立方晶氮化硼烧结体的制造方法

文档序号:1847309阅读:194来源:国知局
专利名称:立方晶氮化硼烧结体的制造方法
技术领域
本发明涉及高硬度且均质、致密的立方晶氮化硼烧结体的制造方法,特别地,涉及不使用烧结助剂,且与现有条件相比,在较低压低温条件下(5GPa以上,1400°C以上)可得到均质性、致密性高且硬度高的立方晶氮化硼烧结体的制造方法。本申请要求2010年2月9日在日本申请的特愿2010-(^6539号的优先权,这里引
用其内容。
背景技术
以往已知在高硬度钢等铁系被切削材料的切削加工中,作为与被切削材料的亲和性低的工具材料,可以使用例如立方晶氮化硼(以下,用cBN表示)烧结体。这些cBN烧结体一般例如通过将cBN原料粉末与金属、陶瓷等烧结助剂混合,并通过超高压高温处理制成烧结体来制造,但由于该烧结体含有烧结助剂,因此硬度、导热性等差,不能充分发挥cBN固有的特性。因此,为了解决由于使用烧结助剂所带来的问题,如专利文献1所示的那样,提出了高纯度cBN烧结体的制造方法,该方法是将cBN原料粉末用由不含有氧的流体构成、使用固态聚偏氯乙烯、聚氯乙烯和聚乙烯中的1种或2种以上作为流体源的超临界流体进行净化,并在不添加烧结助剂、5GPa、1400°C以上的高压高温条件下进行烧结。报道了通过该制造方法可以得到硬度高且耐热性优异的高纯度cBN烧结体。另外,作为没有使用烧结助剂的其他技术,如专利文献2所示的那样,提出了通过将cBN原料粉末以cBN热力学稳定条件下的以上的压力和2100°C以上的温度、并在不使用烧结助剂、且超高压超高温的条件下进行烧结,由此制造cBN烧结体的技术。但是,在该制造方法中,当以提高cBN材料的生产率等为目的,特别是谋求制造装置的大型化时,不仅成本高,而且操作的难度也变高,因此不能实用。专利文献1日本特开2007-70148号公报专利文献2日本特开平3-159964号公报

发明内容
cBN具有与金刚石相媲美的硬度,且热、化学性稳定,另外,可发挥优异的耐磨损性。cBN目前被用作对高速钢、模具钢、铸铁等铁类被切削材料进行切削加工的工具材料。但是,最近例如为了减轻汽车部件的重量,开始使用异种复合材料,当使用CBN烧结体作为这种异种复合材料(例如球墨铸铁-铝合金的复合材料)的切削工具材料时,以作用于工具的高负荷、以及cBN烧结体的不均质性为主要原因,导致切削工具产生卷刃、缺损等,由此导致发生破损、工具寿命变短这样的问题。本发明的目的在于提供能够简单且以低成本得到硬度高且均质性、致密性优异的 cBN烧结体的新型制造方法。本发明人对制造cBN烧结体时的原料粉末的处理条件等进行了深入研究,结果得到以下见解。在上述专利文献1公开的烧结体的制造方法中,作为原料用粉末,使用粒径范围为0. 5 2μπι的CBN粉末,作为超临界流体源,以在常温常压下为固体且不含有氧的组合物形式使用聚偏氯乙烯、聚氯乙烯和聚乙烯中的1种或2种以上。将上述cBN粉末用达到了超临界流体状态的上述超临界流体源进行净化,不添加烧结助剂而在压力为5GPa以上、 温度为1400°C以上的条件下进行烧结,由此可以得到专利文献1的cBN烧结体。对通过上述专利文献1的方法得到的cBN烧结体的截面进行组织观察,结果发现因cBN烧结体的原料粉末凝聚而形成二次粒子,妨碍了超临界流体均勻分散到二次粒子内部。将含有该二次粒子的原料粉末烧结时,发现在cBN烧结体内部,部分异常粒子生长,形成不均勻组织。进一步地,还发现在上述专利文献1的方法中,原料粉末中二次粒子的解絮凝不充分,因此在利用含有氯成分的超临界流体(聚偏氯乙烯、聚氯乙烯等)进行净化时,氯成分不均勻地残留在cBN烧结体中,这导致cBN烧结体的组织、特性的不均质性。因此,对将cBN烧结体的原料粉末中的二次粒子解絮凝的方案进一步进行了研发现当在将cBN原料粉末用超临界流体净化、并进行烧结之前,作为前处理,使上述cBN原料粉末分散在解絮凝剂溶液中,并除去解絮凝剂溶液,然后成型为成型体时,cBN 原料粉末中二次粒子的解絮凝充分进行,结果超临界流体均勻地进入cBN原料粉末之间的间隙,粉末粒子表面充分得到净化,因此当将其烧结时,组织、特性的均质性、致密性优异, 且可以得到高硬度的cBN烧结体。由该方法制造的cBN烧结体其组织、特性均质、致密,且硬度高,因此例如优选用作耐缺损性、耐磨损性等优异的长寿命的工具材料。本发明的一个实施方式是cBN烧结体的制造方法,其特征在于,具有在解絮凝剂溶液中分散cBN原料粉末来形成分散液、将上述cBN原料粉末中的二次粒子解絮凝的解絮凝工序;在上述解絮凝工序后从上述分散液中除去解絮凝剂溶液的除去工序;在上述除去工序后由上述氮化硼原料粉末成型为成型体的成型工序;将上述成型体与超临界流体源一起,在以上且1400°C以上的条件下进行加压和加热,使上述超临界流体源为超临界状态,同时将上述成型体烧结的烧结工序,其中上述分散液中解絮凝剂的含量比例是按重量比计,占该解絮凝剂与cBN原料粉末的总量的0. 1 5%。上述解絮凝剂可以是磷酸碱金属盐、碳酸碱金属盐、硅酸碱金属盐、铝酸碱金属盐和碱金属氢氧化物中的一种或二种以上。上述解絮凝剂可以是磷酸钠、多磷酸钠、偏磷酸钠、碳酸钠、硅酸钠、铝酸钠和氢氧化钠中的一种或两种以上。上述解絮凝剂可以是偏磷酸钠。上述超临界流体源可以是聚偏氯乙烯、聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酯和ABS树脂中的1种或2种以上。在本发明一个实施方式的cBN烧结体的制造方法中,还可以在上述成型工序后且上述烧结工序前,具有将上述成型体在真空中加热从而除去残留在上述成型体中的上述解絮凝剂的真空加热除去工序。
在本发明一个实施方式的cBN烧结体的制造方法中,还可以在上述成型工序后且上述烧结工序前,将上述成型体、金属箔和上述超临界流体源在试样容器内交替层叠,其中所述金属箔由Zr、Nb、Mo和Ta中的一种或二种以上形成。上述超临界流体源的添加量相对于上述cBN原料粉末按重量比计可以为0. 02 0. 2%。如上所述,本发明在制造cBN烧结体时,将cBN原料粉末预先用解絮凝剂溶液处理而将二次粒子解絮凝后,除去解絮凝剂溶液,用超临界流体净化,不添加烧结助剂而在作为 cBN的热力学稳定条件的5GPa以上且1400°C以上的状态下进行烧结,由此可以得到高硬度 cBN烧结体,该cBN烧结体具有均质且致密、没有异常粒子生长且粒子粉末牢固结合的微粒烧结组织。进一步地,本发明在制造cBN烧结体时,将cBN原料粉末预先用偏磷酸钠分散水溶液处理而将二次粒子解絮凝后,通过真空加热除去偏磷酸钠,然后用超临界流体净化,不添加烧结助剂而在作为cBN的热力学稳定条件的5GPa以上且1400°C以上的状态下进行烧结, 由此可以得到高硬度cBN烧结体,该cBN烧结体具有均质且致密、没有异常粒子生长且粒子粉末牢固结合的微粒烧结组织。当将由该制造方法得到的cBN烧结体例如用作由球墨铸铁和铝合金的复合材料形成的异种复合材料的切削加工用的工具材料时,不仅可以提高被切削材料的精加工面精度,而且不必担心工具的卷刃、缺损、破损,在长期使用时可以发挥优异的耐磨损性,实现切削特性的提高,同时能够延长工具寿命。


图1是在制造本发明的cBN烧结体时,用于填充将进行了前处理的cBN原料粉末成型得到的成型体的囊(力> )的截面示意图。图2表示对本发明烧结体1进行测定得到的X射线衍射图。图3A表示对本发明烧结体1进行维氏硬度Hv测定时的压痕(倍数X750)。图;3B表示本发明烧结体1的均勻、致密的烧结组织。图4表示本发明烧结体1的残留氯的EPMA面分析图像的照片。图5A表示对比较例烧结体3进行维氏硬度Hv测定时的压痕(倍数X750)。图5B表示比较例烧结体3的不均勻且粗密混杂的烧结组织。图6表示比较例烧结体7的残留氯的EPMA面分析图像的照片。符号说明1 Zr 囊2成型体3 Zr 箔4聚偏氯乙烯5石墨圆盘
具体实施例方式以下说明实施本发明的方式。
cBN原料粉末的前处理在该实施方式中,将从cBN原料粉末的解絮凝处理至成型体的成型为止,作为cBN 原料粉末的前处理。在该实施方式中,使用微粒状的原料粉末作为cBN原料粉末,但是当粒径变大时, 烧结变得困难,因此优选其粒径为2 μ m以下。更优选cBN原料粉末的粒径为0. 5 1. 5 μ m。 进一步优选的cBN原料粉末的粒径为0. 5 1. 3 μ m。使这种微粒状的cBN原料粉末分散在解絮凝剂溶液中来制备分散液,将cBN原料粉末的二次粒子解絮凝。解絮凝剂的分类可以列举磷酸碱金属盐、碳酸碱金属盐、硅酸碱金属盐、铝酸碱金属盐和碱金属氢氧化物等。磷酸碱金属盐的解絮凝剂可以列举磷酸钠、多磷酸钠、偏磷酸钠等。碳酸碱金属盐的解絮凝剂可以列举碳酸钠等。硅酸碱金属盐的解絮凝剂可以列举硅酸钠等。铝酸碱金属盐的解絮凝剂可以列举铝酸钠等。碱金属氢氧化物的解絮凝剂可以列举氢氧化钠等。含有解絮凝剂的溶液的溶剂可以使用亲水性的水、疏水性的有机溶剂、和醇寸。偏磷酸钠的含量优选按重量比计,占该偏磷酸钠与cBN原料粉末的总量的0. 1 5wt%。当偏磷酸钠的含量小于0. 时,不能得到cBN原料粉末的分散效果,不能充分进行二次粒子的解絮凝,另一方面,当偏磷酸钠的含量超过5wt%时,即使之后进行真空加热处理,也不能充分除去偏磷酸钠,增加了残留在烧结体中的作为偏磷酸钠成分的磷和钠的量。当残留在烧结体中的磷和钠的量增加时,会阻碍烧结工序,同时导致烧结体的组织、特性的不均勻化。因此,使偏磷酸钠的含量按重量比计,占该偏磷酸钠与cBN原料粉末的总量的 0. 1 5wt%。在将原料粉末中的二次粒子解絮凝后,通过过滤、离心分离、加热蒸发等现有的方法将解絮凝剂溶液从原料粉末中除去。将上述原料粉末例如填充到模具中并成型为成型体,由此得到在内部不含有二次粒子的成型体。当使用偏磷酸钠水溶液作为解絮凝剂时,往偏磷酸钠水溶液中加入规定量的微粒状的cBN原料粉末来制备分散液,加热搅拌该分散液,将cBN原料粉末中的二次粒子解絮凝后,加热该分散液,使水分散发,进行干燥。然后,将得到的干燥粉末例如填充到模具中并成型为成型体,将该成型体在真空中、在例如1000°C下加热30分钟左右,由此除去在成型体中残留的偏磷酸钠。在除去偏磷酸钠时优选的加热条件是在800 1300°C加热20 60分钟。在除去偏磷酸钠时优选的真空条件是气压为IXlO-2Pa以下。优选通过上述真空加热处理,使残留在成型体中的偏磷酸钠量降低至相对于成型体的重量为5%以下。通过上述前处理,在成型体中不存在二次粒子,并且得到残留的解絮凝剂(偏磷酸钠)为微量、且其中不存在二次粒子的成型体。净化将上述前处理中得到的成型体,与例如包含聚偏氯乙烯、聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酯和ABS树脂中的1种或2种以上的超临界流体源一起装到囊中。将内部装有该成型体和超临界流体源的囊在作为cBN热力学稳定区域的、压力为5GPa以上且温度为1400°C以上的条件下(优选5 761^、1400 1900°C,更优选5 6GPa、1400 1900°C ) 进行加压和加热处理。由于在实施了上述前处理的成型体中不存在二次粒子,超临界流体均勻地浸透到cBN微粒的间隙,因此cBN粒子表面被充分活化。其结果是没有添加烧结助剂,而形成均质且cBN微粒相互牢固结合的致密的具有高硬度的cBN烧结体。作为内部盛装成型体和超临界流体源的囊的材质,优选具有高熔点的金属,其中特别优选包含Zr、Nb、Mo和I1a中的一种或二种以上。关于包含聚偏氯乙烯、聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酯和ABS树脂中的 1种或2种以上的超临界流体源的添加量,相对于cBN原料粉末该添加量小于0. 02wt%时, 净化效果小,另一方面,如果超过0. 2wt%,则发生异常粒子生长,同时超临界流体源残留在烧结体中,这成为裂纹等产生的原因,因此优选超临界流体源的添加量相对于cBN原料粉末按重量比计为0. 02 0. 2wt %。烧结条件以往在制造cBN烧结体时,在6GPa以上且1700°C以上的超高压高温条件下进行烧结,但在本发明中,即使在不添加烧结助剂、且比现有技术缓和的条件、即5GPa以上且 14000C以上(优选5 7GPa、1400 1900°C,烧结时间为5 30分钟)这样的与现有技术相比较低压低温的条件下,也可以进行烧结。更优选的烧结条件是5 6GPa、1400 1900°C, 烧结时间为5 30分钟。通过在这种缓和的条件下进行烧结,可以抑制异常粒子生长,因此能够得到具有均质、致密、微粒的烧结组织,且具有高硬度的cBN烧结体。但是,当压力条件低于5GPa时,在烧结时逆转换为六方晶氮化硼(hBN),烧结变得困难,另外,当温度条件低于1400°C时,不发生cBN微粒的直接结合,烧结变难,因此该烧结条件必须是5GPa以上且1400°C以上(优选5 7GPa、1400 1900°C,烧结时间为5 30 分钟,更优选5 6GPa、1400 1900°C,烧结时间为5 30分钟)。图1表示在制造本发明的cBN烧结体时,用于填充进行了前处理的成型体的囊的一个例子。在Zr囊1的内部,交替叠合由进行了前处理的粒径为2μπι以下的cBN粉末形成的成型体2、作为金属箔(间隔材料)的^ 箔3、作为超临界流体源的聚偏氯乙烯4,并在上下配置石墨圆盘5。更详细地来说,在下面的石墨圆盘5上,朝上依次层叠ττ箔3、成型体2、聚偏氯乙烯4、成型体2和^ 箔3。在如图1所示的囊的例子中,含有三个上述叠层重复。在层叠于最上面的^ 箔3上配置上面的石墨圆盘5。作为具体例子,试样容器使用^ 囊,在囊的下部配置石墨圆盘。在该石墨圆盘上配置3片&箔后,层叠由进行了前处理的粒径为2 μ m以下的CBN粉末形成的成型体,在该由进行了前处理的粒径为2μπι以下的cBN粉末形成的成型体上层叠作为超临界流体源的聚偏氯乙烯,在该聚偏氯乙烯上层叠与上述同样的成型体,在成型体上载置3片ττ箔的圆板。进一步地,在成型体间以三明治状配置聚偏氯乙烯,并用ττ箔覆盖在成型体上。超临界流体源不仅可以使用聚偏氯乙烯,也可以使用聚偏氯乙烯、聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酯和ABS树脂中的1种或2种以上。金属箔(间隔材料)的材质不仅可以使用^ ,还可以使用Zr、Nb、Mo和Ta中的1 种或2种以上。
作为用于填充进行了前处理的成型体的囊的材质,不仅可以使用Zr,还可以使用 Zr, Nb, Mo和Ta中的1种或2种以上。以下,基于实施例来具体说明本发明的均质性、致密性高且硬度高的cBN烧结体的制造方法。实施例前处理往蒸馏水200ml中,分别按表1、表2、表3所示的规定量添加作为解絮凝剂的偏磷酸钠、焦磷酸钠和硅酸钠,利用热搅拌器(* 7卜7夕一,一)在转速为150rpm、板温度为 100°C的条件下加热、搅拌1小时。接着,将粒径为2 μ m以下的cBN原料粉末按表1、表2、表3所示的规定量添加到上述偏磷酸钠水溶液、焦磷酸钠水溶液和硅酸钠水溶液中,制备规定的解絮凝剂含量比例 [解絮凝剂的添加量(g)/(cBN原料粉末(g) +解絮凝剂的添加量(g))]的偏磷酸钠水溶液、 焦磷酸钠水溶液和硅酸钠水溶液,将其利用热搅拌器在转速为150rpm、板温度为200°C的条件下加热、搅拌1小时。接着,将含有上述cBN原料粉末的上述偏磷酸钠水溶液、焦磷酸钠水溶液和硅酸钠水溶液,利用热搅拌器在转速为150rpm、板温度为350°C的条件下进行加热、搅拌,除去水分,进一步在干燥机中干燥约10 12小时。接着,将通过干燥得到的粉末0. 5g放入Φ 12. 5的成型模具中,以3ton/Cm2的成型压力制作成型体,并将该成型体在真空中按表1所示的温度X时间进行加热,制作除去了残留解絮凝剂的成型体。烧结将上述得到的成型体各0. 2g与表4所示规定量的超临界流体源(聚偏氯乙烯、聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯)一起填充到图1所示的^ 囊中,利用带型超高压发生装置,在表5所示的作为cBN热力学稳定区域的规定压力、规定温度下进行烧结,由此制造本发明的cBN烧结体1 16(以下称为本发明烧结体1 16)。对于制得的上述本发明烧结体1 16,使用1 ^力一制造的AXSMXP18VAHF进行 XRD测定,检查是否有cBN的逆转换。另外,对于上述本发明烧结体1 16,将其表面研磨后,用金刚石糊料作为研磨剂进行研磨,测定研磨后的本发明烧结体1 16的表面在荷重Ikg时的维氏硬度(Hv)。进一步地,对于上述本发明烧结体1 16,通过EPMA的面分析研究来自超临界流体源(聚偏氯乙烯、或聚氯乙烯)的残留在烧结体中的氯分布。表5表示本发明烧结体1 16的cBN逆转换的有无、维氏硬度、残留氯量和其分布。另外,图2表示对于作为一个例子的本发明烧结体1、利用1 ^力一制造的 AXSMXP18VAHF测定的X射线衍射图,图3A表示对于本发明烧结体1进行维氏硬度Hv测定时的压痕,图4表示本发明烧结体1的残留氯的EPMA面分析图像照片。为了进行比较,在表1、2所示的本发明的制造条件以外的条件制作比较例烧结体 1 10。比较例烧结体1 10的制造条件如表6、7所示。
进一步地,对于所得的比较例烧结体1 10,与本发明1 10同样,通过XRD测定来研究、测定cBN逆转换的有无、维氏硬度、残留氯量和其分布。表8表示cBN逆转换的有无、维氏硬度、残留氯的分布研究、测定结果。进一步地,图5B表示测定作为一个例子的比较例烧结体7的维氏硬度Hv时的压痕,图6表示比较例烧结体7的残留氯的EPMA面分析图像照片。表 权利要求
1.立方晶氮化硼烧结体的制造方法,其特征在于,具有在解絮凝剂溶液中分散立方晶氮化硼原料粉末来形成分散液、并将上述立方晶氮化硼原料粉末中的二次粒子解絮凝的解絮凝工序、在上述解絮凝工序后从上述分散液中除去解絮凝剂溶液的除去工序、在上述除去工序后由上述氮化硼原料粉末成型为成型体的成型工序、在上述成型工序后将上述成型体与超临界流体源一起,在5GPa以上且1400°C以上的条件下进行加压和加热,使上述超临界流体源为超临界状态,同时将上述成型体烧结的烧结工序,上述分散液中解絮凝剂的含量比例是按重量比计,占该解絮凝剂与立方晶氮化硼原料粉末的总量的0. 1 5%。
2.根据权利要求1所述的立方晶氮化硼烧结体的制造方法,其中,上述解絮凝剂是磷酸碱金属盐、碳酸碱金属盐、硅酸碱金属盐、铝酸碱金属盐和碱金属氢氧化物中的一种或两种以上。
3.根据权利要求2所述的立方晶氮化硼烧结体的制造方法,其中,上述解絮凝剂是磷酸钠、多磷酸钠、偏磷酸钠、碳酸钠、硅酸钠、铝酸钠和氢氧化钠中的一种或两种以上。
4.根据权利要求3所述的立方晶氮化硼烧结体的制造方法,其中,上述解絮凝剂是偏磷酸钠。
5.根据权利要求1所述的立方晶氮化硼烧结体的制造方法,其中,上述超临界流体源是聚偏氯乙烯、聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酯和ABS树脂中的1种或2种以上。
6.根据权利要求2所述的立方晶氮化硼烧结体的制造方法,其中,上述超临界流体源是聚偏氯乙烯、聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酯和ABS树脂中的1种或2种以上。
7.根据权利要求3所述的立方晶氮化硼烧结体的制造方法,其中,上述超临界流体源是聚偏氯乙烯、聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酯和ABS树脂中的1种或2种以上。
8.根据权利要求4所述的立方晶氮化硼烧结体的制造方法,其中,上述超临界流体源是聚偏氯乙烯、聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酯和ABS树脂中的1种或2种以上。
9.根据权利要求1所述的立方晶氮化硼烧结体的制造方法,其中,在上述成型工序后且上述烧结工序前,具有将上述成型体在真空中加热从而除去残留在上述成型体中的上述解絮凝剂的真空加热除去工序。
10.根据权利要求1所述的立方晶氮化硼烧结体的制造方法,其中,在上述成型工序后且上述烧结工序前,将上述成型体、金属箔和上述超临界流体源在试样容器内层叠,上述金属箔由Zr、Nb、Mo和Ta中的一种或二种以上形成。
11.根据权利要求1所述的立方晶氮化硼烧结体的制造方法,其中,上述超临界流体源的添加量相对于上述立方晶氮化硼原料粉末按重量比计为0. 02 0. 2%。
全文摘要
本发明提供立方晶氮化硼烧结体的制造,该方法通过不使用烧结助剂而在5GPa、1400℃以上的状态下进行烧结,得到均质性、致密性高的高硬度立方晶氮化硼烧结体。在解絮凝剂溶液中分散立方晶氮化硼原料粉末,将立方晶氮化硼原料粉末中的二次粒子解絮凝后,将该分散液除去,然后成型为成型体,接着将该成型体与超临界流体源一起、在5GPa以上且1400℃以上的条件下进行加压和加热,使上述超临界流体源为超临界状态,同时将上述成型体烧结,由此得到均质性、致密性高的高硬度立方晶氮化硼烧结体。
文档编号C04B35/622GK102190496SQ20111003603
公开日2011年9月21日 申请日期2011年2月9日 优先权日2010年2月9日
发明者A·E·瓦多尤, 田岛逸郎, 赤石实 申请人:三菱综合材料株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1