用于固化蜂窝状结构的方法和基底的制作方法

文档序号:1846056阅读:199来源:国知局
专利名称:用于固化蜂窝状结构的方法和基底的制作方法
用于固化蜂窝状结构的方法和基底本发明涉及用于烧制蜂窝状类型结构的烧制支承体(support de cuisson),并涉及获得所述支承体的方法。此类结构可以是过滤结构和/或催化结构并尤其用在柴油类型内燃机的排气管路中。本发明更特别涉及用于过滤结构或用于基于氧化物陶瓷的催化剂载体,尤其用于基于钛酸铝的过滤器的烧制支承体,还涉及获得所述支承体的方法。例如,可以处理气体和用于除去来自柴油机的烟灰的催化过滤器是现有技术中公知的。这些结构通常都具有蜂窝形状,该结构的一面允许要处理的废气进入,另一面允许处理过的废气排出。该结构在进气和排气面之间包含一组彼此被多孔壁隔开的具有相互平行轴的相邻管道或通道。这些管道在它们的一个或另一末端被封闭以界定通向进气面的进气室和通向排气面的输出室。通道以一定次序交替被封闭以使废气在经过蜂窝体时被迫穿过进气通道的侧壁以再进入排气通道。由此,微粒或烟灰沉积和积聚在过滤体的多孔壁上。如已知,在其使用过程中,对微粒过滤器施以一连串过滤(烟灰累积)和再生(烟灰清除)阶段。在过滤阶段过程中,留住由发动机排出的烟灰粒子并沉积在过滤器内。在再生阶段过程中,在过滤器内烧除烟灰粒子以恢复其过滤性质。特别为了提高微粒或烟灰的存储体积和由这些烟灰粒子燃烧产生的残留物的存储体积并由此增加在两次再生之间的时间,在现有技术中已提出各种过滤结构。特别地,在下文中被称作“不对称结构”的结构在不变的过滤器体积下具有与所述过滤器的排气通道的表面积或体积不同的进气通道的表面积或体积。例如,专利申请WO 05/016491已提出这样的结构——其中壁元件在截面中和沿水平和/或垂直通道列一个接一个存在以限定出正弦或波浪形状。通常,壁元件形成具有在通道宽度上以正弦半周期进行起伏。这种通道构造能够实现低压降和高烟灰存储体积。在另一实施方式中,专利申请EP 1 495 791已提出以内进气通道的八边形排列为特征的整料块(在本领域中常称作“八方(octosquare) ”结构)。最通常,过滤器由多孔陶瓷,例如堇青石或碳化硅或钛酸铝制成。例如在专利申请EP 816 065,EP 1 142 619,EP 1 455 923 或 WO 2004/090294 禾口 WO 2004/065088中描述了以这些结构制成的碳化硅过滤器,本领域技术人员可例如参考它们获得关于本发明的过滤器的描述和关于它们的获得方法的更多解释和细节。有利地,这些过滤器对烟灰粒子和对热气体具有高化学惰性,但热膨胀系数有点高,这导致,为了制造大型过滤器,必须通过连接水泥将多个整料元件组装成过滤块,以降低它们的热机械应力。 由于重结晶SiC材料的高机械强度,可以制造具有极令人满意的过滤效率、具有高孔隙率的薄过滤壁的过滤器。堇青石过滤器也已由于它们的低成本而长期使用。由于这种材料在过滤器的正常工作温度范围内的极低热膨胀系数,可以制造更大尺寸的整料过滤器。钛酸铝也具有低热膨胀系数并表现出比堇青石更好的耐火性和更好的耐腐蚀性。 因此,钛酸铝能够制造大尺寸的整料过滤器,只要控制钛酸铝的热稳定性,尤其是在过滤器再生阶段过程中。因此在专利申请WO 2004/0111M中已描述了整料过滤器,其提供基于用 10至40重量%含量莫来石增强的60至90重量%钛酸铝的结构。据作者称,由此获得的过滤器更耐久。在另一实施方式中,专利申请EP 1 741 684公开了具有低膨胀系数的过滤器,且其中一方面通过在固溶体内的Al2TiO5晶格中用Mg原子取代一部分Al原子和另一方面通过用Si原子(这些通过硅铝酸钾钠类型,尤其是长石类型的晶粒间补充相引入该结构内)取代所述固溶体表面上的一部分Al原子来稳定钛酸铝主相。通常,挤出这些整料结构,并随后在过滤结构的情况下,如上所述在它们的一个或另一末端封闭以界定进气室和排气室。烧制这些结构以使构成该结构的材料机械烧结或固结。发现在烧制阶段过程中,该结构发生

图1中示意性图解的所谓的“象脚”变形。图1 显示,靠近在烧制支承体4上的支承面3的结构2的底部1 (下部)的宽度大于该结构的上部。通常,对100毫米长的所述过滤器而言,过滤器宽度的大于1%的尺寸差被认为对该应用而言不可接受。当挤出的结构2具有大尺寸时,该变形更显著。术语“大尺寸”特别被理解为是指直径大于100毫米或截面大于75平方厘米的结构。对长度极大(例如长度大于 150毫米)和/或直径极大(例如直径大于125毫米)或大横截面(即等于或大于120平方厘米)的结构而言,该问题变得至关重要。同样地,如果该结构烧制后沿其最大维度的收缩率等于或大于5%,则获得这种结构会引起问题。术语“收缩率”在本说明书中被理解为是指烧制前和烧制后该结构的特征尺寸之间的以百分比表示的差值除以烧制前的所述尺寸。 通常,在圆形截面的挤出结构的情况下,可以在所述结构的长度或在直径上测量收缩率。术语“烧制前的结构”被理解为是指干生坯状态下的结构,即具有小于1%的残留湿含量。在本说明书和在下列实施例中,在与由该结构的与其烧制支承体接触的支承面形成的平面大致平行但充分远离所述支承面的过滤器横截面上测量收缩率以消除上述“象脚”现象。在实践中,理想地对该结构高度的上1/3测量收缩率。为了解决“象脚”现象的问题,一个最初解决方案在于挤出长度大于必要长度的生坯结构。因此在烧制后切除该结构在其底部的最变形的部分,即位于其在烧制支承体上的支承面附近的部分中。最后,堵塞该结构,随后任选退火以烧结构成塞子的材料。这种解决方案带来大量材料损失,因为切除料可能占该结构总质量的15%以上。此外,烧制结构上的堵塞操作棘手,因为如果经堵塞的结构不退火,塞子的耐火性或密封性过低。用于烧制塞子和获得具有充足过滤效率的过滤结构的二次烧制代表额外操作和额外成本,是经济上无法想象的情况。专利申请EP 0 234 887提供由其与要烧制的结构接触的面上的宽度至少小于要烧制的所述结构的宽度的烧制或生坯蜂窝体构成的烧制支承体。例如,这种烧制支承体可具有斜面或各种凹进形状。具有提供稳定性良好的部件的优点的这种解决方案也造成要烧制的结构的不合意垂直变形,尤其是在该部件的收缩率大于5%时。烧制后获得的结构最终具有更大的沿边缘的长度,其因此迫使该结构在烧制后进行附加机械加工操作和附加堵塞操作。专利申请EP 1 808 423描述了生坯支承体,其在烧制过程中形成与该结构性质相同的结晶相并具有8至50微米的表面粗糙度以降低烧制支承体与该结构之间的摩擦。尽管这一解决方案适合消除在烧制结构中的破裂或大裂纹的出现,但其不能解决上文描述和附图1所示的象脚变形问题。本发明根据第一方面涉及使用新型烧制支承体来烧制蜂窝状结构,任选过滤的蜂窝状结构的方法,其能有效满足所有上述要求,特别是-特别通过避免该结构在烧制过程中出现裂纹和/或变形,改进过滤器的品质,以获得具有令人满意的过滤效率的过滤结构;
-可以获得在其支承体上要烧制的结构和该支承体本身足够稳定性;和 -可以获得更快的粘合剂清除和烧制(或烧结),而没有降低所得结构的品质的风险,
以获得高生产率。在其最通常形式中和根据第一方面,本发明涉及在烧制支承体上烧制蜂窝状类型多孔陶瓷结构的方法,所述结构包含多个在该结构两端终结的纵向贯穿通道,在该支承体上的支承末端在经过该结构的主轴的纵向截面的平面中在烧制前具有最大宽度Ls。在本发明的方法中,所述支承体在所述纵向截面的平面中具有
-与充当要烧制的结构的支承面的支承体第一面对应的第一水平面,所述第一水平面具有最大宽度L1 ;
-与支承体的所述第一面相隔厚度Ε"的第二水平面,所述第二水平面具有最大宽度T .
L2 ,
-宽度L1等于或大于Ls ; -宽度L2小于L115蜂窝状类型结构的主轴照惯例根据本发明被定义为该结构的与贯穿通道平行的主对称轴。当然根据该结构的形状,特别是其剖面规定所述轴。例如,在圆柱形结构的情况下其是旋转轴,或是平行立面体或卵形结构的中心轴。特别地,在图3和6中的示意图中显示主轴。因此,对于在其下端(即在其支承面上)具有给定形状剖面,例如卵形、圆形或正方形剖面的蜂窝状结构而言,根据本发明使用的支承体优选具有大致相似的整体形状,即分别为基本卵形、圆形或正方形,其尺寸特别使得在经过要烧制的结构的主轴的任何纵切面中L1为Ls至1. 1 Lso下面尤其描述这种方法的特定实施方式 -宽度L1为Ls至1. ILs ;
-两个宽度L1和L2之间的相对差(L1-L2VL1等于或大于大约5% ; -该结构末端与该支承体的充当其支承面的面具有基本相同的形状和/或几何; -该支承体为蜂窝状类型并包含多个朝两端打开的纵向贯穿通道,该支承体的上端构成所述第一水平面;
-该支承体具有与该构成过滤器壁的材料的孔隙率适合的孔隙率。该支承体通常具有 20至65%,优选30至50%的孔隙率,孔隙的平均尺寸理想地为10至20微米。相反地,太高的孔隙率导致机械强度太低以致无法支承过滤器。太低的孔隙率可能对过滤器有害,因为在其烧制过程中支承体的收缩可能没有充分伴随过滤器的收缩;
-该蜂窝状支承体的壁厚度有利地为0. 2至1. 0毫米,优选0. 2至0. 5毫米。过滤元件中的通道数优选为7. 75-62/平方厘米,所述通道具有大约0. 5平方毫米至9平方毫米的横截面;
-与充当要烧制的结构的载体的支承体第一面对应的第一水平面是平面; -与在充当使该支承体支承在烧制装置(例如炉箱或炉底)上的支承体底部的第二面对应的第三水平面优选是平面,这种平面允许实现较好的稳定性;
-构成支承体的材料的热膨胀与构成该结构的材料的热膨胀在烧制温度范围内相差最多21 ;
-构成支承体的材料的烧制时收缩率与构成该结构的材料的烧制时收缩率在烧制温度范围内相差最多21
-该支承体具有梯形形状,所述第二水平面与该支承体的第二面对应; -所述支承体具有与该支承体的第二面对应的第三水平面,具有宽度L3,宽度L3等于或大于宽度L2并至少等于宽度Ls的3/5。如上所述的烧制法尤其可有利地用在获得蜂窝状过滤结构的方法中,其中该结构的纵向贯穿通道预先在它们的末端交替封闭。本发明还涉及适合烧制如上所述的蜂窝类型多孔陶瓷结构的支承体,该支承体特别在经过其主轴的截面的平面中包含
-与充当要烧制的结构的支承面的支承体第一面对应的第一水平面,所述水平面具有最大宽度L1 ;
-与支承体的所述第一面相隔厚度Ε"的第二水平面,所述第二水平面具有最大宽度T .
L2 ,
-宽度L2小于L115根据所述支承体的另一些可能方面 -宽度L1为Ls至1. ILs ;
-两个宽度L1和L2之间的相对差(L1-L2VL1等于或大于大约5% ; -所述蜂窝状类型烧制支承体包含多个朝两端打开的纵向贯穿通道,该支承体的上端构成所述第一水平面;
-所述支承体具有梯形形状,所述第二水平面与其第二面对应;且 -所述支承体具有与其第二面对应的第三水平面,具有最大宽度L3,宽度L3等于或大于觅度°更确切地,在选择构成支承体的材料以使其热膨胀接近构成要烧制的结构的材料的热膨胀时,根据本发明获得最佳结果。在本说明书中,在温度T下测得的热膨胀相当于经受直到温度T(烧制最终温度)的温度变化的材料试样的长度与取作基准的其在环境温度 (20°C)下的初始长度相比的变化百分比。照惯例通过差示热膨胀法根据为此用途规定的 NFB40-308标准测量热膨胀。根据本发明,在如上图1中所示与由在烧制支承体4上的支承面3形成的平面平行的平面中测量构成支承体或要烧制的结构的材料的试样的膨胀。支承体在烧制温度范围内的热膨胀如果等于该结构的热膨胀+/_ 2%,优选+/- 1%,则在本发明背景内接近该结构的热膨胀,无论在所考虑范围- Τ)内的温度如何。优选地,根据本发明,支承体是生坯以在其烧制期间最好地依随该结构的尺寸变化。有利地,选择支承体的材料以使其在用于烧制该结构的热处理后的收缩率等于该结构的收缩率+/- 2%,优选+/- 1%。本发明的支承体可以以各种方式使用,下面例举其中一些。当然,本发明在所述任何方面中不限于这些实施方案。图3在该结构的纵向截面中显示根据本发明的第一构造的支承体4,显示其主轴 5。本发明的支承体具有1^至1. ILs的宽度L115对具有给定形状,例如椭圆形、圆形或正方形的支承面的结构而言,根据本发明使用的支承体优选具有大致相似的形状,即分别椭圆形、圆形或正方形,其尺寸使得L1在经过要烧制的结构的主轴的任何纵切面中为Ls至1. ILso 有利地,这种构造可以防止该结构垂直变形,垂直方向在此被理解为与由要烧制的结构的在支承体上的支承表面构成的面垂直的方向。根据本发明,该支承体具有小于L1的宽度 L2以在烧制时依随该结构的水平变形。优选地,以百分比表示的这两个宽度之间的相对差 ((L1-L2VL1)等于或大于大约5%,优选等于或大于大约10%,再更优选等于或大于大约15%。 通常,这一差值然而保持小于50%,优选小于40%或甚至小于30%。图3中所示的支承体还具有在第二面或与如图1中所示的面3相反的支承体空闲面(face de r印os)放置面上测得的宽度L3,以确保支承体-结构组装件的充分稳定性,该第二面在烧制过程中与例如烧制炉或烧制装置的底部接触。该支承体在与要烧制的结构接触的水平面L1与支承体的水平面L2之间具有充足厚度Ε"。根据本发明的Ε"值和宽度L2值取决于构成支承体的材料的性质、其内部几何 (尤其取决于通道的存在、壁厚度等)和设想的热处理条件(特别是最终温度、升温速率和在最大温度下的烧制时间)并随它们而变。通常,可以通过实验测定和调节最佳厚度E"。为了测定这种最佳值,考虑各种参数,包括下列
-要烧制的结构的宽度Ls,例如如果该结构具有圆柱形剖面,其外径;和 -要烧制的结构的宽度h和长度。优选通过实验,例如通过逐次迭代法调节厚度Ε"和宽度L2以具有在要烧制的结构的载荷下的最佳抗蠕变性或抗塌陷性。优选地选择Ε"和Lp L2以使如图3中所示的角α大于15°,优选大于45°。优选地选择Ep2和Lp L2以使角α小于85°。根据图4中所示的另一实施方案,本发明的支承体具有一定构造以使上述参数L2 和L3基本相等,即L2 = L30根据这种实施方案,该支承体在水平面L2和与炉底或与烧制装置接触的支承体底部的水平面L3之间具有恒定厚度氏_3。根据产生令人满意的结果的一个可能的实施方案, Ε2_3优选小于5Ls/3。在图5中所示的一个优选实施方案中,本发明的支承体为基本梯形,相当于E2_3 = 0的极端情况。根据另一些可能的实施方案(未通过本说明书中的附解),本发明的支承体也可以在L2和L1之间具有其它形状,只要距离L2保持小于距离L1,其特别地具有凹面或凸面的浑圆周界或曲面。本发明的支承体还可有利地具有一个或多个下列任选特征
a)该支承体优选具有如专利申请EP1 808 423中所述的合适粗糙度,但这不是实现本发明的支承体的优点所必须的。事实上沉积例如球状刚玉或氧化铝的颗粒或粉末床可以在填充支承体的表面不规则的同时防止粘合到支承体上的现象;
b)该支承体是生坯,其矿物学化学组成和粒度组成与要烧制的结构相似或甚至相同。 在本发明的背景下进行的实验已表明,这种构造可以有效降低烧制过程中在该结构上的机械应力,尤其是如果收缩率高,特别是如果收缩率大于大约7%。术语“相似的矿物学组成” 被理解为是指具有相同相和/或烧制该结构后存在的晶相的非常接近或甚至相同的体积或质量分布的组成;
c)该支承体是多孔的。其特别优选具有接近要烧制的结构的开孔率。在烧制后,该支承体的孔隙率通常为10%至80%,优选30%至70%。特别地,在微粒过滤器应用中,太低孔隙率造成太高压降,而太高孔隙率对应于太低机械强度。构成烧制后的支承体的孔隙率的孔隙的按体积计中值直径d5(l优选为5至30微米,更优选8至25微米;且
d)该支承体本身如图6中所示由通道形成,以使该结构排出的或与该结构反应的气体在所述结构的粘合剂清除和烧制过程中自由流通,所述通道在烧制过程中以相同方向取向。该支承体特别可具有与要烧制的结构相同的内部蜂窝状宏观结构。因此,当要烧制的结构2为蜂窝类型时,支承体4优选为符合如图6中所示的布置的蜂窝类型,其中已显示出封闭通道的塞子6。支承体通道的尺寸特征(特别是通道密度、壁厚度、通道形状)随之优选接近要烧制的结构或甚至与其相等。可以调节该支承体以使其通道具有与要烧制的支承面上的贴面结构相同的开口表面积。这种实施方案特别有利于最佳烧制“不对称”类型的结构,即如上述专利申请WO 05/016491所述的结构,其中一部分进气通道的表面积不同并优选大于一部分排气通道的表面积。这种布置可加速在烧制操作开始时在朝外敞开的支承体通道处的粘合剂清除速率。这种布置最后有利于该过滤结构的良好稳定性,其特别防止在烧制过程中出现该结构的裂纹或变形。在其中可有利地使用本发明的支承体的制造蜂窝状结构的方法的一个实例通常包括下列主要步骤
a)制备基于该结构的组成材料的组合物,并尤其通过经模头挤出将所述材料成型和切割以获得蜂窝状结构;
b)制备堵塞材料组合物并在根据步骤e)烧制之前和/或之后的干燥之前和/或之后用所述组合物在一部分通道中密封所述生坯结构以在烧制后获得过滤结构;
c)任选地,在使用选自热空气干燥、微波干燥和在低于130°C的冻干的技术或所述技术的组合在空气中干燥;和
d)在本发明的支承体上烧制所述结构,任选包括初始粘合剂清除步骤。通常,烧制步骤e)在取决于该结构的组成材料的温度下进行。本发明人已经观察到,本发明的支承体特别有利于烧制已堵塞的生坯过滤结构, 由此能够避免烧结塞料的额外烧制步骤。因此,本发明的支承体的使用最终有利于获得改善的在塞料与壁之间的内聚作用的过滤结构。该过滤结构优选是整料且过滤壁基于无机氧化物材料,特别基于钛酸铝或堇青石或莫来石,或来自这些材料的复合材料。术语“基于”被理解为是指所述壁包含至少50重量%,优选至少70重量%,或至少90重量%或甚至98重量%的所述材料。在本发明的第一个可能的实施方案中,该过滤结构的多孔壁由基于钛酸铝的材料制成。通常,钛酸铝基多孔陶瓷材料的组成可具有可以稳定该钛酸铝相的所有已知添加剂。 术语“高温稳定性”被理解为是指该钛酸铝基材料在微粒过滤器的正常使用条件下不分解成两个相(氧化钛TiO2和氧化铝Al2O3)的能力。照惯例,根据本发明通过稳定性试验测量这种性质,该稳定性试验在于通常通过X-射线衍射测定该材料中存在的相,随后对其施以在1100°C下的热处理10小时并使用相同的X-射线衍射分析方法和在相同条件下检查在该设备的检测阈下的氧化铝和氧化钛相的外观。
在本发明的另一可能的实施方案中,该过滤结构的多孔壁由SiC基材料和陶瓷和 /或玻璃粘合基质构成,所述玻璃基质任选地包含Si02。术语“陶瓷粘合基质”被理解为是指平均尺寸或直径通常为1至100微米,优选10至100微米的颗粒之间的连续结构,并通过烧制或烧结以固结构成所述基质的材料来获得。术语“玻璃基质,,特别被理解为是指由包含至少30% 二氧化硅(SiO2)的非晶或轻微结晶的材料形成的基质。在本发明的另一可能的实施方案中,该过滤结构的多孔壁由氧化铝基材料构成。在本发明的另一可能的实施方案中,该过滤结构的多孔壁由堇青石基材料构成。在一个可能的实施方案中,该过滤器由过滤整料元件的组装件构成,构成该组装结构的整料元件的截面优选为正方形,该整料元件的宽度为30毫米至50毫米。连接材料在此被理解为是指干或湿的由粒子和/或纤维掺合物形成的可模制组合物,其能够凝固 (prendre en masse)并在室温下或在干燥和/或热处理(其温度不超过定义构成该整料元件的材料的耐熔性的软化或坍塌温度)后具有充足机械强度。该连接材料优选包含选自非氧化物,如SiC,铝和/或硅的氮化物和氮氧化铝,或选自氧化物,尤其是Al203、Si02、Mg0、 TiO2, ZrO2, Cr2O3或它们的任一种混合物的陶瓷或耐火材料的粒子和/或纤维。无论是否组装,该过滤器优选具有该组装过滤器的固结涂层水泥,尤其具有与连接材料相同的矿物组成以降低热机械应力。通过本发明的方法获得的过滤结构还可包括负载或优选未负载的活性催化相, 其通常包含至少一种贵金属,如Pt和/或1 和/或Pd和任选的氧化物,如Ce02、ZrO2, CeO2-ZrO20在阅读仅为证实与本发明的支承体的使用相关的优点而提供的下列非限制性实施例时更好地理解本发明及其优点。在实施例中,所有百分比按重量计。
实施例a)电熔钛酸铝粉末的制造:
在所有实施例中,百分比按重量给出。在预备步骤中,由下列原材料制备了钛酸铝 -大约40重量%氧化铝,Al2O3纯度大于99. 5%且中值直径d5Q为90微米,由Pechiney 以名称AR75 出售;
-大约50重量%的金红石形式的氧化钛,包含多于95% TiO2和大约1%氧化锆并具有大约120微米的中值直径d5Q,由Europe Minerals出售;
-大约5重量% 二氧化硅,SiO2纯度大于99. 5%且中值直径d5(1为大约210微米,由 SIFRAC0出售;和
-大约4重量%氧化镁粉末,MgO纯度大于98%,其多于80%的粒子具有0. 25至1毫米的直径,由Nedmag出售。在电弧炉中在空气中使用氧化性电操作来熔融反应性氧化物的初始掺合物。随后将熔融的掺合物浇铸到CS模具中以实现快速冷却。将所得产品研磨并筛分以获得各种粒度级分的粉末。更确切地,在最终获得下列两个粒度级的条件下进行研磨和筛分操作
-一个粒度级分以基本等于50微米的中值直径d5(l为特征,根据本发明用术语“粗级分”表示;和
-一个粒度级分以基本等于1. 5微米的中值直径d5(l为特征,根据本发明用术语“细级分”表示。在本说明书中,中值直径d5Q是指这样的通过s6digraphie测得的粒径,即整体的 50体积%低于该粒径。微探针分析表明由此获得的熔融相的所有颗粒具有按下列氧化物的重量百分比计的下列组成(表1)
权利要求
1.在烧制支承体(4)上烧制蜂窝状类型多孔陶瓷结构O)的方法,所述结构包含多个在该结构两端终结的纵向贯穿通道,支承在支承体(4)上的末端(3)在经过该结构主轴(5) 的纵向截面的平面中具有在烧制前的最大宽度Ls,所述方法的特征在于,所述支承体在所述纵向截面的平面中具有-与充当要烧制的结构的支承面的支承体第一面对应的第一水平面,所述水平面具有最大宽度L1 ;-与支承体的所述第一面相隔厚度Ε"的第二水平面,所述第二水平面具有最大宽度T .L2 ,-宽度L1等于或大于Ls ; -宽度L2小于L115
2.如权利要求1中所述的烧制方法,其中宽度L1为Ls至1.1LS。
3.如前述权利要求之一中所述的烧制方法,其中两个宽度L1和L2之间的相对差 (L1-L2VL1等于或大于大约5%。
4.如前述权利要求之一中所述的方法,其中该结构末端与充当其支承面的支承体的面具有基本相同的形状和/或几何。
5.如前述权利要求之一中所述的烧制方法,其中该支承体为蜂窝状类型并包含多个朝两端打开的纵向贯穿通道,该支承体的上端构成所述第一水平面。
6.如前述权利要求之一中所述的烧制方法,其中构成支承体的材料的热膨胀与构成该结构的材料的热膨胀在烧制温度范围内相差最多m。
7.如前述权利要求之一中所述的烧制方法,其中构成支承体的材料的烧制时收缩率与构成该结构的材料的烧制时收缩率在烧制温度范围内相差最多1。
8.如前述权利要求之一中所述的烧制方法,其中该支承体具有梯形形状,所述第二水平面与该支承体的第二面对应。
9.如权利要求1至7之一中所述的烧制方法,其中所述支承体具有与该支承体的第二面对应的第三水平面,其具有宽度L3,宽度L3等于或大于宽度L2并至少等于宽度Ls的3/5。
10.如前述权利要求之一中所述的烧制方法,其在获得蜂窝状过滤结构的方法中,其中该结构的纵向贯穿通道预先在它们的末端交替封闭。
11.适合烧制蜂窝类型多孔陶瓷结构⑵的烧制支承体G),特征在于,其在经过其主轴(5)的截面的平面中包含-与充当要烧制的结构的支承面(3)的支承体第一面对应的第一水平面,所述水平面具有最大宽度L1 ;-与支承体的所述第一面相隔厚度Ε"的第二水平面,所述第二水平面具有最大宽度T .L2 ,-宽度L2小于L115
12.如权利要求11中所述的烧制支承体,其中宽度L1为Ls至1.1 Ls。
13.如权利要求11或12中所述的烧制支承体,其中两个宽度L1和L2之间的相对差 (L1-L2VL1等于或大于大约5%。
14.如权利要求11至13之一中所述的烧制支承体,其为蜂窝状类型,包含多个朝两端打开的纵向贯穿通道,该支承体的上端构成所述第一水平面。
15.如权利要求11至14之一中所述的烧制支承体,其具有梯形形状,所述第二水平面与该支承体的第二面对应。
16.如权利要求11至14之一中所述的烧制支承体,其具有与该支承体的第二面对应的第三水平面,其具有宽度L3,宽度L3等于或大于宽度L2。
全文摘要
本发明涉及在烧制支承体上烧制蜂窝型多孔陶瓷结构的方法,所述结构包含多个终结于该结构两端的纵向贯穿通道,支承在该支承体上的末端在经过该结构主轴的纵向截面中具有在烧制前的最大宽度LS,所述方法的特征在于,该支承体在所述纵向截面中具有与充当要烧制的结构的支承面的支承体第一面对应的第一水平面,所述水平面具有最大宽度L1;与支承体的所述第一面相隔厚度E1-2的第二水平面,所述第二水平面具有最大宽度L2;宽度L1等于或大于LS;且宽度L2小于L1,还涉及如上所述的支承体。
文档编号C04B35/64GK102448909SQ201080022693
公开日2012年5月9日 申请日期2010年3月22日 优先权日2009年3月24日
发明者舒曼 M. 申请人:欧洲技术研究圣戈班中心
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1