薄板状的烧结体及其制造方法

文档序号:1963374阅读:283来源:国知局
专利名称:薄板状的烧结体及其制造方法
技术领域
本发明是关于吸水率在3%以下、耐冻害性高、可以在寒冷地区使用的大型薄板状的烧结体及其制造方法。
背景技术
目前,作为建筑用的外部装饰材料大量地制造薄板状的烧结体(瓷砖),这样的外部装饰材料大多暴露在室外的环境中。当水冻结成冰时体积就会膨胀,因此,在冬季时,烧结体中吸收的水分冻结成冰,导致烧结体出现龟裂,严重时发生破裂。瓷砖越大,这种倾向越明显。
对于大型的薄板烧结体,人们一直在不断地进行研究,目前市场上已有1m×1m、厚5mm的薄板烧结体出售,如果宽度较窄,长度可以达到3m以上。但是,长度和宽度都很大的瓷砖目前还难以制造。究其原因,是由于用作瓷器化成份的长石和作为成型剂的粘土中含有的游离氧化硅(主要是石英)的影响。据推测,这是由于石英的热膨胀系数较大,在薄板大型板的烧成时,冷却过程中温度梯度产生差异,引起内部应变,容易发生冷裂。为此,需要减缓烧成速度,导致生产效率大大降低。与此相对,有一些原料的热膨胀系数较低,例如堇青石和透锂长石,但由于价格昂贵,目前还不能大批量生产,以较低的价格销售。此外,通常需要在1200℃以上高温烧成,容易发生软化变形,收缩率也超过10%,因而导致尺寸精度降低的问题。
针对这些问题,在日本第2998072号专利公报中公开了一种改善脆性、具有弹性的技术。该专利中提出,将均质地含有针状结晶矿物(纤维状结晶矿物)β-CaO·SiO2(硅灰石、β-钙硅石)以及包含粘土和滑石的一般瓷器质物的物料,以上述针状结晶矿物在同一方向上取向排列的状态形成生坯,然后烧结,制造具有弹性的大型瓷砖。
可是,作为针状结晶矿物的硅灰石是低温型,以住在各种领域中都有使用,在陶瓷工业领域中也广泛采用,但与获得瓷器质的情况同样,在1200℃以上的高温下烧结使其致密化、降低吸水率时,上述低温型硅灰石在1120-1130℃左右转变成高温型的硅灰石(Pseudo-Wollastonite),致使特意选用的针状结晶发生变化。因此,针状结晶的效果丧失,虽然可以进行瓷器化和致密化,降低吸水率,但引起软化变形,并产生内应变,容易产生裂纹或开裂,难以制造大型的瓷砖。因此,以往为了制造大型薄板的瓷砖,将烧成温度设定在1100℃以下,因而无法避免吸水率在10%左右的冻害发生,这正是本发明要解决的课题。

发明内容
在解决上述课题时,本发明人基于下面的考虑进行了深入的研究,从而完成了本发明,即,在低温型硅灰石的针状结晶发生转变的温度以下烧成,只要控制反应性,就可以保持低温型硅灰石的针状结晶不发生变化,使用瓷器化成份,即使在低温型硅灰石的针状结晶转变的温度以下烧成,也可以达到致密化(低吸水化),这样就可以制造防止发生冷裂、烧成收缩率小、可以切断、具有可加工性、耐冻害性高的大型瓷砖。
本发明是薄板状的烧结体,含有滑石、瓷器化成份、针状结晶矿物的低温型硅灰石以及可塑粘土作为主要成份,形成上述低温型硅灰石在同一方向均一取向排列的薄板状,在低温型硅灰石的结晶转变温度以下进行烧结,达到低的吸水率。
另外,本发明是薄板状烧结体的制造方法,将含有滑石、瓷器化成份、针状结晶矿物的低温型硅灰石以及可塑粘土作为主要成份并经过混炼的物料,形成上述低温型硅灰石在同一方向均一取向排列的薄板状,然后在低温型硅灰石的结晶转变温度以下进行烧成,达到低的吸水率。
采用这种方法,可以在低温型硅灰石不发生结晶转变的状态下、以良好的制品状态制造吸水率低的、致密的薄板状大型烧结体(瓷砖)。
在本发明中,吸水率可以达到3%以下,这样,可以形成耐冻害性强的薄板状烧结体,即使在寒冷地区的室外使用也不会出现任何问题。
在本发明的另一优选方案中,含有滑石约5-30重量%,瓷器化成份约10-40重量%,低温型硅灰石约10-40重量%,可塑粘土约20-50重量%,这样,可以制成良好的大型薄板瓷砖。
在本发明的另外一个优选方案中,低温型硅灰石是长纤维型的硅灰石与短纤维型的硅灰石的混合物,这样,低温型硅灰石的粒度达到平衡,可以进行更稳定的反应,从而可以大批量生产吸水率低于3%的优质大型薄板瓷砖。


图1是表示配合编号I-XI的试料的配合和制品状态的表。
图2是表示配合编号I-III的试料的吸水率与烧成温度的关系的曲线图。
图3是表示配合编号IV-VII的试料的吸水率与烧成温度的关系的曲线图。
图4是表示配合编号VIII-XI的试料的吸水率与烧成温度的关系的曲线图。
图5是表示配合编号IV和X的试料的物性值的表。
图6是表示低温型硅灰石的粒度分布的表。
图7是表示长短纤维型硅灰石的粒度分布的表。
图8是表示配合编号X、XII-XIV的配合的表。
图9是表示配合编号X、XII-XIV的试料的吸水率与烧成温度的关系的曲线图。
图10是表示配合编号XII和X的烧成体的物性值的表。
图11是表示配合编号XII、X的左右尺寸差的表。
图12是表示配合编号X、XII、XIII、XIV的烧成体吸水率(横轴)与图9中所示的曲线图的倾斜度(纵轴)的关系的曲线图。
具体实施例方式
在实施本发明时,瓷砖的组成是以滑石、长石·陶石等瓷器化成份、低温型硅灰石以及可塑粘土这四种成份作为主要成份。首先是滑石,它不仅可以提高成形性,而且对于通过与下述瓷器化成份的共融作用而实现低温熔融化也是不可缺少的成份,其含量在约5-30重量%为宜。另外,优选的是粒度44μm以下、粒度分布的中心为5μm。由下面所述的实验结果可以看出,没有滑石存在时,不仅成形性恶化,而且难以产生共融作用,因而必需在高温下才能实现致密化,导致低温型硅灰石的结晶转变等问题。反之,使用滑石过多时,由于该滑石的羟基较少,可塑性差,对成形性产生不利影响,另外,反应过程中生成的非晶质氧化硅倾向于转变成方石英(Cristobalite),容易产生“冷裂”,因而不可取。
其次是长石·陶石等瓷器化成份,它们必需根据碱性成份(K2O、Na2O)的含量和粒度的不同调整使用量。在本发明中,作为瓷器化成份,碱性成份在约3%以上为宜,优选的是,含有80%以上粒度至少约44μm以下者,最大粒度约110μm以下者。考虑到与滑石的相互作用,其配合量最好是约10-40重量%。由下述实验例可以看出,在不使用瓷器化成份的场合,以滑石作为矿化剂,粘土与低温型硅灰石激烈反应,容易发生软化变形,在制造大型瓷砖时产生内应变,是导致变形的主要原因之一,反之,瓷器化成份的配合量过多时,瓷器化作用的影响增大,引起软化变形,不能获得低温型硅灰石的形状保持效果,结果往往不能制成大型的瓷砖。
另外,由下面所述的实验结果可以看出,如果添加百分之几的、含有上述K2O、Na2O的含量合计10%以上的碱性成份的长石,可以制造烧成温度更低的大型瓷砖。
再有是低温型硅灰石,低温型硅灰石对于大型薄板瓷砖的形状保持是必不可少的,因此,作为用于获得目的反应性生成物的钙斜长石的钙供给源是不可缺少的成份。粒度(纤维长度、长宽比)越大,形状保持效果越好,但如果过大,反应性反而降低,因此长宽比在20以下为宜。
低温型硅灰石的配合量在约10-40重量%为宜。配合量越多,为了达到致密化所需要的温度越高,而且反应性也更激烈,因而难以制造大型瓷砖,另一方面,低温型硅灰石的配合量使得烧成温度进一步降低,因此越少越好,但为了防止龟裂和破裂,保持制品的形状,其配合量在约10重量%以上是适宜的。
最后是可塑粘土,可塑粘土含有较多粘土矿物时,其配合量可以减少,可塑粘土的配合量在约20-50重量%为宜。少于20重量%时,在将低温型硅灰石的针状结晶的取向形成同一方向的生坯成形时的挤出和压延工序中可塑性不足,难以成形;反之,超过50重量%时,干燥性恶化,生产效率降低。另外,由于其它主要成份的配合量减少,即使在低温型硅灰石的结晶转变温度以下烧结,也不能得到满足要求的制品。
实验例1下面说明具体的实验例。首先,作为滑石和瓷器化成份,使用群马长石和村上陶石、长纤维硅灰石(长宽比20以下、中心纤维长210μm),作为可塑粘土,使用本山有机碳粘土的粉末,按图1的表中所示的份量(重量%)将它们配合,用混合研磨机将该粉末配合物混合搅拌15分钟,然后添加20%水分进行混炼,制成配土。使用真空粘土捏和机(例如日本专利第2998072号中所述的真空粘土捏和机)将其挤出,用4级辊依次压延,然后切断成大小约为950×1895×5.3mm的生坯板。将该生坯板在辊底式窑炉中干燥,然后烧成。缓慢升温,烧成至吸水率达到2.5%,得到约900×1800mm大小的供实验用的试料。结果,配合编号II、V、VII、IX、X、XI(都是本发明的实施例)的制品的制品状态很好,相比之下,配合编号I、III的没有滑石的制品和含40重量%滑石的制品、配合编号IV、VI的不含瓷器化成份的制品和含有50重量%瓷器化成份的制品、配合编号VIII的不含硅灰石的制品,制品的状态都很差。顺便说一下,图2、3和4中的曲线图表示对于配合编号I-XI的制品提高烧成温度时的吸水率的变化情况。在该曲线图中,进一步添加5%的、碱性成份超过10%的微粉长石的配合编号VII的制品,可以在低于1078℃的温度下制造吸水率达到2.5%的大型瓷砖。
另外,图5的表中示出配合编号X和IV的制品的物性。配合编号X的本发明实施例的制品,烧成温度为1091℃,试料的厚度是4.3mm,制品的状态良好。配合编号IV的制品,在同样的烧成温度下软化变形,因而将烧成温度降低到可以保持形状的1070℃,调查其物性。结果,本发明实施例的配合编号X的制品,吸水率低至2.5%,耐冻害性良好,同时抗弯强度高达48N/mm2。此外,比重为2.2,由于重量轻,施工性好,收缩率只有5.6%,容易保持尺寸精度。相比之下,配合编号IV的制品吸水率高达12%,耐冻害性低,抗弯强度为40N/mm2,比本发明实施例的制品要低。另外,对上述配合编号IV和X的制品进行了X射线衍射分析,结果都存在低温型硅灰石的结晶的衍射峰,但结晶衍射峰的强度有所不同,由此可以看出,本发明实施例的配合编号X的制品,不仅吸水率低,只有2.5%,而且硅灰石不发生结晶转变,始终以针状(纤维状)形式存在,因而显示出上述良好的物性。
下面分析烧成温度与吸水率(即致密度)的关系。对于上述配合编号X的制品观察烧成温度与吸水率的关系,在曲线上的1088℃和1098℃两个位置的右侧呈向下状,不是正比例(直线)状态。图12的曲线图示出配合编号X时的制品的吸水率(横轴)与图4中所示的曲线图(与图9中所示的配合编号X时的制品同样的曲线图)的倾斜度(纵轴)的关系,在该图中呈大的曲线状态,据推测,这是由于在上述温度区域反应激烈进行的缘故。这些温度区接近于硅灰石的结晶转变温度,因此,激发了反应的内能,致使反应性提高。而且,反应性与粒度(表面积)之间具有密切的关系(表面积越大反应性越高),测定所使用的硅灰石的粒度(长度)分布,结果如图6中的表所示。由该图可以看出,在1088℃下主要是125μm以下的进行反应,而在1098℃下主要是150μm以上、250μm以下的进行反应。
另外,在本实验例中采用的本山有机碳粘土40重量%,低温型硅灰石25重量%中,添加35重量%玻璃粉,采用这一配合比例同样操作制成生坯板,然后干燥和烧结,得到另一配合比例的比较制品。该比较制品的烧成温度是1080℃,收缩率为5.1%,吸水率是3.4%。但这种比较制品产生干燥开裂和冷却裂纹。另外,经过X射线衍射线分析,确认有方石英的峰。由于使用了玻璃粉,可以在低温下烧结,但玻璃粉的反应性产生影响,使液相的非晶质氧化硅发生转变,生成方石英。而且,由于该方石英的存在,在200℃附近热膨胀增大,耐热冲击性降低,导致产生冷却裂纹,由此可知,使用玻璃粉的坯料难以制造大型的薄板瓷砖。相比之下,本发明由于共融作用使烧结温度降低,可以维持低温型硅灰石的纤维状态,生成的液相含有许多结晶相,缓解了热冲击,因而可以制造大型的薄板瓷砖。
实验例2对于低温型硅灰石,将配合编号X中使用的长纤维硅灰石和短纤维硅灰石组合,进行粒度调整,以使反应稳定化。如图7中的表所示,制备二种短纤维硅灰石(A)和(B),按图8所示的比例配合(配合编号XII、XIII、XIV),与实验例1同样混合,进行混炼,制成配土。用真空粘土捏合机将其挤出,用4级辊依次压延,制成与上述同样大小的生坯板,将其干燥、烧成后得到约900×1800mm大小的试料。这些试料与配合编号X的试料同样,完全没有开裂和裂纹,也基本上没有观察到变形,呈现良好的制品外观。图9中示出烧成温度与吸水率的变化关系。由该图可以看出,配合编号XII的试料其烧成温度与吸水率的关系大致接近于正比例的关系,用短纤维对低温型硅灰石调整粒度所得的制品与采用单一长纤维的制品(配合编号X)相比,在较低的烧成温度下可使吸水率达到3%以下。这意味着,通过使用短纤维型的硅灰石,相对于结晶转变温度可以在更低的烧成温度下烧成,从而可以制造没有结晶转变的稳定的瓷砖。此外,图12中示出配合编号X、XII、XIII、XIV的吸水率(横轴)与图9中所示的曲线图的倾斜度(纵轴)的关系,其中,配合编号XII和XIII的试料发生了更接近于直线的变化,得到稳定的制品。另外,呈配合短纤维型的配合编号XIV的试料,由于粒度的关系,烧成温度趋向于降低,但与只配合长纤维的试料(配合编号时)同样,反应性没有得到控制。此外,在图10的表中示出在配合编号X和XII的试料中吸水率为2.5%的试料的物性值。由该图可以看出,配合编号XII的试料不仅烧成温度低,而且显示与配合编号X的烧成温度高的试料同等的物性值,从而可以实现烧成温度的低温化。图11中所示的表,是对于配合编号X和XII的试料,比较长度约1800mm,即相对于长边方向的左右两侧的尺寸差异,由该图可以看到配合编号X的试料有4.0mm的尺寸差,而配合编号XII的试料只有1.4mm的尺寸差。由此推定,通过进行硅灰石的粒度调整,可以实现粒度的平衡,提高稳定性。
权利要求
1.一种薄板状的烧结体,其特征在于,含有滑石、瓷器化成份、针状结晶矿物的低温型硅灰石以及可塑粘土作为主要成份,形成上述低温型硅灰石在同一方向均一取向排列的薄板状,在低温型硅灰石的结晶转变温度以下进行烧结,达到低的吸水率。
2.一种薄板状烧结体的制造方法,其特征在于,将含有滑石、瓷器化成份、针状结晶矿物的低温型硅灰石以及可塑粘土作为主要成份并经过混炼的物料,形成上述低温型硅灰石在同一方向均一取向排列的薄板状,然后在低温型硅灰石的结晶转变温度以下将其烧成,达到低的吸水率。
3.如权利要求1或2所述的薄板状烧结体或其制造方法,其特征在于,吸水率是在3%以下。
4.如权利要求1、2或3所述的薄板状烧结体或其制造方法,其特征在于,含有滑石约5-30重量%,瓷器化成份约10-40重量%,低温型硅灰石约10-40重量%,可塑粘土约20-50重量%。
5.如权利要求1、2、3或4所述的薄板状烧结体或其制造方法,其特征在于,所述的低温型硅灰石是长纤维型的硅灰石与短纤维型的硅灰石的混合体。
全文摘要
本发明涉及一种薄板状的烧结体及其制造方法。其目的是制造吸水率低、耐冻害性高的薄板状大型烧结体(瓷砖)。以滑石、长石或陶石等瓷器化成份、针状结晶矿物的低温型硅灰石和可塑粘土作为主要成份,将它们的粉末混合,成形为针状结晶在同一方向上均一取向的薄板状,然后在低温型硅灰石的结晶转变温度以下烧成,以良好的制品状态制造吸水率在3%以下的、耐冻害性高的薄板大型瓷砖。优选的是,低温型硅灰石采用将长纤维与短纤维混合进行粒度调整的硅灰石。
文档编号C04B35/80GK1406904SQ02142140
公开日2003年4月2日 申请日期2002年8月28日 优先权日2001年9月11日
发明者前原美夫, 高槁治树 申请人:日本瓷坊株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1