一种可拉伸柔性复合织物基传感器及其应用的制作方法

文档序号:24165207发布日期:2021-03-05 17:06阅读:58来源:国知局
一种可拉伸柔性复合织物基传感器及其应用的制作方法

1.本发明涉及柔性传感器技术领域,尤其涉及一种可拉伸柔性复合织物基传感器及其应用。


背景技术:

2.随着科技的发展和人们对于健康关注度的提升,可穿戴传感器在运动分析,生物医学,和人体监测等领域的应用日益重要。传统传感器的制备主要是基于金属和硅等材料,如表面传感器【专利申请公布号:cn102782700a】,以及具有展露集成电路芯片窗口的集成电路器件【专利申请公布号:cn1163477a】等,这些传感器虽然具有高灵敏性,可监控细微体积和运动变化,但由于金属和硅的弹性和柔软度不佳,传统传感器在可穿戴电子领域的应用具有局限性,例如,不能监测显著的位移和体积变化,且制造成本高,工艺复杂,重量较大等。近年来,柔性可穿戴拉伸传感器以其高敏感性和灵活性受到广泛关注,例如,可随时监测和感应人体运动状态变化,形态变化或生理参数变化等(如心跳)。
3.用于可穿戴监测的柔性传感器的传感机制主要有压阻、压电和电阻应变式等模式,根据不同的机制,柔性传感器可以根据材料的机械变形而产生不同的电信号。在各种类型的柔性导电传感器件中,电阻应变式传感器件制造相对简单,易于获取电信号且制作成本低,且可以高弹纺织品做基底,实现可穿戴及实时监控电信号等目的。但目前制得的柔性传感器还存在着传感器中的导电材料与织物表面的结合力不强和导电材料在织物基体表面分布不均等问题。


技术实现要素:

4.有鉴于此,本发明提供了一种可拉伸柔性复合织物基传感器及其应用,本发明可拉伸柔性复合织物基传感器中的弹性织物/导电膜复合材料的制备方法简单,且制得的弹性织物/导电膜复合材料中导电基体在织物基体表面分布均匀,且结合力好。
5.其具体技术方案如下:
6.本发明提供了一种弹性织物/导电膜复合材料制备方法,包括以下步骤:
7.步骤1:将聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)水相分散液、表面活性剂、粘合剂和导电增强剂进行混合,均质化后得到导电基体分散液;
8.步骤2:将弹性织物浸泡在所述导电基体分散液中,然后挤压出所述弹性织物上过量的溶液,干燥后得到弹性织物/导电膜复合材料。
9.优选地,所述表面活性剂选自十二烷基苯磺酸或十二烷基硫酸钠;
10.所述粘合剂为水性聚氨酯粘合剂,固含量为30~60%,粘度1000~3000mpa.s;
11.所述导电增强剂选自二甲基亚砜或乙二醇;
12.优选地,所述聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)水相分散液、所述表面活性剂、所述导电增强剂和所述粘合剂的质量比为(90~95):(0.5~1.5):5:(0~5);
13.所述聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)水相分散液的固含量为1.0~
1.5%。
14.优选地,步骤2所述导电基体溶液与所述弹性织物的质量比为(3:1)~(10:1);
15.所述浸泡的时间为5~15mins。
16.优选地,步骤2所述干燥前还包括:重复所述浸泡、所述挤压处理1~10次。
17.优选地,所述弹性织物选自棉布、莫代尔或互锁结构的锦棉织物。
18.本发明还提供了一种弹性织物/导电膜复合材料,由上述制备方法制得。
19.本发明还提供了上述弹性织物/导电膜复合材料在可拉伸柔性传感器中的应用。
20.本发明还提供了一种可拉伸柔性复合织物基传感器,所述可拉伸柔性复合织物基传感器由以下步骤制得:
21.将上述弹性织物/导电膜复合材料的两端连接导线,并在连接点处涂刷银浆,然后采用高弹性聚合物薄膜对所述弹性织物/导电膜复合材料进行热压密封,得到所述可拉伸柔性复合织物基传感器。
22.优选地,所述高弹性聚合物薄膜为热塑性聚氨酯薄膜;
23.所述热塑性聚氨酯薄膜的厚度为0.01~0.05mm;
24.所述热压密封的时间为20~40s,温度为140~150℃,压力为6mpa。
25.本发明还提供了一种信息采集系统,将上述可拉伸柔性复合织物基传感器与数据采集系统连接,通过数据采集系统的蓝牙模块与移动单元应用程序连接,移动单元或电脑上安装显示器软件显示分析后的数据。
26.从以上技术方案可以看出,本发明具有以下优点:
27.本发明提供了一种弹性织物/导电膜复合材料的制备方法,该制备方法中粘合剂的加入,有利于导电粒子聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)固定在弹性织物基体上;表面活性剂和导电增强剂可适当调整和改善聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)导电粒子在分散液中的均一性和导电性,从而可均匀涂覆到弹性织物基体表面甚至内部,避免在拉伸过程中因弹性织物结构发生形变进而导致导电基体的大距离位移,使得导电膜复合材料的导电性能稳定;另外,本发明导电基体是一种均匀的分散液,对弹性织物的浸渍效果好。本发明提供的弹性织物/导电膜复合材料的制备方法简单,易操作,制备成本低。
28.本发明提供的弹性织物/导电膜复合材料可以应用在可拉伸柔性复合织物基传感器中,可利用弹性织物在拉伸过程(长度变化率在0~200%以内)中产生的电信号来监测物体体积和动作频率的变化,通过校准和验证,电信号可以被数据采集系统收集,通过安装在数据采集系统中的蓝牙模块与移动单元连接,以随时监测物体运动幅度,频率或状态变化。
附图说明
29.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
30.图1为本发明实施例中可拉伸柔性复合织物基传感器的制备流程图;
31.图2为本发明实施例3中制得的弹性织物/导电膜复合材料的扫描电镜图;
32.图3为本发明实施例4中制得的可拉伸柔性复合织物基传感器的结构示意图;
33.图4为本发明实施例4中制得的可拉伸柔性复合织物基传感器的拉伸形变与电信号关系图;
34.图5为本发明实施例4中制得的可拉伸柔性复合织物基传感器预拉伸后的重复稳定性测试图;
35.图6为本发明实施例4制得的可拉伸柔性复合织物基传感器的抗湿度影响作用图。
36.图7为本发明实施例4中制得的可拉伸柔性复合织物基传感器的立体示意图;
37.图8-1为本发明实施例4中制得的可拉伸柔性复合织物基传感器穿戴在脚踝的应用场景图;
38.图8-2本发明实施例4中制得的可拉伸柔性复合织物基传感器通过与鞋后帮相连固定在脚踝上的应用场景图;
39.图8-3为本发明实施例4制得的可拉伸柔性复合织物基传感器穿戴在胸部的应用场景图;
40.图8-4为本发明实施例4制得的可拉伸柔性复合织物基传感器穿戴在腿部和手臂的应用场景图;
41.图9为本发明实施例5中主界面示意图;
42.图10为本发明实施例5中设置界面和应用模式界面示意图;
43.图11为本发明实施例5中实时数据实时显示界面示意图;
44.图12为本发明实施例5中用户信息界面示意图;
45.图13为本发明实施例5中历史记录界面示意图。
具体实施方式
46.为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
47.本发明提供了一种弹性织物/导电膜复合材料的制备方法,包括以下步骤:
48.步骤1:将聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)水相分散液、表面活性剂、粘合剂和导电增强剂进行混合,均质化后得到导电基体分散液;
49.步骤2:将弹性织物浸泡在导电基体分散液中,然后挤压移除弹性织物上过量的溶液,干燥后得到弹性织物/导电膜复合材料。
50.本发明粘合剂的加入,有利于导电粒子聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)固定在弹性织物基体上;表面活性剂和导电增强剂来调整和改善聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)导电粒子在分散液中的均一性和导电性,从而可均匀涂覆到弹性织物基体表面甚至内部,避免在拉伸过程中因弹性织物结构转变导致导电基体的大距离位移,使得弹性织物/导电膜复合材料的导电性保持稳定;另外,本发明导电基体是一种均匀的分散液,对弹性织物的浸渍效果好。本发明提供的弹性织物/导电膜复合材料的制备方法简单,易操作,制备成本低。
51.本发明步骤1中,优选使用注射器将聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)
水相分散液、表面活性剂和导电增强剂剂进行混合,静置;混合优选采用磁力搅拌器在400r/min速度下搅拌15mins,静置除去搅拌过程中产生的气泡,静置的时间优选为12h;
52.表面活性剂选自十二烷基苯磺酸或十二烷基硫酸钠,优选为十二烷基苯磺酸,纯度为95%;
53.导电增强剂选自二甲基亚砜或乙二醇,优选为二甲基亚砜,纯度为99.7%;
54.聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)水相分散液、表面活性剂、导电增强剂和所述粘合剂的质量比为(90~95):(0.5~1.5):5,优选为95:1:5;
55.聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)水相分散液的固含量为1~1.5wt%,优选为1.3wt%,表面活性剂在分散液中含量优选为1wt%;
56.静置后,再优选使用注射器滴加粘合剂进行混合,均质化后得到导电基体分散液;混合优选采用磁力搅拌器在1000r/min下搅拌30mins以进行均质化,得到均匀,且呈糊状的导电基体分散液;然后再静置12h待用。
57.所选粘合剂为水性聚氨酯粘合剂,固含量为30~60%,粘度1000~3000mpa.s;
58.聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)分散液与粘合剂的质量比为(90~95):(0~5),优选为95:2。当粘合剂的量减少时,聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)的量成比例增加,使得粘度相应降低。
59.本发明步骤2之前,还包括:对弹性织物进行预处理;
60.预处理具体为:将弹性织物用蒸馏水洗涤,再放入乙醇溶液中,在室温下超声处理,使得弹性织物进行彻底清洁,然后将超声处理后的弹性织物进行干燥,得到洁净的弹性织物;
61.弹性织物优选剪成长度为70毫米,宽度为25毫米的长方形布片;超声处理的温度优选为室温,时间优选为15mins,功率优选为100w。
62.本发明对弹性织物进行预处理可明显增加织物与导电层之间的结合力。
63.本发明步骤2中,将弹性织物浸泡在导电基体分散液中,使得导电基体分散液浸透弹性织物;
64.弹性织物选自棉布、莫代尔或互锁结构的锦棉织物,优选为互锁结构的锦棉织物。采用互锁的织物结构,经过导电聚合物的复合,可以制备成径向和纬向不同性能的传感器,可满足多方向使用。
65.导电基体分散液与弹性织物的质量比为3:1~10:1,优选为5:1;
66.所述浸泡的时间为5~15mins,优选为15mins;
67.接着,优选采用浸轧机挤压除去弹性织物上多余的溶液,浸轧1~10次后,干燥后得到弹性织物/导电膜复合材料;浸轧过多对织物造成损伤织物的损伤,本发明浸轧1~10次使得织物达到最佳的导电性,且不会造成织物的损伤。
68.干燥的温度优选为80℃,时间优选为30mins。
69.本发明使用浸轧工艺进一步使得导电基体均匀公布在弹性织物内纤维的表面。
70.本发明还提供了一种弹性织物/导电膜复合材料,由上述制备方法制得。
71.本发明中,弹性织物/导电膜复合材料包括弹性织物和涂覆在弹性织物纤维表面的导电基体,导电基体呈膜状结构。
72.本发明提供的弹性织物/导电膜复合材料具有导电性和柔性,因此,本发明还提供
了上述弹性织物/导电膜复合材料在可拉伸柔性传感器中的应用。
73.本发明还提供了一种可拉伸柔性复合织物基传感器,由以下步骤制得:
74.将上述弹性织物/导电膜复合材料的两端连接导线,并在连接点处刷涂银浆,然后采用高弹性聚合物对弹性织物/导电膜复合材料进行热压密封,得到可拉伸柔性复合织物基传感器。
75.本发明中,将所述可拉伸柔性复合织物基传感器进行在应用条件下的预拉伸处理,从而去除织物微观瑕疵或织物纤维间的导电粒子对重复拉伸过程中导电性能的影响作用。
76.本发明可拉伸柔性复合织物基传感器的电阻为300-50000欧姆,导电性合适。
77.本发明中,为了获得良好的电接触,优选在导电膜复合材料两端通过银浆连接电极,电极优选为导电纱线。
78.本发明在不使用粘合剂的情况下,仅采用高弹性聚合物膜对导电膜复合材料进行双面热压,既避免了高分子柔性器件受环境湿度影响的问题,还保持良好柔软性和顺从,使得该传感器性能稳定。而且,该可拉伸柔性复合织物基传感器具有良好强度、柔性和导电性,形状可客户化定制。该制备方法简单,易操作,制备成本低。可拉伸柔性复合织物基传感器可实时检测物体体积及形态变化,适合于可穿戴装置(服装、鞋等)的各种应用领域,特别适用于动作频率,肢体状态或运动幅度等人体变化监测,以对人体姿势,步态,运动效能,健康状态等进行监测和分析。
79.本发明中,高弹性聚合物薄膜为热塑性聚氨酯薄膜;
80.热塑性聚氨酯薄膜厚度太薄会导致膜不耐刮,容易在受到磨损后破裂。厚度太厚会导致弹性变差。因此,本发明热塑性聚氨酯薄膜的厚度为0.01~0.05mm,优选为0.02mm,硬度优选为85a;
81.热压密封的时间为20~40s,温度为140~150℃,压力为6mpa。
82.本发明中,可拉伸柔性复合织物基传感器与数据采集系统相连,通过数据采集系统的蓝牙模块与移动单元或电脑相连,移动单元或电脑上安装显示器软件用于显示分析后的数据。
83.可拉伸柔性复合织物基传感传感器可利用弹性织物在拉伸过程(长度变化率在0~100%以内)中产生的电信号来监测物体运动频率及状态变化,通过校准和验证,电信号可以被数据采集系统收集,通过安装在数据采集系统中的蓝牙模块与移动单元连接,以随时监测物体体积,形态或周长变化。
84.本发明数据采集系统以stm32单片机自带12位ad数据采集为核心的最小系统电路,通过标准电阻标定数据采集系统精度和测量范围,然后对传感器基准进行标定,可重复测量验证。
85.本发明中,室温为25℃
±
5℃。
86.为了进一步理解本发明,以下结合下述实施例进行详细描述。
87.本发明实施例中各原料和试剂均为市购。
88.实施例1
89.本实施例进行导电基体的制备(请参阅图1)
90.首先使用注射器将95份聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)分散液(固
含量1.3mg/ml),1份十二烷基苯磺酸(纯度为95wt%)和5份二甲基亚砜(纯度为99.7wt%)混合,用磁力搅拌器在400r/min速度下搅拌15mins,静置12h。然后,使用注射器缓慢滴加2份水性聚氨酯粘合剂(固含量为40%)溶液,同时用磁力搅拌器在1000r/min下搅拌上述混合物,持续搅拌30mins进行均质化以获得均匀的糊状导电基体分散液,再静置12小时待用。
91.实施例2
92.本实施例进行弹性织物基底的预处理
93.将弹性织物剪成长度为70毫米,宽度为25毫米的长方形布片,用蒸馏水洗涤三次后放入盛有60毫升乙醇的100毫升容积的烧杯中,室温条件下超声(超声功率为100w)处理10mins,使弹性织物彻底清洁。然后将上述超声处理后的样品在烘箱中于80度下干燥30mins,以获得洁净的预处理的弹性织物基底。
94.实施例3
95.本实施例为弹性织物/导电膜复合材料的制备(请参阅图1)
96.移取实施例1制得的导电基体分散液20毫升置于100毫升的烧杯中,然后加入实施例2中所获得的经过预处理的弹性织物基底(尺寸为70.0毫米
×
25.0毫米),其中导电分散液与弹性织物基底的质量比为5:1。室温条件下用玻璃棒搅拌和浸泡15mins,使导电基体充分浸透织物基底,然后采用浸轧机将多余的导电基体溶液从弹性织物基底通过浸轧机挤压移除(浸轧机压力值设定为2kg/cm2),三次浸轧后,将样品在烘箱中于80℃下干燥30mins,得到导电膜复合材料。将制得的弹性织物/导电复合材料从烘箱中拿出,直接于样品袋中密封保存。利用微观扫描电镜对实施例3制得的弹性织物/导电膜复合材料进行检测,得到其扫描电镜照片如图2所示。由图2可看到弹性织物/导电膜复合材料的表面形态和导电聚合物基体的膜状结构以及导电聚合物基体均匀涂覆于织物上。
97.实施例4
98.本实施例为可拉伸柔性复合织物基传感器的制备(请参阅图1)
99.将实施例3制得的弹性织物/导电膜复合材料从密封袋中取出,于烘箱80度下干燥60mins,然后在导电膜复合材料的两端连接导线并在连接点处涂刷银浆增强导电性,然后取厚为0.02毫米的热塑性聚氨酯薄膜,通过热压密封实施例3制备的弹性织物/导电膜复合材料,热压时间为25秒,压力为6兆帕,热压温度140摄氏度。热压后得到的包覆的弹性织物/导电膜复合材料即为可拉伸柔性复合织物基传感器。将所述可拉伸柔性复合织物基传感器进行在应用条件下的预拉过程,从而去除织物微观瑕疵或织物纤维间的导电粒子对重复拉伸过程中导电性能的影响作用。
100.经测定,本实施例制备的所选尺寸的可拉伸柔性复合织物基传感器样品的长度方向的电阻初始值约为1100欧姆(长度方向的两端测试),预拉后电阻初始值约为5700欧姆,当拉伸长度为50%时电阻约为7800欧姆,拉伸前后导电性变化合适。
101.图3为本发明实施例4制得的可拉伸柔性复合织物基传感器的结构示意图。从图3可以看到导电膜复合材料包覆在热塑性聚氨酯薄膜内。
102.图4为本发明实施例4中制得的可拉伸柔性复合织物基传感器的拉伸形变与电信号关系图。结果表明该实施例制备的可拉伸柔性复合织物基传感器拉伸率和电信号在给定的小拉伸范围内呈增长变化,可用于测量人体结构尺寸的变化。而在大拉伸范围内可精确测量动作频率和运动幅度的变化。
103.图5为本发明实施例4中制得的可拉伸柔性复合织物基传感器预拉伸后的重复稳定性测试图。500次拉伸试验结果表明该可拉伸柔性复合织物基传感器的电信号变化范围稳定,可用于信号监测。
104.图6为本发明实施例4制得的可拉伸柔性复合织物基传感器的湿度影响作用图。所用方法为将相同大小的样品置於不同湿度条件下等待20mins后所测得的电阻比较图。从图6可以看到弹性织物/导电复合材料包覆在密封的热塑性聚氨酯薄膜内可避免湿度的影响作用。
105.实施例5
106.本实施例为采用可拉伸柔性复合织物基传感器进行人体状态及变化监测的应用实施例。
107.本实施例可拉伸柔性复合织物基传感器与数据采集模块连接,数据采集模块实时获取传感器监测的数据,数据采集系统通过蓝牙模块与手机连接,手机可以显示传感器实时采集的数据或显示对实时采集到的数据进行分析后的数据。
108.图8为本发明实施例4制得的可拉伸柔性复合织物基传感器的立体示意图。图8-1为本发明实施例4制得的可拉伸柔性复合织物基传感器穿戴在脚踝的应用场景图。图8-2本发明实施例4制得的可拉伸柔性复合织物基传感器通过与鞋后帮相连固定在脚踝上的应用场景图(鞋后帮导线与所述可拉伸柔性复合织物基传感器可采用两个金属按扣相连)。图8-3和图8-4为本发明实施例制得的可拉伸柔性复合织物基传感器穿戴在胸部以及腿部的应用场景图用于,以及示意图。从图8-1和图8-2可以看到,可拉伸柔性复合织物基传感器作为可穿戴器件穿戴或固定在脚踝上,实时监测脚踝的肿胀或运动状态的变化。从图8-3和图8-4可以看到,可拉伸柔性复合织物基传感器可以穿戴在胸部,对胸部呼吸引起的频率变化进行监测,还可以穿戴在腿部和手臂,对肢体局部在弯曲行动过程中的形态变化进行监测。
109.在手机上显示界面,该界面包括:
110.请参阅图9,图9为本实施例主界面示意图。该显示界面为首页,所有的状态,设定和查询等页面都通过这个页面导入,完成后再返回到该页面。包含选项:status-状态;setting-设定;data-数据监测界面;user information-用户信息;history-历史记录。主界面的选项可以根据需要进行修改;
111.请参阅图10,图10为本实施例设置界面和应用模式界面示意图。点击图9设置页面的setting按钮后进入的应用模式界面:setting-设定页:mode-应用模式选择页面;
112.请参阅图11,图11为本实施例实时数据实时显示界面示意图。点击图9的data选项后进入的页面:max-最大;min-最小;current-当前;可实时显示数据格式和曲线格式。
113.请参阅图12,图12为本实施例用户信息界面示意图。点击图9的user选项后进入用户信息页面:分旧用户和新添加用户,可根据用户资料信息选择和治疗日期选择查询监测数据记录。
114.请参阅图13,图13为本实施例历史记录界面示意图。点击图9的history选项后进入的页面:可选择具体日期,应用模式和时间来查询所监测的数据记录。
115.以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些
修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1