由基本上短的聚烯烃纤维构成的非织造层状物的制作方法

文档序号:1695244阅读:196来源:国知局
专利名称:由基本上短的聚烯烃纤维构成的非织造层状物的制作方法
技术领域
本发明涉及一种基本上由短的聚烯烃纤维所构成的非织造层状物。由WO-A-89/01126可得知这种非织造层状物,这种已知的层状物是由长度至多为20.3cm的聚烯烃纤维所构成,其中聚烯烃纤维在聚合基体中基本上是单方向排列取向和嵌入的,这种已知的层状物使用于耐冲击的结构中。
这种层状物的缺点是单位能量吸收(SEA)仍很低,单位能量吸收是指冲击冲力上的能量吸收除以面积密度(每平方米的重量,)。因为这种耐冲击层状物每平方米必须具有高的重量,以提供足够的保护来抵抗冲击冲力。这种层状物的另一个缺点是包括一个基体,由于这种基体的原因,其层状物有较小的柔性并且也不透气,由于这样,含有这种层状物的耐冲击衣服,例如防碎片和防弹背心,穿起来则非常的不舒适。
本发明的目的就是在相当大的程度上避免这些缺点。
这个目的实现是由于非织造层状物是一种毛毡,在层状物的平面内,毛毡具有一些基本上无规则排列取向的短纤维,其纤维长度40-100mm,拉伸强度至少1.2GPa,模量至少40GPa。
一种毛毡是一个层状物,其中单个纤维不象纱线被针织或机织所获得的那样并合在一起以形成特殊结构,并且其所限定的层状物不包括一个基体。
现已惊奇地发现,这种层状物改善了单位能量吸收(SEA),并且它非常适用于层状耐冲击结构,尤其是用于保护以抵抗(弹壳)碎片。
“良好的耐冲击特性”在下述内容中应理解为是特别高的SEA,在层状耐冲结构领域中,“高SEA”一般应理解是SEA大于35Jm2/Kg。SEA是根据试验标准Stanag 2920使用1.1±0.02g的一个碎片模拟抛射体来确定的。根据本发明的非织造层状物的SEA较好的是大于40Jm2/Kg,更好的是大于50Jm2/Kg,最好是大于60Jm2/Kg。
高SEA的优点在于具有一定速度的碎片能够由具有基本上较低的面积密度的层状物所阻止。低面积密度对于增加穿着时的舒适性是非常重要的,除了良好的保护外,在耐冲击衣服中其主要目的是研制新的材料。
根据本发明在耐冲击服装中所使用的非织造层状物的另一个优点在于它不包括一个基体,并由此更加柔软,从而更易于适应人体的体形,此外还可有透气性,以便汗水气化物能够易于排出。
另外一个优点在于本发明的结构能够通过一个简单的工艺方法来生产,其工艺方法能够使用普通的并且市场上可买得到的设备来实施。
尽管本发明的上述优点在上述的耐冲击衣服,如防碎片和防弹背心中有着显著的优点,但是本发明的用途不仅仅限定于此,它还有其它的用途,例如炸弹表面层和护板。
WO-A-91/04855揭示了一种毛毡,它是由2种不同类型的短的聚然烃纤维组成的一种混合物构成,其中一种类型是基本上为较短的并且比另外一种类型有较低熔点温度的聚烯烃材料。毛毡是通过短纤维的熔结或熔融转化成防冲击产品的,而所述的短纤维被形成一个嵌入长纤维的基体。这种产品的缺点在于因为长纤维的刚性粘合,它非常的不柔软,并且它具有中等的耐冲击特性。相对于本发明另外一个重要差别是WO-A-91/04855所使用的纤维长度至少12.7mm。
US-A-4623574讲述了在耐冲击应用中使用非织造聚烯烃纤维的毛毡层状物。然而则没有讲述使用短纤维。此外,在该专利中规定在层状物中要求基体材料的最小含量(至少约13%,以重量计),以获得具有良好的耐冲击特性的层状物,然而比较于本发明,它仍带有上述的所有缺点。
本发明的非织造层状物基本上是由短的聚烯烃纤维所构成,在此所使用的“基本上”意味着非织造层状物可包括较小量的其它一些组分,但不包括一种基体。例如,这些其它组分可以是一种其它材料的短纤维。已发现其它的一些组分对本发明获得良好的结果有消极的影响,因此其它组分的数量较好的是小于20%,更好地是小于10%,最好小于5%,并最好为0%(%以体积为计)。
现已发现利用纤维的细度可改善耐冲击特性。纤维的细度是指纤维每单位长度的重量(即旦数)。如纤维细度是在0.5~12旦之间,可获得良好的结果。把细于0.5旦的纤维制成毛毡的工艺是非常困难的。毛毡基本上所含有的纤维细度大于12旦,则具有不良的耐冲击特性和不良的紧密性。因此较好的是纤维细度是在0.5与8旦之间,更好的是在0.5与5旦之间,最好的是在0.5与3旦之间。
较好的是纤维是卷曲的,其本上由卷曲纤维构成的毛毡具有较好的机构特性和耐冲击性。卷曲的短聚烯烃纤维可由卷曲的聚烯烃长丝来获得,其长丝具有至少1.2GPa的拉伸强度和至少40GPa的模量,根据已知的方法,例如切断或载剪来减小其长丝的长度。卷曲的长丝能够由已知有的技术以各种方式来获得,然而较好地是通过填塞箱来获得。纤维的一些机械特性,例如其拉伸强度和模量实质上不会由于卷曲的原因而受到降低。
特别适宜的一些聚烯烃是聚乙烯和聚丙烯均聚物和共聚物。此外,聚烯烃可使用含有小量的一个或多个其它的聚合物,尤其是另外的烯烃-1-聚合物。
如果聚烯烃选择线性聚乙烯便可获得良好的结果。在此,线性聚乙烯应理解为聚乙烯每100碳原子具有小于1个侧链,较好的是每300碳原子具有小于1个侧链,并且它可含有高达5%mol的一个或多个能够共聚合的其它烯烃,例如丙烯、丁烯、戊烯、4-甲基戊烯和辛烯。
较好的是由具有在135℃至少5dl/g、用Decalin测定的特性粘度的线性聚乙烯所构成的聚烯烃纤维使用于本发明的非织造层状物中。
纤维的长度应该在40至100mm之间。在纤维长度小于40mm时,非织造层状物的粘聚力、强度和SEA都不太好,在纤维长度大于100mm时,则非织造层状物的SEA和紧密度实际上较低。紧密度是面密度除以层的厚度。一般来说较高紧密度的层状物具有较低钝头损伤效应。由于抛射弹体的冲击的结果,钝头损伤效应对耐冲击结构的弯曲有不利的影响。重要的是耐冲击衣服除了高SEA外,具有一个低的钝头损伤效应。
更进一步重要的是纤维要具有高的拉伸强度,高弹性模量和高能量吸收。本发明所使用的非织造层状物是由聚烯烃纤维制成,聚烯烃纤维的单丝具有至少1.2GPa的强度和至少40GPa的模量。当使用具有较低强度和模量所形成的纤维时,则不能获得良好的耐冲击特性。
本发明的层状物可包括各种横截面的纤维,例如,圆形、矩形(带)或椭圆形纤维。例如纤维横截面的形状也可通过把纤维辊压成扁平来调整。纤维横截面形状以横截的长和宽的比来表示横截面纵横的比。横截面纵横比较好的是2至20,更好的是4至20。有较高纵横比的纤维表明在非织造层状物中有较高程度的相互作用,由于这个原因,使得在冲击力的情况下,纤维相互之间比较不容易移动。为此能够获得非织造层状物改善的SEA。
相互作用的程度通过改善纤维表面也可得以改善。纤维表面通过在纤维中渗入一种填料可得以改善。所述的填料可以是一种无机材料,例如硫酸钙,或聚合物。纤维表面也可以通过电晕、等离子体和/或化学处理来得以改善。由于一些侵蚀的凹痕的存在,表面的极性和/或表面的化学作用增加,因而使表面可改善为粗糙的。
非织造层状物的SEA和钝头损伤效应能够通过在纤维之间增加相互作用的程度来加以改善,然而如果相互作用的程度太大,则SEA又可能会减小,而最佳状态可通过本技术领域熟知的常规实验能够获得。
根据本发明,当上述的聚烯烃纤维在非织造层状物中基本上无规则取向时,则可获得良好的耐冲击特性。“基本上无规则”应理解为纤维没有优选的取向来产生于层状物平同面之中不同的机械特性。在层状物平面上的机械特性基本上各向同性的,即在不同方向则机械特性基本相同。在非织造层状物中不同方向上的机械特性的差距不超过20%,较好的是不超过10%。较好的是,非织造层状物的差距,以致本发明的一个或多个非织造层状物所构成的层状结构的差距小于10%。
较好地是使用聚烯烃纤维,该纤维是由聚烯烃长丝而获得的,聚烯烃长丝是通过例如GB-A-2042414和GB-A-2051667所描述的凝胶纺丝工艺方法而制备的。这种工艺方法主要包括制备一种在135℃下用Decalin所测定的高特性粘度的聚烯烃溶液,在高于溶解温度的温度下将溶液纺成长丝,在凝胶温度以下冷却长丝,在凝胶温度以下冷却长丝,使其长丝拉伸之前、拉伸期间或拉伸这后来凝胶和清除溶剂。
长丝的横截面形状能够通过选择纺丝孔径的对应形状来选择。
本发明的非织造层状物能够以不同的方式使用在耐冲击结构中,本发明的非织造层状物可用作、例如一个单层。
本发明的一个特殊应用是在一种层状结构中,它至少由根据发明的两个非织造层状物所构成,该两个非织造层状物被缠绕在一起。该应用的一个优点在于这种层状结构比单个的非织造层状物更紧密和手感更好。
本发明的另一特殊应用是在一种层状结构中由根据本发明的一个或多个非织造层状物和一个或多个机织织物所构成,它们被缠结在一起。这种机织层状物最好也有良好的耐冲击特性。该机织层状物最好由聚烯烃长丝组成,该聚烯烃长丝至少有1.2GPa的拉伸强度和至少40GPa的模量。这种层状结构的优点在于它非常的紧密并且除了改善了的SEA外,具有低的钝头损伤效应,上述层状结构中的一些层状物可通过针刺、水缠结或接结来结缠在一起。
一种用于耐冲击的层状结构可使用包括上述的一个或多个非织造层状物或层状结构。在层状结构中层的数量取决于要求防护的程度。在应用于耐冲击服装中,层数的选择和这种层状耐冲击结构的表面密度在一方面所要求防护的程度上和在另一方面穿着时所要求舒适性之间选择其一是非常困难的。穿着时舒适性主要是根据耐冲击结构的重量和其表面密度所决定的。本发明非织造层状物的一个特别的优点在于逐渐较高的SEA是以较低的表面密度来获得的。由于这样,本发明的非织造层状物尤其有利的是应用于要求较低的和适中的防护程度范围(由450~500m/s产生的V50)的耐冲击结构,这是由于重量非常轻(低表面密度)并因此对穿着者有较好的舒适性。本发明非织造层状物的一些优点在层状结构中尤其明显,该层状结构是由一非织造层状物而构成,它具有低于4Kg/m2的表面密度,较好的是低于3Kg/m2的表面密度,更好的是低于2Kg/m2的表面密度。具有高表面密度的层状结构最好是由松散叠放大量层状物所形成的,其中层状物具有非常小的表面密度。
非织造毛毡层状物或层状结构能够与不同类型的层状物结合,不同类型的层状物对某些特殊的耐冲击特性或其它特性产生一些影响。与不同类型层状物的结合的缺点在于SEA和穿着时的舒适性,连同其它特性一道将都降低。因此,较好的是整个结构是由非织造层状物或上述的层状结构所构成。较好的是,这种层状结构所具有的厚度为10~30mm。
非织造层状物能够通过一些技术,例如象造纸技术来制造生产,例如含水的纤维浆进入到一个金属丝网筛并进行脱水。然而较好的是非织造层状物通过下述的方法来制造生产,该方法包括
-梳理大量松散短的聚烯烃纤维,该纤维具有至少1.2GPa的拉伸强度,至少40GPa的模量,并且长度为40~100mm,这些纤维基本上无规则的排列取向,并且形成为一种已梳理的非织造纤维网;
-所获得的已梳理的非织造纤维网喂入到一个输送装置上,该输送装置的运动方向与非织造纤维网喂入到其装置的方向成直角,在输送的同时非织造纤维网以之字形折叠的形式放置在其输送装置上,以致在输送方向上形成一个叠加的层状物,该叠加的层状物是由所提供的已梳理非织造纤维网的大量叠加层构成,其叠加层部分地沿横向相互重叠;
-轧光已叠加的层状物,在轧光过程中层状物的厚度减小;
-在输送方向上拉伸已获得轧光的层状物;
-缠结已获得拉伸的层状物,以形成一种毛毡层状物。
结果形成的以毛毡形式的非织造层状物明显的改善了耐冲击特性,特别是单位能量吸收大于35Jm2/Kg,特别是大于40JM2/Kg,更特别是大于50Jm2/Kg。
较好的是短的聚烯烃纤维是卷曲的。
卷曲纤维能够通过使具有所希望机械特性和细度的聚烯烃长丝用已知方法受处理以成卷曲来获得,其长丝可用已知的方法和上述的方法来获得,例如一种已知的卷曲方法是在一个填塞箱中处理长丝,然后获得的这种卷曲纤维应该在40和10mm之间切断成所要求的长度。在这个切断过程,常常获得一种压缩的纤维块,该纤维块例如通过机械梳理或喷吹应该解缠结(打开)。在这个过程中,当使用复丝时而获得组成的纤维同时被解缠结成基本上单个纤维。在上述方法中使用卷曲纤维的优点在于卷曲纤维在切断之后更容易解缠结(打开),并且更容易梳理成纤维网。
梳理可用一般梳理机来进行。纤维层状物喂入到梳理装置的厚度可在宽范围内来选定,它基本上取决于最终所获得毛毡所要求的表面密度。尤其是必须留有余地以使拉伸在其加工过程中一后阶段进行,其中表面密度将根据选定的拉伸比来降低。
已梳理的非织造纤维网以之字形折叠形式叠放到一个输送装置上,该输送装置以与已梳理的非织造纤维网被喂入到输送装置上成一个垂直方向运动,这个方向是输送方向。输送装置可以是一个传送带。传送速度以相对于已梳理的非织造纤维网的供给速度来选择,以致获得具有所希望数量的部分重叠层的叠加的层状物。
在叠加层中纤维的排列取向取决于上述供给速度和传送速度的比率,以及已梳理的纤维网宽度和叠加层状物宽度的比率。纤维将基本上在两个方向上排列取向,它们由之字图案确定。
叠加层状物的轧光可使用已知的装置来完成。层状物的厚度在该轧光过程减小,并且在各纤维之间的接触变得更为紧密。
然后已轧光的层状物沿长度方向、即输送方向上被拉伸。这就使得表面面积增加,以致拉伸的层状物的厚度和其表面密度略为减小,拉伸之比较好的是在20至100%之间。
现已发明在层状物的平面内纤维的排列取向在拉伸过程中基本上变为无规则的。
已拉伸的层状物的粘合力、强度和紧密度通过缠结这个层状物而被增加,缠结可通过针刺层状物或水缠结来进行。在针刺的情况下,毛毡用针刺穿,所述的针具有细的钩,它牵引着纤维穿过层状物。针的密度从5到50针/cm2不等,较好的是针的密度是在10至20针/cm2。在水缠结的情况下,已拉伸的层状物用一些致细的高压水流刺穿。水缠结比起针刺其优点在于纤维损伤少。而针刺的优点在于它是一种技术较简单的工艺。
毛毡的进一步紧密可通过使拉伸层状物和/或毛毡进行附加的针刺或轧光步骤来实现。毛毡层状物附加针刺或轧光的结果表明使其毛毡变得更加紧密,其优点在于钝头损伤效应减少,而SEA没有不令人满意的降低。现已发现缠结还可有助于增加纤维的排列取向的无规则性和在层状物平面上机械特性的均质性。
毛毡层状物的厚度是由松散短纤维块喂入到梳理机上的表面密度相对于叠加的已梳理的非织造纤维网的数量来确定的,在轧光、拉伸和缠结过程中其厚度则出现减小。厚的毛毡层状物可在加工过程开始时增加层状物厚度或在上述加工方法步骤中进行轻微地压紧来获得。一种较厚的,紧密的毛毡也可通过叠加几个毛毡层状物,然后例如通过针刺把它们缠结在一起来获得。较厚的紧密的毛毡的优点在于除了有高的SEA外,它比一个单一厚度的非织造层状物还具有较低的钝头损伤效应,并且手感要更好。
在一个特别优选的实施例中,所获得的毛毡与一些织物或其它类型的层状物针刺在一起,这些混合结构薄的多,除了较大地改善了耐碎片外,还具有低的钝头损伤效应。
这样所获得的非织造层状物或者上述的它们的特殊的实施例能够与不同类型的一些层状物组合成一种层状耐冲击结构,所述的不同类型的层状物能够有助于对某些其它特殊的耐冲击特性或其它特性产生影响,以便增加其单位能量吸收。
本发明在下面的一些实施例中进一步被解释说明,但并不限制于此,在这些实例中所述的一些参数是由下面的方式确定的。
拉伸强度和模量是用Zwick1484拉伸试验机进行拉伸测试而测定的,所测试的长丝没有捻度。长丝在Orientec(250-Kg)夹线板上被夹持长度200mm以上,并采用8bar的夹持压力,以防止长丝在夹线板上滑动。十字头(滑块)的速度是100mm/min,所述的“模量”应理解为初始模量。在伸长1%时测定。其细度是通过称量具有已知长度的一根纤维来测定的。
毛毡层状物的厚度(T)是使用5.5KPa压力的,在压紧条件下测量的。表面密度(AD)通过称重具有一个精确测定的面积的部分层状物来测定的。
单位能量吸收(SEA)是根据STANAG2920实验来测定的,在该实验中,(根据USMIL-P-46593)一种特殊形状、重量(1.1g)、硬度和尺寸的不变形钢的。22口径FSPs(碎片模拟抛射体),以后被称作碎片,以一种限定的方式射击在耐冲击结构上。能量吸收(EA)是根据具有V50速度的子弹动能来计算的。在V50速度下,子弹穿透耐冲击结构的概率是50%。单位能量吸收(SEA)是通过能量吸收(EA)除以层状物的表面密度(AD)而计算出的。
实例Ⅰ一种具有拉伸强度2.65GPa、初始模量90GPa、每单丝的细度为1旦、纤维横截面的纵横比大约为6的聚乙烯复丝在一个堵塞箱中被卷曲。已卷曲的长丝切成60mm长的纤维,所获得的纤维以一种厚度为12±3g/m2的层状物形式提供到一个梳理机上,所获得已梳理的非织造纤维网以之字形折叠形式叠放在一个传送带上,选择传送带速度和已梳理非织造纤维网成直角喂入到传送带上的供给速度的比率,以便获得近似2m宽的层状物,它包括10个叠加的非织造纤维网。叠加的层状物在一个皮带轧光机上在轻压力下被轧光,其结果形成更紧密和更薄的轧光层状物。已轧光的层状物纵向拉伸38%,已拉伸的层状物通过使用15针/cm2进行针刺而被致密。这样所获得的毛毡的表面密度是120g/m2,叠放成22层这种毛毡(该毛毡在下述表示为F0)以形成一种耐冲击结构F1,它具有表面密度2.6Kg/m2和厚度23mm。
实例Ⅱ根据实例Ⅰ所获得的毛毡F0使用15针/cm2经受附加的针刺以致密毛毡,叠放22层这种毛毡以获得一种耐冲击结构F2,它具有表面密度2.7Kg/m2和层厚度22mm。
实例Ⅲ根据实例Ⅰ所获得的毛毡F0经受附加的轧光,以便进一步使其致密,然后许多这样的层状物被叠放,以获得一种具有表面密度为3.1Kg/m2和层厚度为20mm的耐冲击结构(F3)。
实例Ⅳ一种加重和致密的毛毡是通过叠放3层根据实例Ⅰ所获得的毛毡F0,并用15针/cm2把它们针刺在一起而制成的,然后许多这样的层状物被叠放,以获得一种具有表面密度为2.9Kg/m2和层厚为20mm的耐冲击结构(F4)。
实例Ⅴ一种如实例Ⅰ所描述制成的毛毡,而现在仅仅是通过高压水流来实现缠结,然后许多这样所得的层状物被叠放以获得一种具有表面密度为2.6Kg/m2和层厚为20mm的耐冲击结构(F5)。
实例Ⅵ根据实例Ⅰ所获得的许多多层毛毡F0与一种Dyneema 504R织物针刺在一起,以获得一种具有表面密度为2.6Kg/m2和层厚为8mm的耐冲击结构。Dyneema504R是一种1×1平纹织物,由DSM提供,含有400旦DyneemaSK66R纱线,并且每厘米具有17根经纱和17根纬纱,表面密度为175g/m2。
实例Ⅶ和Ⅷ根据实例Ⅰ的方法制成一种毛毡,而现在仅仅是使用的纤维长度是90mm,以代替60mm,这样所获得的许多多层毛毡被结合在一起,以获得耐冲击结构F7和F8,它们的表面密度分别为2.7Kg/m2和2.6Kg/m2,厚度分别为3.2cm和4.8cm。结构F7还进行了一个附加的针剩步骤,因而比F3更致密和比F3更薄。
实例Ⅸ根据实例Ⅰ的方法除了叠放较小数量的毛毡层状物F0以外制成一种毛毡,以获得一种具有表面密度为1.5Kg/m2和层厚为10mm的耐冲击结构。
比较实验1和2上述许多多层的Dyneema504R织物被叠放,以获得耐冲击结构C1和C2,它们的表面密度分别为2.9Kg/m2和4.5Kg/m2。
比较实验3-7上述专利申请WO-A-89/01126的表Ⅰ的实例1-5来作为比较实例C3至C7。在这个专利中对于单位能量吸收和表面密度所给出的数值仅是以纤维重量为基础,为了能够与本发明的实例比较这些数值,通过把AD和SEA数值分别地除以和乘以纤维质量系数,使这些数值已被标准化成,总的表面密度和总的单位能量吸收。
由上述耐冲击结构F1-F8和C1-C2切为40×40cm的样品,然而它们根据上述的STANAG2920实验,通过测量V50来进行测试,以测定它们的耐冲击特性。根据相同的标准,测试专利申请WO-A-89/01126的比较实例C3-C7的耐冲击结构,表1表示其结果。
表ⅠAD V50SEA Tkg/m2m/s Jm2/kg mmF1 2.6 544 63 23F2 2.7 526 59 22F3 3.1 486 50 20F4 2.9 490 51 20F5 2.6 500 53 20F6 2.6 445 42 8
F7 2.7 440 39 32F8 2.6 474 48 48F9 1.5 478 86 10C1 2.9 450 39 8C2 4.5 520 34 13C3 6.1 621 35 -★C4 6.9 574 26 -C5 6.9 584 27 -C6 6.6 615 32 -C7 6.3 571 29 -★在WO-A-89/01126中没有说明。
比较结果表明含有至少一个本发明的非织造层状物的所有耐冲击层状结构比根据其技术状态最好的耐冲击结构C1-C7表现出较好的单位能量吸收。含有90mm纤维的毛毡F7和F8的SEA数值比含有60mm纤维的毛毡结构F1-F5的SEA数值要低,但可比较或较好于并在多数情况下其较好于迄今已知的结构C1-C7的SEA。F6有较低的SEA,这是由于它们特殊结构和较低的卷装厚度。然而其SEA大大高于已知最好的比较实例C1-C7的耐冲击结构的SEA。毛毡F9具有近似二分之一的表面密度,但比结构C1有更加较好的耐冲击。毛毡F9与毛毡F1-F8比较表明在较低表面密度的情况下,可获得逐渐高的SEA。
权利要求
1.非织造层状物,它是由基本上短的聚烯烃纤维构成,其特征在于非织造层状物是一种毛毡,该毛毡在层状物平面内具有基本上无规则排列取向的短纤维,其纤维长度40-100mm,拉伸强度至少1.2GPa和模量至少40GPa。
2.根据权利要求1的非织造层状物,其特征在于纤维所具有的细度为0.5至12旦。
3.根据权利要求1或2的非织造层状物,其特征在于纤维是卷曲的。
4.根据权利要求1~3任一项的非织造层状物,其特征在于非织造层状物具有至少40J.m2/Kg的单位能量吸收。
5.根据权利要求1-4任一项的非织造层状物,其特征在于在非织造层状物中的聚烯烃纤维是由具有在135℃下用Decalin所测得的特性粘度至少5dl/g的线性聚乙烯所构成。
6.根据权利要求1-5任一项的非织造层状物,其特征在于纤维横截面的纵横比是2至20。
7.根据权利要求1-6任一项的非织造层状物,其特征在于纤维表面通过电晕或等离子处理,或通过化学处理或通过纤维填料来得以改善。
8.根据权利要求1-7任一项的至少由2个非织造层状物所构成的层状结构,它们被缠结在一起。
9.根据权利要求1-7任一项的由一个或多个非织造层状物和一个或多个机织层状物所构成的层状结构,它们被缠结在一起。
10.包括至少一个根据权利要求1-7任一项的非织造层状物的层状结构或根据权利要求8或9的层状结构。
11.根据权利要求10的层状结构,其特征在于层状结构具有的厚度为10-30mm。
12.用于生产权利要求1-5任一项的非织造层状物的方法,它包括-梳理大量松散短的聚烯烃纤维,该纤维具有至少1.2GPa的拉伸强度,至少40GPa的模量和40-100mm的长度,这些纤维基本上无规则排列取向,并且形成为一种已梳理的非织造纤维网;-所获得的已梳理的非织造纤维网喂入到一个输送装置上,该输送装置的运动方向与非织造纤维网喂入到其输送装置上的方向成直角,在输送的同时,非织造纤维网以之字形折叠的形式放置在其输送装置上,以致在输送方向上形成一个叠加的层状物,该层状物是由所提供的已梳理的非织造纤维网的许多叠加层所构成,其层状物部分横向相互叠加;-轧光已叠加的层状物,在轧光过程中,层状物的厚度减小;-在输送方向上拉伸已获得轧光的层状物;-缠结已获得拉伸的层状物,以形成一种毛毡层状物。
13.根据权利要求12的方法,其中纤维是卷曲纤维。
14.根据权利要求12或13的方法,其中通过针刺或水缠结来实现缠结。
15.根据权利要求12-14任一项的方法,其中至少毛毡层状物的拉伸层是被致密的。
16.根据权利要求1-5任一项的非织造层状物或根据权利要求6-11任一项的一层状结构或根据权利要求12-15任一项方法所获得的非织造层状物,它们用于一些对冲击结构。
全文摘要
本发明涉及一种非织造层状物,它是由基本上短的聚烯烃纤维所构成,非织造层状物是一种毛毡,在毛毡的层状平面上有基本上无规则排列取向的纤维,该纤维长度为40—100mm,拉伸强度至少为1.2GPa,模量至少为40GPa。本发明还涉及一种用于生产这种毛毡的方法和其中使用毛毡的层状结构,含有本发明非织造层状物的层状结构改善了冲击子弹撞击时的单位能量吸收。
文档编号D04H1/74GK1085971SQ9310519
公开日1994年4月27日 申请日期1993年4月2日 优先权日1992年4月3日
发明者L·L·H·范德卢, R·C·范德堡 申请人:Dsm有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1