤维表面的固着,直接发挥抗菌作用,这是本说明书中最重要的一个发明点。经测试抗菌粉末在耐火纤维表面分布均匀。

优选地,所述质量配比为CaO 30%~45%,SiO2 25%~50%,MgO 15%~25%,ZrO21%~5%,TiO2 1%~5%,总量为100%。

在本发明中,发明人采用水解自由能理论和桥氧与非桥氧理论来设计并比较耐火性能的溶解性能。一般地认为,SiO2的水解自由能为15.7kJ/mol,NaAlSi3O8的水解自由能为68.1kJ/mol,CaSiO3的水解自由能为-73.2kJ/mol,由此可知,以SiO2、CaO和MgO为主要成分的耐火纤维比传统硅酸铝耐火纤维具有更好的溶解性能。

在玻璃态纤维中网络结构的完整性可以用其化学结构的非桥氧或桥氧所占的比例来描述。非桥氧比例高意味着玻璃结构网络完整性较差,可以预计有较好的水解性能。在本发明现有的成分中,CaO、MgO等每个分子贡献两个非桥氧。在本发明中,所使用耐火纤维的组成可获得较高的非桥氧含量,从而获得较好的溶解性能。

然而以SiO2、CaO和MgO为主要成分的耐火纤维熔融粘度较低,本发明中,发明人经过反复实验引入ZrO2,TiO2等物质,其主要目的是为了提高熔体的粘度,提高熔体的成纤性能,且对耐火纤维的热膨胀及耐用性并无明显影响,传统的耐火纤维会使用B2O3来提高熔体的粘度,但B2O3易汽化,从而引起环境污染。ZrO2本身是一种高温耐火材料,熔融温度约为2700℃,该物质的添加可以提高熔体粘度变化的温度范围,具有良好的热稳定性能。TiO2具有良好的光散射作用,它的引入在本发明中是为增加隔热保温性能。发明人认为,ZrO2,TiO2的加入使耐火材料的宏观特性发生了改变,使弹性模量、热膨胀率降低,而且细微组织强度得到提高,抑制导致耐火材料断裂的断裂点的产生,从而使得结构稳定性得到了提高。强度也得到提高。制备既有抗菌性又有水溶解性能的耐火纤维制品也是本发明的一个重要发明点。

优选地,所述抗菌剂为银离子抗菌剂、铜离子抗菌剂、锌离子抗菌剂中的一种或几种,所述抗菌剂的载体为沸石、陶瓷、活性炭中一种或几种。

优选地,所述主原料的粒径为250~350目。

本发明采用250~350目原材料,经实验发现,本发明所使用的粒径可获得更快的熔融速率,主原料混合更为均匀,所制得的抗菌耐火纤维的品质更加稳定。

优选地,离心的速度为2~3万转/分,细孔的孔径为0.1~0.3毫米。

优选地,所述工业氮气的温度为120~140℃,气流速度为5~15米/秒。

优选地,所述工业氮气中抗菌剂粉末的浓度为100~500mg/L。

优选地,所述抗菌耐火纤维的直径为30~50微米,长度为60~210毫米。

纤维在模拟人体肺液中的溶解速率常数(Kdis)进行表示。模拟人体肺液通常采用Gamble溶液(摩尔浓度*103):NaCl 116,NH4Cl 10,NaHCO3 27,甘氨酸5,柠檬酸钠0.2,CaCl20.2,胱氨酸(L)1,H2SO4 0.5,NaH2PO4 1.2,DTPA 0.2,ABAC为50ppm。通常认为,作为生物可溶性矿物纤维的溶解速率常数应满Kdis大于100ng/(cm2.hr),半衰期小于7天。

欧盟指数KNB规定0类为不分类为致癌物,其纤维平均直径大于6微米,本发明在所制得的纤维直径为30~50微米,长度为60~210毫米,从尺寸上符合欧盟KNB指数对于不分类为致癌物的要求。

优选地,针刺密度为300~400刺/cm2,针刺深度为11~13毫米。

针刺法加固耐火纤维网是利用针刺机的带钩刺刺针反复穿刺纤维网,使纤维中部分水平耐火纤维形成垂直纤维簇,该纤维簇自上而下贯穿于纤网,通过与水平纤维缠结,阻止纤维的相互滑脱,并使纤维结构紧密,厚度大大下降。在针刺机的工艺参数中针刺密度、针刺深度这两个参数最为重要。耐火纤维材料为脆性材料,容易折断,在传统的耐火纤维针刺成毡的工艺中,较少明确针刺的针刺密度和针刺深度,对耐火纤维毡的强力并未有明显的关注。其原因或许在于传统的耐火纤维多用于热处理炉、加热炉的工业保温材料使用,强力要求较少。然而在日常生活中,毡品不可避免会受到反复拉伸、弯折的作用,毡品的拉伸断裂强力、耐疲劳性能则必须受到关注。然而发明人实验发现,这两个工艺参数对耐火纤维毡的拉伸断裂强力、耐疲劳性能有重大影响,影响着其使用用途,特别优选的针刺密度为320~350刺/cm2,针刺深度为11~12毫米时,所得抗菌耐火纤维毡的拉伸断裂强力可取得较大值,耐疲劳性能较好。

优选地,所述加压热定型的温度为500~600℃,压力为5~15Kg/cm2,时间为30~60分钟。

传统的耐火纤维毡在形成后即入库保存,值得注意的是耐火纤维毡的内应力并未得到消除,在入库保存期间会有形变的发生。针对这个问题,本发明利用加压热定型来消除抗菌耐火纤维成毡后的内应力。经加压热处理后,抗菌耐火纤维毡的尺寸稳定性得到了明显提高,发明人认为,加压热定型较有利于形成晶粒细小、更致密化、强度较高、韧性较好的耐火纤维。

本发明的有益效果在于:(1)采用生物相溶性较好的原料制备一种具有水溶性特点的抗菌耐火纤维;(2)利用耐火纤维固化成型阶段实现抗菌剂在耐火纤维上的固着,制备一种具有耐久性抗菌效果的耐火纤维材料;(3)所得耐火纤维结构缺陷少,具有较高的肺液快溶解速率,也具有良好的结构稳定性。

附图说明

图1为本发明实施例的结构示意图。

具体实施方式

实施例1

取称碳磷灰石15.2wt%、白云石28.1wt%、滑石28.9wt%、硅灰石21.7wt%、锆石4.6wt%和钛白粉1.5wt%,其化学组成为CaO 37.4wt%,SiO2 37.3wt%,MgO 19.3wt%,ZrO2 4.0wt%,TiO2 2.0wt%,共混并粉碎至250目得到主原料粉末。利用机械球磨仪将银离子抗菌剂球磨至400目得到银离子抗菌剂粉末。将主原料粉末投入熔融炉中加热至1900℃,直至完全融化得到熔融液。随后过滤熔融液中的杂质,滤液流入2100℃的搅拌釜中并进行持续搅拌得到纺丝液,该纺丝液从搅拌釜的出料口流出并进入离心头,在离心作用下(2万转/分),经离心头的细孔(直径为0.1毫米)甩出,细孔垂直方向喷射有携带银离子抗菌粉末的工业氮气,银离子抗菌剂粉末的浓度为100mg/L,工业氮气的温度为120℃,速度为15米/秒。在工业氮气辅助下,银离子抗菌粉末粘附至纺丝液表面,同时,纺丝液快速冷却成固体纤维并由集棉器进行收集得到抗菌耐火纤维(如图1所示)。将该抗菌耐火纤维投入开清棉装置进行开松、梳理并得到分布均匀的纤维网,利用针刺机对该纤维网进行针刺,针刺密度为300刺/cm2,针刺深度为11毫米,得到抗菌耐火纤维毡坯布。随后,对抗菌耐火纤维毡坯布进行加压热定型,温度为500℃,压力为5Kg/cm2,时间为30分钟,加压热定型完毕,切割并收集得到抗菌耐火纤维毡。

生产所得抗菌耐火纤维的平均直径为43微米,平均长度为173毫米,对该耐火纤维于Gamble溶液中检测72小时的溶解性能,检测得该耐火纤维可溶,其溶解速率常数为523ng/(cm2.hr)。

根据GB/T 20944-2007《纺织品抗菌性能的评价》标准测试,本实施例所制得的抗菌耐火纤维毡的金黄色葡萄球菌的抑菌率为99.9%,大肠肝菌的抑菌率为99.9%。采用GB/T3921-2008《纺织品色牢度耐皂洗色牢度》对抗菌耐火纤维毡进行标准洗涤5次后,测得抗菌耐火纤维毡的金黄色葡萄球菌的抑菌率为99.9%,大肠肝菌的抑菌率为99.9%。由以上数据可知本实施例所制得的抗菌耐火纤维毡具有良好的抗菌性以及持久性。

实施例2

取称碳磷灰石18.7wt%、白云石33.2wt%、滑石20.5wt%、硅灰石22.2wt%、锆石2.3wt%以及钛白粉3.1wt%,其化学组成为CaO 42.8wt%,SiO2 33.4wt%,MgO 19.4wt%,ZrO2 2.1wt%,TiO2 4.2wt%,共混并粉碎至300目得到主原料粉末。利用机械球磨仪将铜离子抗菌剂球磨至600目得到铜离子抗菌剂粉末。将主原料粉末投入熔融炉中加热至2050℃,直至完全融化得到熔融液。随后过滤熔融液中的杂质,滤液流入2050℃的搅拌釜中并进行持续搅拌得到纺丝液,该纺丝液从搅拌釜的出料口流出并进入离心头,在离心作用下(2.5万转/分),经离心头的细孔(直径为0.2毫米)甩出,细孔垂直方向喷射有携带铜离子抗菌粉末的工业氮气,铜离子抗菌剂粉末的浓度为300mg/L,工业氮气的温度为130℃,气流速度为10米/秒。在工业氮气辅助下,铜离子抗菌粉末粘附至纺丝液表面,同时,纺丝液快速冷却成固体纤维并由集棉器进行收集得到抗菌耐火纤维(如图1所示)。将该耐火纤维投入开清棉装置进行开松、梳理并得到分布均匀的纤维网,利用针刺机对该纤维网进行针刺,针刺密度为350刺/cm2,针刺深度为12毫米,得到抗菌耐火纤维毡坯布。随后,对抗菌耐火纤维毡坯布进行加压热定型,温度为550℃,压力为8Kg/cm2,时间为45分钟,加压热定型完毕,切割并收集得到抗菌耐火纤维毡。

生产所得抗菌耐火纤维的平均直径为37微米,平均长度为153毫米,对该耐火纤维于Gamble溶液中检测72小时的溶解性能,检测得该耐火纤维可溶,其溶解速率常数为639ng/(cm2.hr)。

按实施例1所示国家标准测试抗菌耐火纤维的金黄色葡萄球菌、大肠肝菌的抑菌率均为99.9%,经标准洗涤5次后,抗菌耐火纤维的金黄色葡萄球菌抑菌率为95.4%,大肠肝菌的抑菌率为96.3%。由以上数据可知本实施例所制得的抗菌耐火纤维毡具有良好的抗菌性以及持久性。

实施例3

取称碳磷灰石30.7wt%、白云石29.6wt%、滑石18.0wt%、硅灰石13.9wt%、锆石4.9wt%以及钛白粉2.9wt%,其化学组成为CaO 46.9wt%,SiO2 27.4wt%,MgO 16.8wt%,ZrO2 4.7wt%,TiO2 4.2wt%,共混并粉碎至350目。将原料粉末投入熔融炉中加热至2000℃,直至完全融化得到熔融液。随后过滤熔融液中的杂质,滤液流入2000℃的搅拌釜中并进行持续搅拌得到纺丝液,该纺丝液从搅拌釜的出料口流出并进入离心头,在离心作用下(3万转/分),经离心头的细孔(直径为0.3毫米)甩出,细孔垂直方向喷射有携带锌离子抗菌粉末的工业氮气,锌离子抗菌剂粉末的浓度为500mg/L,工业氮气的温度为140℃,气流速度为15米/秒。在工业氮气辅助下,锌离子抗菌粉末粘附至纺丝液表面,同时,纺丝液快速冷却成固体纤维并由集棉器进行收集得到抗菌耐火纤维(如图1所示)。将该耐火纤维投入开清棉装置进行开松、梳理并得到分布均匀的纤维网,利用针刺机对纤维网进行针刺,针刺密度为400刺/cm2,针刺深度为13毫米,得到抗菌耐火纤维毡坯布。随后,对抗菌耐火纤维毡坯布进行加压热定型,温度为600℃,压力为10Kg/cm2,时间为60分钟,加压热定型,切割并收集得到抗菌耐火纤维毡。

生产所得抗菌耐火纤维的平均直径为45微米,平均长度为203毫米,对该耐火纤维于Gamble溶液中检测72小时的溶解性能,检测得该耐火纤维可溶,其溶解速率常数为837ng/(cm2.hr)。

按实施例1所示国家标准测试抗菌耐火纤维的金黄色葡萄球菌、大肠肝菌的抑菌率为99.9%,经标准洗涤5次后,抗菌耐火纤维的金黄色葡萄球菌抑菌率为93.9%,大肠肝菌的抑菌率为96.7%。由以上数据可知本实施例所制得的抗菌耐火纤维毡具有良好的抗菌性以及持久性。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1