发光容器以及高压放电灯用发光容器的制作方法

文档序号:1836389阅读:273来源:国知局
专利名称:发光容器以及高压放电灯用发光容器的制作方法
技术领域
本发明涉及适合用于高压放电灯等的发光容器。
背景技术
对于特开平10-125230号公报记载的高压放电灯用发光容器,分别制作管状主体的成形体和环状的端部密封部件的成形体,组装这两种成形体而制作组装体。然后,对该组装体进行烧结来制作密封金属卤化物用的容器。此时,设计两者的烧结收缩率使得单独对端部密封部件的成形体进行烧结时的外径比单独对管状主体的成形体进行烧结时的内径更大。这样一来,在烧结时,由于从管状主体向端部密封部件施加压接力,所以两者的接合良好,维持了很高的气密性。
在例如特开平10-12523号公报所例举的高压放电灯用发光容器中,把环状的密封部件压接在发光管的端部,把电极部件穿过密封部件的通孔内。该密封部件由合金陶瓷做成,发光管由氧化铝等陶瓷做成。把密封部件的成形体固定在发光管的成形体的端部的开口内后,同时烧结各成形体并使之收缩。此时,设定成发光管的收缩率比密封部件的收缩率更大。这样,从发光管向密封部件产生压缩力,气密地固定密封部件。把金属制的电极部件穿过密封部件的开口,气密地密封密封部件和电极部件。

发明内容
在特开平10-125230号公报记载的端部密封方法中,在密封密封部件和电极部件之际,由于不能应用金属焊接,从而使用玻璃或金属氧化物接合剂来密封。但是,玻璃或金属氧化物接合剂相对于金属卤化物气体等腐蚀性物质在高温下比较弱,有易于受到腐蚀的倾向。此外,它们在多次重复高温和低温的循环的话,易于破损,由于这点而在可靠性上受到限制。
本发明的课题是提供可把发光物质气密地密封在脆性材料中,并能够不需要腐蚀性物质直接与密封材料接触的发光容器。
第一方式的发明是具备由板状金属片做成的、较好是没有接缝的圆筒形电极保持部件的发光容器,其特征在于电极保持部件具备压接把持在脆性材料中的保持部和没被把持的非把持部,在把持部和脆性材料的接触界面产生的应力因电极保持部件的变形而得到缓和。
此外,第一方式的发明的高压放电灯用发光容器,其具有如下特征具备,上述发光容器以及在上述电极保持部件上保持的电极和电流贯通导体。
此外,第二方式的发明的发光容器,其具有如下特征具备以由脆性材料做成的管状部为外侧支撑体、设于该管状部内侧的由脆性材料做成的内侧支撑体、以及夹在外侧支撑体和内侧支撑体之间的板状金属片,外侧支撑体和板状金属片直接接触,板状金属片和内侧支撑体直接接触,并且外侧支撑体和内侧支撑体直接接触。
此外,第二方式的发明的发光容器,其具有如下特征具备以由脆性材料做成的管状部为内侧支撑体、设于该内侧支撑体外侧的由脆性材料做成的外侧支撑体、以及夹在内侧支撑体和外侧支撑体之间的板状金属片,内侧支撑体和板状金属片直接接触,上述板状金属片和上述外侧支撑体直接接触,并且上述内侧支撑体和上述外侧支撑体直接接触。
此外,本方式的发明的高压放电灯用发光容器,其具有如下特征具备,上述发光容器、以及在电极保持部件上保持的电流贯通导体以及电极。
本发明的发光容器是利用脆性材料压接由板状金属片做成的电极保持部件,进行发光物质的气密密封的方式。因此,不必像原来那样用可与发光物质接触的玻璃料或金属氧化物接合剂进行密封。因此,可提高发光容器对发光物质的抗腐蚀性。
还有,根据第三方式的发光容器,具备由陶瓷或合金陶瓷做成的外侧支撑体、由陶瓷或合金陶瓷做成的内侧支撑体、以及夹在外侧支撑体和内侧支撑体之间的板状金属片的把持部,利用外侧支撑体和内侧支撑体压接板状金属片的把持部。这样,能够提供利用陶瓷或合金陶瓷压接金属材料、最好是气密地密封的新型结构。原来,已知在玻璃容器的端部开口夹住金属箔并使玻璃软化变形,用金属箔进行气密密封,即所谓的压紧密封。然而,以陶瓷或合金陶瓷那样的难以软化变形的脆性材料的组合也是可气密密封金属部件的方法不为人所知。
在本发明中,压接电极保持部件的脆性材料、或形成发光容器主体的脆性材料并无特别限定,但可以玻璃、陶瓷、合金陶瓷、单晶为例。
作为该玻璃可以石英玻璃、铝硅酸盐玻璃、硼酸硅盐玻璃、硅-氧化铝-锂系晶化玻璃等为例。
作为该陶瓷,可以例如对卤素系腐蚀性气体具有抗腐蚀性的陶瓷为例,特别好的是氧化铝、氧化钇、钇铝石榴石、氮化铝、氮化硅、碳化硅。或者也可以是它们之中的某一个的单晶。
作为合金陶瓷,可以氧化铝、氧化钇、钇铝石榴石、氮化铝之类的陶瓷与钼、钨、铼等金属的合金陶瓷为例。
作为单晶,可以可见光区域具有光学透明的特性,例如金刚石(碳单晶)或蓝宝石(Al2O3单晶)等为例。
在本发明中,由板状金属片做成的、较好是没有接缝的大致呈圆筒形的电极保持部具备压接把持在脆性材料上的保持部和没有被把持的非把持部。在此,把持板状金属片的脆性材料可以是发光管,或者也可以是固定在发光管的端部内侧的堵塞部件。或者,还可以是固定在发光管的端部外侧的压接部件。并且,还可以准备不同于发光管的、由脆性材料做成的外侧支撑体以及内侧支撑体,在外侧支撑体和内侧支撑体之间把持板状金属片,相对于发光容器把该外侧支撑体或内侧支撑体接合起来。
在本发明中,板状金属材料在厚度方向的两侧较好是以热膨胀系数相等或相同的脆性材料压接把持。这样,完全不会产生脆性材料之间的应力,金属材料上产生的应力相对于金属材料的厚度中心对称而成为几乎等价的应力分布,并且由于与脆性材料相比厚度要薄很多,所以,产生的应力因金属材料的塑性变形而得到缓和。因此,不论是在压接把持工序后还是伴随着温度变化的使用条件下,都不会发生金属材料折损而破裂,导致大的变形等致命的损伤。
在本发明中,在把持部和脆性材料的接触界面产生的应力被板状金属片的保持部的变形所缓和。
在把持部和脆性材料的接触界面产生的应力比如因以下原因产生。使金属材料的热膨胀系数为α1,杨氏模量)为E1,脆性材料的热膨胀系数为α2、杨氏模量为E2。把金属材料埋在脆性材料中,用烧结温度T1使之压接把持,冷却到室温时,两者完全不变形或者也不产生沿界面的滑动的场合,金属侧产生的应力σ1表示为下式。
σ1∝E1×(T1-室温)×(α1-α2) (1)同样,脆性材料侧产生的应力σ2表示为下式。
σ2∝E2×(T1-室温)×(α2-α1) (2)以钼和氧化铝的组合为例的话,由于钼的热膨胀系数约为5ppm/℃、杨氏模量约为330Gpa,氧化铝的热膨胀系数约为8ppm/℃、杨氏模量约为360Gpa,所以,在以例如烧结温度1500℃冷却到室温时,在钼侧完全没有塑性变形的话,在钼侧产生大约1500MPa的压缩应力。同样地,在氧化铝侧产生大约1600MPa的拉伸应力。
该应力值远超过各材料的强度,通常这种脆性材料和金属部件的结构体在任一材料的界面都会产生破坏,不可能实现复合部件。
然而,对金属来说,产生屈服应力以上的应力的话,则发生塑性变形。此时,直至导致破坏的变形的大小以‘拉伸’表示,一般‘拉伸’为百分之几到百分之几十的非常大的值。
在本发明中,通过设置使得金属材料侧相对于陶瓷材料相对地薄,仅使金属侧产生屈服应力以上的应力而塑性变形,来缓和热膨胀差导致的应力。
例如,使钼为100微米厚的薄板,氧化铝是厚度为10mm的方块的话,钼薄板变形而缓和应力所需要的钼侧的变形以(3)式表示。
ε=(T1-室温)×(α1-α2)≈0.5% (3)在厚度方向的变形量为Δt=ε×t≈0.5微米 (4)能够以非常小的变形缓和产生的应力。
以铂金和氧化铝的组合为例的话,由于铂金的热膨胀系数约为9ppm/℃、杨氏模量约为170Gpa,氧化铝的热膨胀系数约为8ppm/℃、杨氏模量约为360Gpa,所以,在以例如烧结温度1500℃冷却到室温时,在铂金侧完全没有塑性变形的话,在铂金侧产生大约250MPa的拉伸应力。同样地,在氧化铝侧产生大约530MPa的压缩应力。
该场合,也使铂金为100微米厚的薄板,氧化铝是厚度为10mm的方块的话,铂金薄板变形而缓和应力所需要的铂金侧的变形以(3)式表示,约为0.1%。在铂金侧相对于压接把持方向产生拉伸引力,但其深度方向仅产生0.1%的变形的话,即可缓和拉伸应力。压接把持深度为10mm的话,则仅10μm。
这样,在脆性材料和金属材料的结构体中,主要因两者的热膨胀差而产生的应力其变形为大约1%以下的大小。另一方面,由于金属材料的屈服强度比拉伸强度更小的一直到断裂为止的拉伸为百分之几到百分之几十的大小,所以,使金属材料侧的厚度比脆性材料厚度相对更薄而仅使金属侧产生屈服应力以上的应力而塑性变形,使热膨胀差缓和,其变形量在‘拉伸’值以内,金属材料不会被破坏。此外,通过金属材料变形,在脆性材料侧产生的应力也得到缓和,能够实现脆性材料-金属结构体。在使用利用烧结收缩而一体化的制法的场合,成为在高温的热处理操作,利用金属材料的高温蠕动变形等也使应力得到缓和。
在优选的实施方式中,对板状金属片的把持部进行压接的两侧的脆性材料的热膨胀系数差在2ppm或其以下,特别好是1ppm或其以下。最好是两者的热膨胀系数相同。这样,通过使两者的热膨胀系数一致,能够进一步提高本发明的脆性材料-金属结构体对热循环的稳定性和可靠性。
在优选的实施方式中,对板状金属片的把持部进行压接的两侧的脆性材料是烧结收缩率不同的烧结体,板状金属片通过烧结时的收缩差而被压接。对于此时的收缩率差的适合值将在后面叙述。
或者,在优选的实施方式中,对板状金属片的把持部进行压接的两侧的脆性材料的内侧是玻璃、单晶等烧结不收缩的脆性材料,外侧是烧结收缩的脆性材料。
在优选的实施方式中,板状金属片的厚度至少在把持部为1000μm或其以下,特别好的是200μm或其以下。这样,通过使板状金属片变薄,利用板状金属片的变形减小在板状金属片和脆性材料之间产生的应力,可进一步提高发光容器的气密性。但是,板状金属片过薄的话,由于作为结构体的强度不够,所以,较好是使板状金属片的把持部厚度在20μm或其以上,更好是在50μm或其以上。
在优选的实施方式中,对板状金属片的把持部进行压接的脆性材料之中,外侧的脆性材料的厚度在0.1mm或其以上。这样,使从外侧的脆性材料相对于板状金属片向径向施加的压力足够大,能够进一步提高发光容器的气密性。根据此观点,更好是使外侧的脆性材料的厚度在0.5mm或其以上。
板状金属片的材质或形态并无特别限定。板状金属片的材质较好是高熔点金属。作为高熔点金属较好是从钼、钨、铼、铪、铌以及钽之中选取的一种以上的金属或包含该金属的合金。此外,板状金属片以外的金属部分、例如筒状部、环状部、毛细管部也都可以由板状金属片用的上述金属做成。


图1是示意圆柱形发光容器的原有例的横截面图。
图2是示意圆柱形发光容器1A的横截面图。
图3(a)是示意用于制造发光容器1A的组装状态的横截面图;图3(b)是表示烧结图3(a)的组装体得到的发光容器的横截面图。
图4是示意圆柱形发光容器用组装体1B的横截面图。
图5是示意圆柱形发光容器1C的横截面图。
图6是示意圆柱形发光容器1D的横截面图。
图7是示意圆柱形发光容器1E的横截面图。
图8是示意圆柱形发光容器1F的横截面图。
图9是示意圆柱形发光容器1G的横截面图。
图10是示意椭圆形的原有例的发光容器的横截面图。
图11是示意椭圆形(单体型)发光容器11A的横截面图。
图12是示意椭圆形发光容器11B的横截面图。
图13是示意椭圆形发光容器11C的横截面图。
图14是示意椭圆形发光容器11D的横截面图。
图15是示意椭圆形发光容器11E的横截面图。
图16是示意椭圆形的原有例的发光容器的横截面图。
图17是示意椭圆形(双体型)发光容器21A的横截面图。
图18是示意椭圆形发光容器21B的横截面图。
图19是示意椭圆形发光容器21C的横截面图。
图20是示意椭圆形发光容器21D的横截面图。
图21是示意椭圆形发光容器21E的横截面图。
图22是示意椭圆形的原有例的发光容器32的横截面图。
图23是示意椭圆形(单体型)发光容器用组装体31A的横截面图。
图24是示意椭圆形发光容器31B的横截面图。
图25是示意椭圆形发光容器31C的横截面图。
图26是示意椭圆形发光容器31D的横截面图。
图27是示意椭圆形发光容器31E的横截面图。
图28是示意椭圆形发光容器31F的横截面图。
图29是示意椭圆形发光容器31G的横截面图。
图30是示意HPS型的原有例的发光容器42的横截面图。
图31是示意HPS型发光容器41A的横截面图。
图32是示意HPS型发光容器41B的横截面图。
图33是示意HPS型发光容器用组装体41C的横截面图。
图34是示意HPS型发光容器41D的横截面图。
具体实施例方式
以下参照附图进一步对本发明的实施例进行说明。
以下,图1是示意原有型的发光容器的横截面图,图2~图8是示意用所谓的圆柱形发光管2的发光容器的横截面图。
如图1所示,在直管状的发光管2的两端部2a的内侧面上通过氧化铝做成的堵塞部件3固定氧化铝制保持管4,用玻璃料等做成的密封材料6密封保持管4和电流贯通导体5之间。在该结构中,由于在发光管2内部空间7填充的高温发光物质与密封材料6接触,从而有该密封材料6易于产生腐蚀的结构的问题。
此外,电流贯通导体5虽较好是采用与陶瓷(氧化铝)的热膨胀系数差比较小的铌,但具有易于因发光物质而产生腐蚀的问题。因此,把电流贯通导体以及电极采用由铌-钼-钽或铌-合金陶瓷(钼与氧化铝的复合烧结体)-钽三种材料做成的结构,电极密封主要在铌材料部分进行,并且,为了保护铌部分,通过以玻璃料密封铌部分以使玻璃料罩住精密地控制了的钼或合金陶瓷的一部分,就可以同时缓和热应力和防止铌的腐蚀。
这样,由于由三种材料构成的电极棒成本高、还需要严密控制玻璃料的密封部位,从而需要高度的制造技术。
在图2所示的发光容器1A中,在发光管2的端部2a,由脆性材料做成的圆筒形发光管2起外侧支撑体的作用,由脆性材料做成的内侧支撑体3呈与此相似的圆筒形。并且,板状金属片8的把持部8b被把持并固定在发光管2和内侧支撑体3之间。板状金属片8起电流贯通导体5以及电极5a的保持部件的作用。为了得到发光管的气密性,板状金属片较好是无接缝的一体的结构。非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料内。把持部8b的两面如箭头A那样被挤压,这样,把持部8b变形,吸收并缓和因脆性材料和金属的物性不同所导致的应力。此外,发光管2和内侧支撑体3在把持部8b的正下方的界面50相互直接接触。
8a呈圆板形,起盖或帽的作用。在该盖8a和把持部8b之间设有弯曲部8c。在盖8a上形成有用于通过电极5a、电流贯通导体5的孔8d,利用该孔8d把发光物质和密封气体放入发光容器后,插入电极以及电流贯通导体,通过与帽状金属片焊接、钎焊等方法与发光管组装。在本例中,非把持部的结构是从把持部连续地形成的盖状,但并不局限于这种形状,可根据与电流贯通导体的结合方法或方式适当地选定。
对帽状金属片和电流贯通导体使用耐腐蚀性好的钼材的话,电流贯通导体和电极可由钼和钨2种材料构成。不需要在原有技术中所必要的铌-钼-钨或铌-合金陶瓷(钼和氧化铝的复合烧结材料)-钨3种材料做成的电流贯通导体以及电极。此外,也不要玻璃料材料的密封部位的严密控制。
较好的是,在图2中,使作为外侧支撑体的发光管2的烧结收缩量比内侧支撑体3的烧结收缩量更大。为此,组装例如图3所示的各种烧结体2A、3A、板状金属片8。
在此,通过设计成使内侧支撑体3用的被烧结体3A的孔径小而与电流贯通导体的外径几乎相同,提高电极定位精度,防止电流贯通导体侧面和电极保持部件内表面的腐蚀。在该场合,电极前端部的钨缠绕部分5a的直径比内侧支撑体的孔径更大,有时从发光容器外侧不能插入电极。在这种场合,可在组装电极保持部件和内侧支撑体的各烧结体时预先插入电极以及电流贯通导体,然后组装各被烧结体2A、2A、板状金属片8。
具体地说,发光管用被烧结体2A由陶瓷粉末做成。其中也可含有有机粘接剂或烧结助剂等添加剂。此外,被烧结体2A可以是各粉末的成形体,也可以是该成形体的煅烧体或脱脂体。但是,需要有被烧结体的尺寸因被烧结体的正式烧结而收缩的性质。
内侧支撑体用被烧结体3A由陶瓷粉末、或合金陶瓷用的陶瓷-金属混合粉末做成。其中也可以含有有机粘接剂或烧结助剂等添加剂。此外,被烧结体3A可以是各粉末的成形体,也可以是该成形体的煅烧体或脱脂体。但是需要被烧结体2A和3A的烧结收缩率比被烧结体2A的烧结收缩率更大。
作为被烧结体3A的材质,可以选用不发生烧结收缩的烧结体、单晶、玻璃等已经致密化过的材料。
在图3(a)(烧结前)的时刻,在被烧结体2A和电极保持部件8之间有空隙,在电极保持部件8和被烧结体3之间也设有空隙。电极保持部件8与内侧支撑体用的被烧结体3A的空隙较好是设定成比电极保持部件与外侧支撑体用被烧结体的空隙更小,这样,能够以收缩量小的内侧支撑体为基准使保持部件与内侧支撑体紧密接触。因此,在烧结后,电极保持部件更稳定地被把持。
在该状态,对被烧结体2A以及3A进行烧结并使之致密化。这样一来,如图3(b)(烧结后)所示,生成各直径变小的发光管2以及内侧支撑体3。发光管2和内侧支撑体3沿界面50直接接触,结构上一体化。
在此,在烧结工序中,使单独烧结完内侧支撑体用的被烧结体3A时的外形比单独烧结完作为外侧支撑体的发光管的被烧结体2A时的内径更大。这样,在烧结时,从发光容器以及内侧支撑体对电极保持部件8的把持部8b向发光管的径向施加压接力,提高密接性以及气密性。
根据这种观点,一般而言,单独烧结完内侧支撑体用的被烧结体时的外径RO相对于单独烧结完外侧支撑体用的被烧结体时的外径RI的比率(RO/RI)较好是在1.04或其以上,更好是在1.05或其以上。
(RO/RI)过大的话,在外侧支撑体和内侧支撑体上易于产生裂纹。根据此观点,(RO/RI)较好是在1.20或其以下,更好是在1.15或其以下。
较好是在把持部的前端设置例如刀刃状部。或者,较好是设置C面或R面。这样,在脆性材料和把持部前端接触部的接合变得更好。在把持部的前端剩下拐角(尖部)的话,有观察到了从拐角延伸的微小的裂缝的样品。但是,使把持部前端的形状为刀刃状、C面形状、R形状的话,则没见到这种裂纹,确认了降低应力的效果。
在图4所示的发光容器1B的端部,在由脆性材料做成的圆筒形发光管2的端部2a的内侧面2b侧,设有由同一材质的脆性材料做成的具有相似形状的圆筒形外侧支撑体9。并且,在外侧支撑体9的内侧设有圆筒形内侧支撑体10。并且,在外侧支撑体9和内侧支撑体10之间,把持并固定有没有接缝的帽形板状金属片8A的把持部8b。
由板状金属片做成的电极保持部件8的非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料内。把持部8b的两面被脆性材料向径向挤压,这样,把持部8b变形,吸收并缓和因脆性材料和金属的物性的不同而产生的应力。此外,外侧支撑体9和内侧支撑体10在把持部正下方的界面50相互直接接触。
图4的场合,内侧支撑体10的孔径比电极前端部的钨等的缠绕部分5a的直径更小,因此,电极棒不能从发光容器的外侧插入内部。因此,预先在组装电极保持部件和内侧支撑体时插入电极以及电流贯通导体,接下来,利用内侧支撑体和外侧支撑体的烧结收缩差使内侧支撑体和外侧支撑体一体化,进一步利用烧结收缩差使外侧支撑体和发光管一体化。
在电极保持部件8A的盖部8a上形成有用于通过电流贯通导体5的孔8d,利用该孔、内侧支撑体的孔以及与电流贯通导体的间隙把发光物质和密封气体放入发光容器后,利用焊接、钎焊等方法使电流贯通导体相对于电极保持部件8气密密封,得到发光容器1B。
利用图4所示的结构,利用外侧支撑体9的厚度部分就能够使用与发光容器2的内径相比直径小的帽形电极保持部件8A。由于发光管2内部的压力比大气压高,所以,使电极保持部件8A的直径减小更加有利于能够降低在电极保持部件8A产生的应力。此外,由于还能够显著降低电极保持部件8A与内侧空间7内的腐蚀性发光物质的接触面积,从而能够进一步有效地抑制电极保持部件8A的腐蚀。
在图5以后,对起与图2、图4相同作用的部分给与相同的符号,省略其说明。在图5的发光容器1C中,由脆性材料做成的圆筒状发光管2起外侧支撑体的作用,在发光管2的内侧面2b和由脆性材料做成的内侧支撑体10之间把持有电极保持部件8的把持部8b。
在本例中,在内侧支撑体10上朝向内侧空间7内的中心形成有突出部10c。突出部10c的内侧面10b几乎为同一半径,起保护电极导通部5的引导部的作用。在突出部10的外侧面10a沿着光的放射角度形成弯曲的倾斜面以免妨碍从发光部发出的光。通过设置这种突出部10c,能够防止在发光时电极导通部5的变形以及发光物质所产生的腐蚀。此外,由于能够减少发光部以外的发光管的内部容积,从而可以削减密封进发光管内的发光物质。
在图6所示的发光容器1D的端部,在由脆性材料做成的圆筒形外侧支撑体14的内侧,有由同一材质的脆性材料做成的具有相似外径形状的圆筒形内侧支撑体15。并且,在外侧支撑体14和内侧支撑体15之间把持并固定有由板状金属片做成的电极保持部件8A的把持部8b。在外侧支撑体14的外侧还有由脆性材料做成的圆筒形的发光管2的端部,形成发光容器1D。
在本例中,在支撑体14、15上,朝向内侧空间7内的中心形成有突出部14a、15a。突出部15a的内侧面15b是几乎相同的半径,起保护电极导通部5的引导部的作用。在突出部14a的外侧面14b,沿着光的放射角度形成弯曲的倾斜面以免妨碍从发光部发出的光。通过设置这种突出部14a、15a,能够防止在发光时电流贯通导体5的变形以及电极5的变形和发光物质所产生的腐蚀。此外,由于能够减少发光部以外的发光管的内部容积,从而可以削减密封进发光管内的发光物质。
在图7所示的发光容器1E的端部,由脆性材料做成的圆筒形的发光管2起内侧支撑体的作用,由脆性材料做成的外侧支撑体13呈与其相似的圆筒形。并且,在发光管2和外侧支撑体13之间,把持并固定有与发光管2以及外侧支撑体13形状相似的把持部8b。非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料内。把持部8b被脆性材料向发光管2的径向挤压,因此,把持部8b变形,吸收并缓和因脆性材料和金属的物性不同所产生的应力。此外,发光管2和外侧支撑体13在把持部8b正下方的界面50相互直接接触。
在外侧支撑体13的外侧端部具备用于从外侧支撑电极保持部件8的盖8a的挤压部13a,能够防止因发光管的内部压力而产生的8a的变形。
如本例这样,在使用发光管2作为内侧支撑体时,如上所述,使发光管2的烧结收缩率比外侧支撑体13的烧结收缩率更小,或使用烧结不收缩的材质作为发光管2。
在图8所示的发光容器1F的端部,在由脆性材料做成的圆筒形外侧支撑体16的内侧,有由脆性材料做成的具有相似外形的圆筒形内侧支撑体17。并且,在外侧支撑体16和内侧支撑体17之间把持并固定有与外侧支撑体16以及内侧支撑体17形状相似的圆筒状的把持部8b。
外侧支撑体16进一步通过从外侧把持由脆性材料做成的圆筒形发光管2的端部2a的外侧面2c,形成发光容器1F。
如本例这样,在利用外侧支撑体16压接把持发光管2时,如前所述,使发光管2的烧结收缩率比外侧支撑体16的烧结收缩率更小,或使用烧结不收缩的材质作为发光管2。
如在本例中这样,利用外侧支撑体16对把持部8b进行把持,并且从外侧把持发光管2时,由于能够使电极保持部件8与内侧空间内的发光物质的接触面积显著减少,从而能够进一步提高该端部的可靠性。
在图9所示的发光容器1G中,在由脆性材料做成的圆筒形外侧支撑体16的内侧,有由脆性材料做成的具有相似外形的圆筒形内侧支撑体17A的圆筒状基部17d。并且,在外侧支撑体17和内侧支撑体17A之间把持并固定有具有与外侧支撑体以及内侧支撑体相似形状的圆筒部的把持部8b。在外侧支撑体16的内侧还有由脆性材料做成的圆筒形的发光管2,形成发光容器。
在本例中,在内侧支撑体17A上,朝向内侧空间7内的中心形成有突出部17a。突出部17a的内侧面17c与电流贯通导体5以及电极5a具有几乎相同的半径,起保护电极贯通导体5以及电极5a的引导部的作用。在突出部17a的外侧面17b,沿着光的放射角度形成弯曲的倾斜面以免妨碍从发光部发出的光。通过设置这种突出部17a,能够防止在发光时电流贯通导体5和电极5a的变形以及发光物质所产生的腐蚀。此外,由于能够减少发光部以外的发光管的内部容积,从而可以削减密封进发光管内的发光物质。
图10~图15分别表示使用了所谓的椭圆形发光管2(单体型)的发光容器。
图10表示原有的发光容器。
在直管状的发光管12的两端部12a的内侧面12b上通过由氧化铝做成的堵塞材料3固定氧化铝制的保持管4,利用密封材料6密封保持管4和电流贯通导体5之间。在该结构中,由于填充在发光管2内部空间7的高温的发光物质与密封材料6接触,从而存在该密封材料6易于产生腐蚀的结构的问题。
此外,电流贯通导体5较好是采用与陶瓷(氧化铝)的热膨胀差小的铌,但具有易于因发光物质产生腐蚀的问题。因此,使电流贯通导体以及电极采用由铌-钼-钨或铌-合金陶瓷(钼和氧化铝的复合烧结体)-钨3种材料做成的结构,电极密封主要以铌材料部分进行,并且,为了保护铌部分,通过以玻璃料密封铌部分以使玻璃料罩住精密地控制了的钼或合金陶瓷的一部分,就可以同时缓和热应力和防止铌的腐蚀。
这样,由于由三种材料构成的电极棒成本高、还需要严密控制玻璃料的密封部位,从而需要高度的制造技术。
在图11所示的发光容器11A中,在发光管12的端部12a,由脆性材料做成的圆筒形的发光管12起外侧支撑体的作用,由脆性材料做成的内侧支撑体19呈与其相似的圆筒形。并且,在发光管12和内侧支撑体19之间把持并固定板状金属片8的把持部8b。板状金属片8起电极5a的保持部件的作用。非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料内。把持部8b的两面被挤压,这样,把持部8b变形,吸收并缓和因脆性材料和金属的物性的不同产生的应力。此外,发光管2和内侧支撑体3在把持部8b的正下方相互直接接触。
8a呈圆板状,起盖或帽的作用。在该盖8a和把持部8b之间设有弯曲部8c。在盖8a上形成有用于通过电极5a、电流贯通导体5的孔8d,利用该孔把发光物质或密封气体放入发光容器后,插入电极以及电流贯通导体,利用与帽状金属片焊接、钎焊等方法可组装成发光管。
在图12的发光管11B中,在发光管12的端部12a的内侧端面12b和圆筒状内侧支撑体20之间如上所述把持有电极保持部件8的把持部8b。在此,在本例中,在内侧支撑体20上设有朝向内侧空间7的中心突出的呈圆筒状且直径相同的突出部20a,突出部20a起保护电流贯通导体5以及电极5a的引导部的作用。
在图13所示的发光容器11C的端部,由脆性材料做成的发光管12起内侧支撑体的作用,由脆性材料做成的外侧支撑体13呈与其相似的圆筒形。并且,在发光管12和外侧支撑体13之间把持并固定有与发光管12以及外侧支撑体13相似形状的把持部8b。非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料内。把持部8b被脆性材料向发光管12的径向被挤压,这样,把持部8b变形,吸收并缓和因脆性材料和金属的物性的不同产生的应力。此外,发光管12和外侧支撑体13在把持部8b的正下方相互直接接触。在外侧支撑体13的外侧端部具备用于从外侧支撑电极保持部件8的盖8a的挤压部13a,能够防止因发光管的内压导致的8a的变形。
在图14所示的发光容器11D的端部,在由脆性材料做成的圆筒形的外侧支撑体25的内侧,有由脆性材料做成的具有相似的外径形状的圆筒形的内侧支撑体23。并且,在外侧支撑体25和内侧支撑体23之间把持并固定有与外侧支撑体25以及内侧支撑体23相似形状的把持部8b。外侧支撑体25进一步通过从外侧把持由脆性材料做成的圆筒形的发光管12的端部12a的外侧面12c,形成发光容器11D。
图15的发光容器11E与图14的发光容器11D几乎相同。但是,在图15中,在内侧支撑体23上形成有向内侧空间7的中心突出的圆筒形的突出部23a,突出部23a起保护电流贯通导体5以及电极5a的保护部的作用。
图16~图21分别表示使用了所谓的椭圆形发光管2(双体型)的发光容器。
图16表示原有的发光容器。
直管状的发光管22具有膨胀成桶形的形状。在发光管22的两端部利用密封材料6密封有电流贯通导体5。此外,电流贯通导体5较好是采用与陶瓷(氧化铝)的热膨胀差小的铌,但具有易于因发光物质产生腐蚀的问题。因此,使电流贯通导体以及电极采用由铌-钼-钨或铌-合金陶瓷(钼和氧化铝的复合烧结体)-钨3种材料做成的结构,电极密封主要以铌材料部分进行,并且,为了保护铌,通过以玻璃料密封铌部分以使玻璃料罩住精密地控制了的钼或合金陶瓷的一部分,就可以同时缓和热应力和防止铌的腐蚀。
这样,由于由三种材料构成的电极棒成本高、还需要严密控制玻璃料的密封部位,从而需要高度的制造技术。
在图17所示的发光容器21A中,在发光管22的端部22a,由脆性材料做成的圆筒形的发光管22起外侧支撑体的作用,由脆性材料做成的内侧支撑体19呈与其相似的圆筒形。并且,在发光管22和内侧支撑体19之间把持并固定板状金属片8的把持部8b。板状金属片8起电流贯通导体5以及电极5a的保持部件的作用。非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料内。把持部8b的两面被挤压,这样,把持部8b变形,吸收并缓和因脆性材料和金属的物性的不同产生的应力。此外,发光管22和内侧支撑体19在把持部8b的正下方相互直接接触。
8a呈圆板状,起盖或帽的作用。在该盖8a和把持部8b之间设有弯曲部8c。在盖8a上形成有用于通过电极5a、电流贯通导体5的孔8d,利用该孔把发光物质或密封气体放入发光容器后,插入电极以及电流贯通导体,利用与帽状金属片焊接、钎焊等方法可组装成发光管。
对帽状金属片和电流贯通导体使用耐腐蚀性好的钼材的话,电流贯通导体和电极可以由钼和钨2种材料构成,从而不需要在原有技术中所需要的铌-钼-钨或铌-合金陶瓷(钼和氧化铝的复合烧结材料)-钨3种材料做成的电流贯通导体以及电极。此外,也不需要严密控制玻璃料材料的密封部位。
在图18的发光管21B中,在发光管22端部22a的内侧面22b和内侧支撑体27的圆筒部27a之间如上述那样把持有电极保持部件8的把持部8b。在此,在本例中,在内侧支撑体27上设置向内侧空间7的中心突出的突出部27b,突出部27b起电流贯通导体5的保护用引导部的作用。
在图19所示的发光容器21C的端部,由脆性材料做成的发光管22起内侧支撑体的作用,由脆性材料做成的外侧支撑体13呈与它相似的圆筒形。并且,与发光管22以及外侧支撑体13形状相似的把持部8b把持并固定在发光管22和外侧支撑体13之间。非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料内。把持部8b被脆性材料向发光管22的径向挤压,这样,把持部8b变形,吸收并缓和因脆性材料和金属的物性不同所产生的应力。此外,发光管22和外侧支撑体13在把持部8b的正下方相互直接接触。
在图20所示的发光容器21D的端部,在由脆性材料做成的圆筒形的外侧支撑体29内侧,有由脆性材料做成的具有相似的外形的圆筒形的内侧支撑体30。并且,圆筒状把持部8b被把持并固定在外侧支撑体29和内侧支撑体30之间。外侧支撑体29通过从外侧把持由脆性材料做成的圆筒形的发光管22的端部22a外侧面22c,形成发光容器21D。在外侧支撑体29的外侧端部具备用于从外侧支撑电极保持部8的盖8a的挤压部29a,能够防止因发光管的内压导致的8a的变形。
图21的发光容器21E与图20的发光容器21D几乎相同。但是,在图21中,在内侧支撑体30A上形成有向内侧空间7的中心突出的圆筒形的突出部30a,突出部30a起保护保护电流贯通导体5以及电极5a的引导部的作用。
图22~图29分别表示使用了所谓的椭圆形发光管32(单体型)的发光容器。
图22表示原有的发光容器。
直管形状的发光管32具有膨胀成桶形的形状。电流贯通导体5被密封材料6密封在发光管32的两端部。此外,电流贯通导体5虽然采用与陶瓷(氧化铝)的热膨胀差小的铌较好,但它具有易于因发光物质而产生腐蚀的问题。为此,使电流贯通导体以及电极采用由铌-钼-钽或铌-合金陶瓷(钼和氧化铝的复合烧结材料)-钨3种材料做成的结构,电极密封主要在铌材料部分进行,为了进一步保护铌部分,通过以玻璃料密封铌部分以使玻璃料罩住精密地控制了的钼或合金陶瓷的一部分,就可以同时缓和热应力和防止铌的腐蚀。
这样,由于由三种材料构成的电极棒成本高、还需要严密控制玻璃料的密封部位,从而需要高度的制造技术。
在图23所示的发光容器31A中,在发光管32的端部32a,由脆性材料做成的圆筒形发光管32起外侧支撑体的作用,由脆性材料做成的内侧支撑体19呈与其相似的圆筒形。并且,在发光管32和内侧支撑体19之间把持并固定有板状金属片8的把持部8b,板状金属片8起电流贯通导体5以及电极5a的保持部件的作用。非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料中。把持部8b的两面被挤压,这样,把持部8b变形,吸收并缓和因脆性材料和金属的物性的不同产生的应力。
在本例中,由于电极前端部的钨等的缠绕部5a的直径比在内侧支撑体19上设置的孔径更大,所以,在预先把电极以及电流贯通导体插入内侧支撑体19的孔中的状态下,相对于发光管进行一体化。电极保持部件和电流贯通导体由于是没有被气密密封的状态,从而利用与电极保持部件和电流贯通导体的间隙,把发光物质放入发光容器内后,气密密封两者。这样,能够完成发光容器。
在图24的发光管31B中,在发光管32的端部32a的内侧面32b和内侧支撑体30A之间如上述那样把持有电极保持部件8的把持部8b。在此,在本例中,在内侧支撑体30A上设有向内侧空间7的中心突出的突出部30a,突出部30a起电流贯通导体5以及电极5a的保护用引导部的作用。
在图25所示的发光容器31C的端部,由脆性材料做成的发光管32起内侧支撑体的作用。由脆性材料做成的外侧支撑体13呈与其相似的圆筒形。并且,把持部8b把持并固定在发光管32和外侧支撑体13之间。非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料内。把持部8b被脆性材料向发光管32的径向挤压,这样,把持部8b变形,吸收并缓和因脆性材料和金属的物性不同所产生的应力。
在图26所示的发光容器31D的端部,在由脆性材料做成的圆筒形外侧支撑体29的内侧,有由脆性材料做成的具有相似的外径形状的圆筒形内侧支撑体30。并且,在外侧支撑体29和内侧支撑体30之间把持并固定有与外侧支撑体29以及内侧支撑体30形状相似的圆筒形把持部8b。外侧支撑体29进一步通过从外侧把持由脆性材料做成的圆筒形的发光管32的端部32a的外侧面32c,形成发光容器31D。
图27的发光容器31E与图26的发光容器31D几乎相同。但是,在图27中,在内侧支撑体30A上形成有向内侧空间7的中心突出的圆筒形的突出部30a,突出部30a起保护电流贯通导体5以及电极5a的引导部的作用。
图28的发光容器31F与图24的发光容器31B几乎相同。但是,在图28中,电极间的距离更短,在内侧支撑体30A上形成有向内侧空间7的中心更长地突出的圆筒形的突出部30a,突出部30a起保护电流贯通导体5以及电极5a的引导部的作用。
图29的发光容器31G与图27的发光容器31E几乎相同。但是,在图28中,在内侧支撑体30A上形成有向内侧空间7的中心更长地突出的圆筒形的突出部30a,突出部30a起保护电流贯通导体5以及电极5a的引导部的作用。在外侧支撑体29的外侧端部具备用于从外侧对电极保持部件8的盖8a进行支撑的挤压部29a,能够防止因发光管的内压导致的8a的变形。
图30~图34分别是所谓的HPS型高压放电灯用发光容器。
图30表示原有的发光容器。
通过由氧化铝做成的堵塞部件40把电流贯通导体5保持在直管状的发光管42的两端部42a的内侧面42b上。利用密封材料6密封导体5和堵塞材料40之间。
在图31所示的发光容器41A中,在发光管42的端部42a,由脆性材料做成的圆筒形发光管32起外侧支撑体的作用,由脆性材料做成内侧支撑体19呈与其相似的圆筒形。并且,在发光管42和内侧支撑体19之间把持并固定有板状金属片8的把持部8b。板状金属片8起电流贯通导体5以及电极5a的保持部件的作用。非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料内。把持部8b的两面被挤压,这样,把持部8b变形,吸收并缓和因脆性材料和金属的物性的不同所产生的应力。此外,发光管42和内侧支撑体19在把持部8b的正下方相互直接接触。
在图32所示的发光容器41B的端部,在由脆性材料做成的圆筒形发光管42的端部42a的内侧面42b侧,设有由同一材质的脆性材料做成的圆筒形的外侧支撑体9。并且,在外侧支撑体9的内侧设有圆筒状的内侧支撑体10。并且,帽形板状金属片8A的把持部8b把持并固定在外侧支撑体9和内侧支撑体10之间。
由板状金属片做成的电极保持部件8A的非把持部8a、8c从脆性材料突出,把持部8b埋在脆性材料内。把持部8b的两面被脆性材料向径向挤压,这样,把持部8b变形,吸收并缓和因脆性材料和金属的物性不同所产生的应力。此外,外侧支撑体9和内侧支撑体10在把持部的正下方相互直接接触。
在图33的发光容器41C中,由脆性材料做成的圆筒形发光管42起外侧支撑体的作用,在发光管42的内侧面42b和由脆性材料做成的内侧支撑体10之间把持有电极保持部件8的把持部8b。
在本例中,在内侧支撑体10上朝向内侧空间7内的中心形成有突出部10c。突出部10c的内侧面10b半径几乎相同,起保护电流贯通导体5以及电极5a的引导部的作用。在突出部10的外侧面10a,沿着光的放射角度形成弯曲的倾斜面以便不妨碍从发光部射出的光。通过设置这种突出部10c,能够防止在发光时电极导通部5的变形以及发光物质所产生的腐蚀。此外,由于能够减少发光部以外的发光管的内部容积,从而可以削减密封进发光管内的发光物质。
在本例中,由于电极前端部的钨等缠绕部5a的直径比在内侧支撑体10上设置的孔径更大,从而以预先把电极以及电流贯通导体插入内侧支撑体10的孔的状态,相对于发光管进行一体化。电极保持部件和电流贯通导体由于是没有气密密封的状态,从而利用电极保持部件和电流贯通导体的间隙,把发光物质放入发光容器内后,气密密封两者。这样,能够完成发光容器。
在图34所示的发光容器41D的端部,在由脆性材料做成的圆筒形外侧支撑体43的内侧,有由同一材质的脆性材料做成的具有相似的外径形状的圆筒形内侧支撑体44。并且,由板状金属片做成的电极保持部件8A的把持部8a把持并固定在外侧支撑体43和内侧支撑体44的圆筒部44a之间。在外侧支撑体43的外侧还有由脆性材料做成的圆筒状的发光容器42的端部,形成发光容器41D。42c是外侧支撑体。
在本例中,在支撑体44上朝向内侧空间7内的中心形成有突出部44b。突出部44b的内侧面是几乎相同的半径,起到保护电流贯通导体5以及电极5a的保护部的作用。
在本发明中,在由板状金属片做成的电极保持部件的外侧,能够辅助地使用粘接材料。该粘接材料的种类并不限定,但较好是所谓的玻璃料,尤其好的是Al2O3-Dy2O3-SiO2系的组成系的玻璃或使其中含有氮的玻璃。
在发光管是由蓝宝石(氧化铝单晶)或以蓝宝石为主要成分的透明氧化铝材料做成的场合,发光管较好是管的长方向为蓝宝石的c轴方向,使与发光管的管轴所成的角度在10°或其以下。这样,在发光管与在发光管端部固定的内侧支撑体或外侧支撑体的界面附近,热应力呈轴对称分布,能够显著地降低蓝宝石的裂缝的发生率。根据该观点,较好是使构成发光管的蓝宝石的c轴与发光管的管轴所成的角度在5°或其以下。
由板状金属片构成的电极保持部件如上那样也可以是大致呈帽形。帽形的制法可例举出拉深加工等,但对制法没有任何限定。但是,拉深加工的场合,加工前例如是压延体的话,由于在与压延方向垂直的方向加热时脆化易于进行,所以在拉深加工时需要充分注意到这点。该金属部件的变化可根据结合体设计适当调整。
例如,在高压氖灯的端部气密部分,可使用Nb等。假设在使用了Nb等柔软的金属时,为了避免高压时的变形,使金属的厚度稍微变厚。此外,能够考虑到防止因高温以及高压导致的金属过变形用的挤压部(脆性材料部分)等。但是,为了抑制Nb脆化,烧结需要在非活性气氛下(包括真空)进行。
使用Nb薄板和Nb电流导体时,密封法也可以是压接、嵌合等机械密封(统称为剪切法)。在结合体金属部接近发光管外表面的辅助电极(缠绕、金属化印刷)时,需要在接合体金属部附近设置用于防止短路的绝缘机构。或者,反过来,也可以在金属部分和辅助电极部分设定适当的电路。
发光管是由石英做成时,能够以烧结石英作为外侧支撑体来使用。有时需要应用烧结后消减气泡等(气氛最好是真空,其次是还原性气氛)的技术。此外,用在高温加热而软化后的石英玻璃作为外侧支撑体通过从外侧压接来密封也可以。
陶瓷金属卤素灯泡在一般的场合,发光管形状分为发光管电极插入部陶瓷细管和粗直径发光主体部,主体接合部较好是用于细管终端部,但与原有品比较,由于不用玻璃料密封结构,从而耐热性高,能够在更高温侧设定接合部。结果,在原来的设计中,为了减小热流束使温度降低,需要细长的细管部,但在本发明中,省略了毛细管,可短尺寸化,成为更加紧凑的发光管。因此,外球设计等也富有变化,在功能性、审美性方面也都优良。发光物质的使用量也少,能够制造更加经济的发光管。
并且,在原有品中,点灯时大电流流过电极时,由于在以玻璃料密封的电流贯通导体部的发热变大,所以,电流贯通导体的温度上升,因与玻璃料或氧化铝的热膨胀差而产生应力,易于在玻璃料密封部产生破裂。
对此,在本发明中,由于电流贯通导体不直接与热膨胀不同的陶瓷直接接触,所以,即使大电流流过电极而发热,在电流贯通导体和陶瓷之间也不会产生热应力。因大电流的流过而在电流贯通导体产生的热传到薄的电极保持部件,以埋到脆性材料内的把持部扩散,吸收到脆性材料中。此时产生的热应力与原来的在玻璃料密封部产生的应力相比的话更小,即使万一产生大的应力,由于利用埋在脆性材料中的把持部的微小的变形就可以吸收,所以,在点灯时流过大电流,可自由地选定电流贯通导体的路径。
汽车用陶瓷金属卤素灯泡的场合,无助于发光的端部需要变小。此外,为了减少整体的热容量,较好是发光管的尺寸也减小。在供给电力的电路侧,通过减小发光管尺寸,管发光(温度)对输入的响应的时间更短,不需要过多的上升电力。这相当于同时在发光管内的温度分布减小,等同于避免对没有优越的耐热冲击性的陶瓷材料给与不必要的热应力,发光管可靠性也随之上升。为了减小发光管尺寸,采用例如高强度PCA发光管材料是有效的。烧结后也成为具有非常微细的平均粒径(例如10μm或其以下)的PCA,能够达成比通常大几倍的强度,从而较好。
对这些管制造法没有特别限定,但用使用以内部芯如凝胶铸塑成型的制造法的话,能够自由设定发光管内形状,从而较好。此外,对发光管或外侧环使用可低温烧结的陶瓷材料,也能够抑制金属部分的脆化,结果能够实现高度的发光管的可靠性。发光物质也根据陶瓷管腐蚀状态可使用除原来的Sc-Na系以外别的稀土类元素。
此外,发光管整体对电流贯通导体或电极保持部使用Mo、Nb等,在无外球的点灯较难。在无外球的场合,金属薄板表面上的金属涂层等成为解决办法。此外,用玻璃等覆盖也可。金属涂层的场合,由于金属相互扩散,需要抑制Mo暴露在大气中。为无水银发光管的话,也可使用Pt系金属部分。是纯Pt的话,大气中点灯=无外球点灯也是可能的。此外,为了抑制电极组件的晃动,设置位于电极插入部附近(内侧)的陶瓷馆的内径相对于插入电极小的空隙的话,易于提高电极位置的精度。
此外,对于焊接,焊接部离开压接接合部时,由于不用激光焊接等微细焊接也可以,从而焊接方法的选择也多,从而较好。此外,金属部分不是帽状的场合,焊接金属部件的管状部分和底板状部分也可以。再有,使用预先焊接了底板状部分和电极的,与上述金属管状部分焊接也可以。
此外,在电极要与外部导线得到导通的场合,由于上述金属部件和电极都是导电体,不在轴方向而是在其以外的部分(横向)确保导通也可以。此外,导通是在焊接或钎焊、机械地嵌合以外,使板状金属片一部分延伸到外并在此状态下用作导线的一部分。再有,使板状金属片的一部分弯曲成U字形等,使之起到使用时吸收外部冲击以及热膨胀的部分的作用也可以。这样,对导通部分也可自由设计,显然在功能性、审美性方面都优良。
发光管的制造方法并无特别限定,对于这些发光管的主体部有(1)利用挤出成形、泥浆铸入成形、注射成形把发光管分为两部分来成形,在脱脂前接合成形体~正式烧结来使之一体化的方法。或者,(2)用以凝胶注塑为代表的脱蜡法成形也可,能够实现不限制主体部发光管设计的端部密封结构。
此外,在金属卤素灯中,着眼于耐腐蚀性而主要用Mo、W、Re等,以高压氖灯能够进一步采用Nb作为上述金属部件。此外,同样,在超高压水银灯也可以采用Nb。
通过以下方式密封这些发光管而成为放电灯。
(1)金属卤素灯(一般照明)在50~200mbar的Ar气氛下,从Mo制的金属帽(在帽本身上也可以有引导部分)的孔投入Hg(不一定要)、金属(Na、稀土类元素等)碘化物,插入Mo或W电极,利用TIG焊接或激光焊接来焊接密封。
(2)金属卤素灯(自行车用·点光源用)与(1)同样地密封金属碘化物和Hg(不一定要)。根据情况使用7~20bar的Xe作为始动气体。特别在本发明这种场合,由于以极短时间和低温结束密封,以始动气体为起点的发光物质的蒸发几乎完全被抑制。主体部材料可以是通常的透光性氧化铝,但选用线性透过率高的YAG、蓝宝石、粒径在10μm或其以下的多晶蓝宝石等也可以。
(3)高压Na灯金属帽用的是Nb。电极用的是Mo、W、Nb、,把它们焊接起来。发光物质是Na-Hg汞合金和Ar等始动气体,不用Hg的场合则密封进Xe。特别地,对管表面使用辅助电极的场合(无论缠绕、金属化印刷等种类),为了防止电极保持部件附近和辅助电极的短路,根据情况,也可以把绝缘机构设在辅助电极上等。
(4)超高压水银灯主体部材料较好是线性透过率高的YAG、蓝宝石、粒径在10μm或其以下的多晶蓝宝石等。发光物质是Hg和Br。金属帽除Mo、W之外还可使用Nb,焊接法与上相同。
以上那样得到的放电灯能够用适当的点火器、镇流器点灯。
对于第一、第二、第三各方式的发明,在发光管的外表面,能够设置由金属或陶瓷的混合物做成的覆盖膜作为光学掩膜机构。所谓掩膜是指遮光膜。例如在汽车用车前灯的场合,为了从对面的车看来灯泡不刺眼(例如为了使光不朝向上方),在发光管外表面设置遮光膜来控制光的方向。这种遮光膜在例如特开2004-149640号公报、特开2004-163911号公报、特开2004-134219号公报中公布过。
构成遮光膜的金属没有特别限定,优选的是从钨、钼以及铼之中选取的金属或它们的合金。特别地,在使用金属和陶瓷的混合物的场合,较好是陶瓷包含发光管的构成材料。这种陶瓷作为发光管材料是前述的材料。此外,遮光膜可利用涂布法形成。
实施例(实施例1)制造图2所示的发光容器1A。
具体地说,准备对钼板进行拉深加工制作的帽状的电极保持部件8。盖部8a直径为2mm,厚200mm。此外,电极保持部件的圆筒部长为3mm,把持部8b的厚度为100μm。在弯曲部8c,厚度向把持部的方向逐渐变薄。把持部8b的前端呈楔形。在盖部8a挖出直径500μm的孔8d。
准备放入该电极保持部件8的内侧的外径2mm、内径0.6mm、长5mm的高纯度氧化铝烧结体做成的管3,以其为内侧支撑体,在该内侧支撑体3上覆盖电极保持部件8。
准备用防潮袋成形机成形的、内径2.1mm、外径4mm、长20mm的高纯度氧化铝做成的管状的发光管用成形体2(成形压力1500kg/cm2),以该成形体2为外侧支撑体。如图3(a)所示,在发光管用成形体的两端,插入覆盖了电极保持部件8的内侧支撑体3并组装成为一体,在氢气氛中1800℃烧结,制作了发光容器(图3(b))。
(实施例2)制造了图4所示的结构体。
具体地说,准备对钼板进行拉深加工制作的帽状的电极保持部件8A。盖部8a直径为2mm,厚200mm。此外,电极保持部件的圆筒部长为3mm,把持部8b的厚度为100μm。在弯曲部8c,厚度向把持部的方向逐渐变薄。把持部8b的前端呈楔形。在盖部8a挖出直径500μm的孔8d。
准备放入该电极保持部件8的内侧的、外径2mm、内径0.6mm、长5mm的高纯度氧化铝烧结体做成的管状成形体,以其为内侧支撑体10,在该内侧支撑体10上覆盖电极保持部件8A。并且,内侧支撑体10的孔径比电极前端部的钨缠绕部分5a的直径更小,不能从发光容器外侧插入电流贯通导体5以及电极5a。因此,预先把电流贯通导体5(直径0.5mm、前端部直径0.8mm)插入电极保持部件。
准备用压印成形机成形的、内径2.1mm、外径15mm、长6.5mm的高纯度氧化铝做成的管状的发光管用成形体(成形压力1000kg/cm2),以该成形体为外侧支撑体9。在其中插入组装金属盖和电流贯通导体以及电极得到的内侧支撑体10,组装成一体,在氢气氛中1750℃烧结,制作了预先插入了电流贯通导体以及电极的发光容器的电极固定用部品。得到的尺寸为外径12mm,长5mm。电极保持部件8A的圆筒状把持部8b被挤压在氧化铝外侧支撑体9以及内侧支撑体10上并固定,电极保持部件8A的盖部8a作为非把持部暴露于支撑体的端部。这样得到了端部部件。
进一步准备用防潮袋成形机成形的、内径12.5mm、外径15.5mm、长50mm的高纯度氧化铝做成的管状成形体2(成形压力1500kg/cm2),在该成形体的两端插入上述端部部件并组装成为一体,在氢气氛中1800℃烧结,制作了发光容器。图4表示插入了电极以及电流贯通导体的发光容器用组装体。
(实施例3)制造了图5所示的发光容器1C。
具体地说,与实施例1同样准备了电极保持部件8。但是,使电极保持部件8的直径为4mm,使圆筒部长度为4mm,使盖部8a厚度为200μm,使把持部8b的厚度为100μm。在盖部8a挖出直径500μm的孔8d。
准备具有外径4mm、内径0.6mm、外径为4mm的圆筒状基部的长度为5mm并且向长度方向外径逐渐变细的形状的突出部10a的、全长10mm的由高纯度氧化铝烧结体做成的管,以其为内侧支撑体10。在该内侧支撑体10上覆盖电极保持部件8。
准备用防潮袋成形机成形的、内径4.2mm、外径7mm、长45mm的由高纯度氧化铝做成的管状成形体(成形压力1500kg/cm2),以该成形体为外侧支撑体2,在其两端插入覆盖金属帽8的内侧支撑体10并组装成为一体,在氢气氛中1800℃烧结,制作了发光容器。
图5表示进一步把电流贯通导体5以及电极5a插入发光容器内的状态。
此形状的内侧支撑体10的突出部10c由于保持成保护电流贯通导体5的大部分侧面,从而电极轴的偏差小、电极间距的尺寸精度良好,对电流贯通导体以及电极的耐腐蚀性高,还能降低发光物质导致的腐蚀。此外,能够降低发光管的内容积,降低密封进发光管内的发光物质的量。
(实施例4)制造了图6所示的发光容器1D。
具体地说,准备了与实施例1相同的尺寸和形状的电极保持部件8A。
准备外径2mm、内径0.6mm、长10mm的高纯度氧化铝做成的管,以其为内侧支撑体15,在该内侧支撑体15上覆盖电极保持部件8A。
准备用压印成形机成形的、内径2.1mm、外径15mm的部分的长为6.5mm外径锥形地逐渐变细缩小的形状的全长12.5mm的高纯度氧化铝做成的成形体,以该成形体为外侧支撑体14。插入覆盖金属盖的内侧支撑体15,组装成一体,在氢气氛中1750℃烧结,制作了发光容器的电极以及电流贯通导体固定用部品。得到的尺寸为外径12mm的部分的长度为5mm,并且外径呈圆锥状缩小的突出部的全长为10mm,电极保持部件8的圆筒部作为把持部8b被挤压在氧化铝的外侧以及内侧支撑体上并固定,电极保持部件8的盖部8a作为非把持部暴露于支撑体,得到了端部部件。
进一步准备用防潮袋成形机成形的、内径12.5mm、外径15.5mm、长50mm的高纯度氧化铝做成的管状成形体(成形压力1500kg/cm2),在该成形体的两端插入上述端部部件并组装成为一体,在氢气氛中1800℃烧结,制作了发光容器1D。图6表示在发光容器中插入了电流贯通导体5以及电极5a的状态。
由该形状的内侧以及外侧支撑体做成的突出部14a、15a保持成保护电流贯通导体5的大部分的侧面,从而电极轴的偏差小、电极间距的尺寸精度良好,对电流贯通导体以及电极的耐腐蚀性高,还能降低发光物质导致的腐蚀。此外,能够降低发光管的内容积,降低密封进发光管内的发光物质的量。
通过做成图6所示那种结构,利用外侧支撑体14的厚度部分就能够使用与发光容器2的内径相比直径小的帽形电极保持部件8A。由于发光管2内部的压力比大气压高,所以,使电极保持部件8A的直径减小更加有利于能够降低在电极保持部件8A产生的应力。此外,由于还能够显著降低电极保持部件8A与内侧空间7内的腐蚀性发光物质的接触面积,从而能够进一步有效地抑制电极保持部件8A的腐蚀。
(实施例5)制造了图7所示的发光容器1E。具体地说,准备了与实施例1相同尺寸和形状的电极保持部件8。
准备放入该电极保持部件8内侧的外径2mm、内径0.6mm、长20mm的透明氧化铝发光管(由蓝宝石等氧化铝单晶做成),以其为内侧支撑体,准备使电极保持部件8覆盖在该发光管2上的物体。
准备用压印成形机成形的、内径2.1mm、外径6mm、长6.5mm的高纯度氧化铝做成的环状成形体(成形压力1000kg/cm2),以该成形体为外侧支撑体13。把该外侧支撑体13插入覆盖了电极保持部件的发光管2的各端部的外侧,组装成一体,在氢气氛中1800℃烧结,制作了发光容器。图7表示进一步把电流贯通导体5以及电极5a插入发光容器中的状态。
(实施例6)制造了图8所示的发光容器1F。具体地说,准备了与实施例1相同尺寸和形状的电极保持部件8A。
准备外径2mm、内径0.6mm、长5mm的由高纯度氧化铝烧结体做成的管,以其为内侧支撑体17,准备使电极保持部件8A覆盖在该内侧支撑体17上的物体。
准备用压印成形机成形的外侧支撑体16。该成形体的基部16a内径为2.1mm、长6.5mm。突出部16b内径为2.1mm、长6.5mm。准备高纯度氧化铝做成的成形体16(成形压力1000kg/cm2),以该成形体16为外侧支撑体。把覆盖了电极保持部件8A的内侧支撑体17插入基部16a上,把外径4mm、壁厚1mm、长20mm的透明氧化铝管2(主要由蓝宝石等氧化铝单晶做成)插入突出部16b内,组装成一体,在氢气氛中1800℃烧结,制作了发光容器。图8表示进一步把电流贯通导体5以及电极5a插入发光容器中的状态。
(实施例7)制造了图9所示的发光容器1G。
具体地说,与实施例1同样地制造了具有与实施例1相同的尺寸和形状的电极保持部件8A。
准备了放入该电极保持部件8A内侧的由高纯度氧化铝制的内侧支撑体17A。内侧支撑体17A是高纯度氧化铝烧结体(纯度99.9%),由外径2mm、内径0.6mm、长5mm的基部17d和外径从2mm逐渐向前端变细的长5mm的突出部17a做成。准备使金属帽8A覆盖在内侧支撑体17A上的物体。
用压印成形机对外侧支撑体16成形。外侧支撑体16由内径2.1mm、长6.5mm的基部16a和内径4.1mm、长6.5mm的突出部16b做成。准备该高纯度氧化铝做成的成形体16(成形压力1000kg/cm2),以该成形体16为外侧支撑体。插入覆盖了电极保持部件8A的内侧支撑体17A,此外,把内径4mm、壁厚1mm、长20mm的透明氧化铝发光管2(主要由蓝宝石等氧化铝单晶做成)插入突出部16b内,组装成一体,在氢气氛中1800℃烧结,制作了发光容器。图9表示进一步把电流贯通导体5以及电极5a插入发光容器中的状态。
此形状的内侧支撑体的突出部17a由于保持成保护电流贯通导体的大部分侧面,从而电极轴的偏差小、电极间距的尺寸精度良好,对电流贯通导体以及电极的耐腐蚀性高,还能降低发光物质导致的腐蚀。此外,能够降低发光管的内容积,降低密封进发光管内的发光物质的量。采用图9所示的结构,利用外侧支撑体16的厚度部分就能够使用与发光容器2的内径相比直径小的帽形电极保持部件8A。由于发光管2内部的压力比大气压高,所以,使电极保持部件8A的直径减小更加有利于能够降低在电极保持部件8A产生的应力。此外,由于还能够显著降低电极保持部件8A与内侧空间7内的腐蚀性发光物质的接触面积,从而能够进一步有效地抑制电极保持部件8A的腐蚀。
以下展示使用本密封结构的场合的效果。
(1.降低密封品晃动的改善例(高压密封发光物质的场合汽车用等))进行了在与35W的原来结构、(玻璃料密封)陶瓷发光容器相同瓦数的实施例1~7的发光容器中密封相当于15bar的Xe的实验。Xe是在低温凝结的状态。其评价是在所定体积的室温真空容器内每破坏密封品n=100个,根据容器内压(Xe分压)的测定进行。
结果,原来品n=100的平均相当于8个大气压。相对于此,在使用实施例1~7的各发光容器的场合,相当于14.5大气压。
(2.气密密封性)把实施例1~7的密封完的发光容器每种n=30,在石英管中真空密封在900℃保持48小时。然后用特斯拉线圈使之放电,确认在石英外球内发光的场合为NG,没确认的场合为OK。在原有品中,n=25/30不合格。在实施例1~7的发光容器的场合,都不是不合格品。
(设置掩膜材料的例子)对于实施例1~7各发光容器,在发光管的外表面的所定场所,形成起掩膜材料的作用的遮光膜。具体地说,用透光性氧化铝形成发光管。胶体组成是使W/氧化铝=60/40体积%,在其中适当添加2~10重量%的乙基纤维素,丁基醋酸酯溶剂作为粘接剂,做成粘稠胶体。把该胶体在上述各例中涂抹在脱脂剂的煅烧体上,然后在90℃使之干燥2小时,与发光管同时烧结。通过该掩膜材料,可任意设计布光。
权利要求
1.一种发光容器,具备由板状金属片做成的电极保持部件,其特征在于上述电极保持部件具备压接把持在脆性材料上的把持部和没有被把持的非把持部,在上述把持部和上述脆性材料的接触界面产生的应力因上述电极把持部件的上述把持部的变形而被缓和。
2.根据权利要求1所述的发光容器,其特征在于具备由脆性材料做成的发光管。
3.根据权利要求2所述的发光容器,其特征在于在上述发光管内侧设有内侧支撑材料,上述电极保持部件的上述把持部压接在上述发光管和上述内侧支撑材料之间。
4.根据权利要求3所述的发光容器,其特征在于上述内侧支撑材料的壁厚向上述发光容器的中央部减少。
5.根据权利要求2所述的发光容器,其特征在于在上述发光管外侧设有外侧支撑材料,上述电极保持部件的上述把持部压接在上述发光管和上述外侧支撑材料之间。
6.根据权利要求2所述的,其特征在于具备由脆性材料做成的、在上述发光管上固定的外侧支撑体以及由脆性材料做成的内侧支撑体,在上述外侧支撑体和上述内侧支撑体之间压接把持有上述电极保持部件的上述把持部。
7.根据权利要求6所述的发光容器,其特征在于上述外侧支撑体把持在上述发光管的内侧,上述内侧支撑体把持在上述外侧支撑体的内侧。
8.根据权利要求7所述的发光容器,其特征在于上述外侧支撑体以及内侧支撑体的总壁厚向上述发光容器的中央部减少。
9.根据权利要求6所述的发光容器,其特征在于上述外侧支撑体压接上述发光管的外周面端部,上述内侧支撑体设在上述外侧支撑体的内侧。
10.根据权利要求2~9任何一项所述的发光容器,其特征在于上述发光管为直管状。
11.根据权利要求2~9任何一项所述的发光容器,其特征在于上述发光管具有向其中央部膨胀的形状。
12.根据权利要求2~11任何一项所述的发光容器,其特征在于上述发光管由多个成形品的接合物做成。
13.根据权利要求1~12任何一项所述的发光容器,其特征在于上述把持部的前端为刀刃状、C面、或R面的形状。
14.根据权利要求1~13任何一项所述的发光容器,其特征在于上述脆性材料是从玻璃、陶瓷以及合金陶瓷组成的组中选取。
15.根据权利要求1~14任何一项所述的发光容器,其特征在于上述把持部的厚度为20~1000μm。
16.根据权利要求2~15任何一项所述的发光容器,其特征在于在上述发光管的外表面具备由金属或金属和陶瓷的混合物做成的覆盖膜作为光学掩膜机构。
17.根据权利要求16所述的发光容器,其特征在于上述金属是从钨、钼以及铼组成的组中选取的金属或它们的合金。
18.根据权利要求16或17所述的发光容器,其特征在于上述陶瓷包含上述发光管的构成材料。
19.根据权利要求1~18任何一项所述的发光容器,其特征在于上述电极保持部件是没有接缝的结构。
20.根据权利要求19所述的发光容器,其特征在于上述电极保持部件的上述把持部是管状。
21.根据权利要求20所述的发光容器,其特征在于上述把持部是略圆筒状。
22.一种发光容器组装体,其特征在于具备权利要求1~21任何一项所述的发光容器,在上述发光容器的一端和另一端分别固定上述电极保持部件,电流贯通导体预先被插入上述电极保持部件,上述电极预先被收放在上述发光容器内,上述电极保持部件和上述电流贯通导体在上述一端和上述另一端的至少一方没有被气密密封。
23.一种高压放电灯用发光容器,其特征在于具备权利要求1~21任何一项所述的发光容器和在上述电极保持部件保持的电极以及电流贯通导体。
24.一种发光容器,其特征在于具备以由脆性材料做成的发光管为外侧支撑体、在该外侧支撑体的内侧设置的脆性材料做成的内侧支撑体以及夹在上述外侧支撑体与上述内侧支撑体之间的板状金属片,上述外侧支撑体与上述板状金属片直接接触,上述板状金属片与上述内侧支撑体直接接触,并且,上述外侧支撑体与内侧支撑体直接接触,上述板状金属片起电极保持部件的作用。
25.根据权利要求24所述的发光容器,其特征在于上述外侧支撑体与上述内侧支撑体的热膨胀系数之差在2ppm/K或其以下。
26.根据权利要求24或25所述的发光容器,其特征在于上述板状金属片具备非把持部,该非把持部具有无接缝的盖部,并且在该盖部设有可插入电流贯通导体以及电极的通孔。
27.根据权利要求27所述的发光容器,其特征在于上述非把持部具备调节电流贯通导体和电极的同轴度的引导部以及具有可成为连接端的长度的毛细管部。
28.一种发光容器组装体,其特征在于具备权利要求24~27任何一项所述的发光容器,在上述发光容器的一端和另一端分别固定上述电极保持部件,电流贯通导体预先被插入上述电极保持部件,上述电极预先被收放在上述发光容器内,上述电极保持部件和上述电流贯通导体在上述一端和上述另一端的至少一方没有被气密密封。
29.一种高压放电灯用发光容器,其特征在于具备权利要求24~27任何一项所述的发光容器和在上述电极保持部件保持的电极以及电流贯通导体。
30.一种发光容器,其特征在于具备以由脆性材料做成的发光管为内侧支撑体、在该内侧支撑体的外侧设置的脆性材料做成的外侧支撑体以及夹在上述内侧支撑体与上述外侧支撑体之间的板状金属片,上述内侧支撑体与上述板状金属片直接接触,上述板状金属片与上述外侧支撑体直接接触,并且,上述内侧支撑体与上述外侧支撑体直接接触,上述板状金属片起电极保持部件的作用。
31.根据权利要求30所述的发光容器,其特征在于上述外侧支撑体与上述内侧支撑体的热膨胀系数之差在2ppm/K或其以下。
32.根据权利要求30或31所述的发光容器,其特征在于上述板状金属片具备非把持部,该非把持部具有无接缝的盖部,并且在该盖部设置可插入电流贯通导体以及电极的通孔。
33.根据权利要求32所述的发光容器,其特征在于上述非把持部具备调节电流贯通导体和电极的同轴度的引导部以及具有可成为连接端的长度的毛细管部。
34.一种发光容器组装体,其特征在于具备权利要求30~33任何一项所述的发光容器,在上述发光容器的一端和另一端分别固定有上述电极保持部件,电流贯通导体预先被插入上述电极保持部件,上述电极预先被收放在上述发光容器内,上述电极保持部件和上述电流贯通导体在上述一端和上述另一端的至少一方没有被气密密封。
35.一种高压放电灯用发光容器,其特征在于具备权利要求30~34任何一项所述的发光容器、在上述电极保持部件保持的电极以及电流贯通导体。
全文摘要
本发明涉及发光容器及高压放电灯用发光容器。发光容器(1A)具备由板状金属片做成的电极保持部件(8)。电极保持部件(8)具备压接把持在脆性材料中的把持部(8b)和没有被把持的非把持部(8a、8c),在把持部(8b)和脆性材料的接触界面产生的应力因电极保持部件8的变形而被缓和。
文档编号C04B37/02GK1839461SQ20058000079
公开日2006年9月27日 申请日期2005年6月6日 优先权日2004年6月8日
发明者渡边敬一郎, 太田隆, 增井直树 申请人:日本碍子株式会社, Ngk光陶瓷株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1