一种基于频域误差分配的超精密飞切机床精度设计方法

文档序号:1987274阅读:150来源:国知局
专利名称:一种基于频域误差分配的超精密飞切机床精度设计方法
技术领域
本发明涉及一种超精密加工机床精度设计方法,具体涉及一种基于频域误差分配的且适用于加工光学晶体的超精密飞切机床精度设计方法。
背景技术
光学晶体是一种极具应用价值的光学元件材料,可用来制造透镜、棱镜、调制元件、偏光元件等。在大型惯性约束激光核聚变系统中,光学元件有极高的表面质量要求,这种高要求不仅体现在对空间域误差的控制上,更体现在对波前质量进行全空间频段的控制。因为光学元件的低频波前畸变误差直接决定激光束的焦斑分布,而中、高频的波前畸变误差作为光束强度和相位扰动的噪声源,不但易造成焦斑旁瓣,也是引起非线性自聚焦破坏的主要原因之一。光学元件的中频段误差难以用传统的RMS和PV误差值来描述,目前主 要以波前功率谱密度指标PSD值来评价该误差,其要求较为严格。超精密飞切机床能较好地适用于各向异性光学晶体元件的加工,一般为立式结构布局,具有较短的运动链和紧凑的结构环,系统刚度较高。传统的超精密飞切机床设计没有考虑工件表面的频域误差要求,使机床的加工质量虽对诸如面形误差RMS值和PV值等要求满足较好,但对满足频域误差要求的可靠性不足,导致工件并不能很有效地应用于大型光学系统中。

发明内容
本发明的目的是为解决现有超精密飞切机床的设计,没有考虑工件表面的频域误差要求,工件的加工质量和可靠性较差,应用于大型光学系统中适应性差的问题,进而提供一种基于频域误差分配的超精密飞切机床精度设计方法。本发明为解决上述问题采取的技术方案是本发明的一种基于频域误差分配的超精密飞切机床精度设计方法的具体步骤为步骤一、根据光学工件的加工要求,即给出的评价待加工的光学元件一定的空间频率区间的误差即频域误差的功率谱密度,用PSD表示,确定超精密机床的结构布局以及组成部件;步骤二、根据刀具特性、机床结构刚度模型以及工件材料特性确定切削工艺参数;所述机床刚度模型通过有限元方法得到,所述切削工艺参数是指主轴转速、刀具进给速率、刀具前角和切削深度;步骤三、确定刀具和工件耦合条件下的动态波动估计模型,给出刀尖处在一定的空间频率区间的波动误差,即刀尖处的功率谱密度,用PSDd表示,其中30%PSD ( PSDd ^ 35% PSD ;步骤四、根据工件表面的频域误差目标要求,即步骤一中确定的功率谱密度PSD,得到在一定的空间频率区间内刀尖处的频域误差分布,用PSDf表示,其中PSDf彡PSD-PSDd ;步骤五、分析产生飞切机床误差的误差单元,对误差单元作耦合处理;
步骤六、确定所述的各个误差单元的频域误差组合原则,即各个误差单元的频域误差和刀尖处频域误差之间的数学关系模型;所述数学关系模型指一定空间频率区间内各个误差单元在运动中的误差变化曲线所对应的功率谱密度的总和PSDz等于刀尖在运动中的误差变化曲线所对应的PSDf ;步骤七、根据所述的机床结构确定各个误差单元在频域内相对于刀尖处的误差敏感度系数;步骤八、根据所述的各个误差单元的频域误差和刀尖处频域误差之间的数学关系模型、各个误差单元在频域内相对于刀尖处的误差敏感度系数和所述的刀尖处频域误差分布确定在一定空间频率区间内所述的各个误差单元的频域误差分布;步骤九、根据所述的各个误差单元的频域误差分布进行机床相应运动部件的精度设计。本发明的有益效果是(1)本发明设计过程中考虑了工件的频域误差要求,弥补 了传统超精密飞切机床精度设计方法的不足,工件的加工质量和可靠性好,能有效地应用于大型光学系统中,适应性好;(2)本发明可实现特定空间频率区间的频域误差控制,设计灵活性和适应性较优;(3)本发明设计方法可靠性较强,应用范围广泛,此方法也可应用于其他超精密机床的精度设计。


图I是本发明的设计流程框图,图2是本发明实施例的超精密飞切机床的整体结构示意图。
具体实施例方式具体实施方式
一结合图I说明本实施方式,本实施方式的一种基于频域误差分配的超精密飞切机床精度设计方法的具体步骤为步骤一、根据光学工件的加工要求,即给出的评价待加工的光学元件一定的空间频率区间的误差即频域误差的功率谱密度,用PSD表示,确定超精密机床的结构布局以及组成部件;步骤二、根据刀具特性、机床结构刚度模型以及工件材料特性确定切削工艺参数;所述机床刚度模型通过有限元方法得到,所述切削工艺参数是指主轴转速、刀具进给速率、刀具前角和切削深度;步骤三、确定刀具和工件耦合条件下的动态波动估计模型,给出刀尖处在一定的空间频率区间的波动误差,即刀尖处的功率谱密度,用PSDd表示,其中30%PSD ( PSDd ^ 35% PSD ;步骤四、根据工件表面的频域误差目标要求,即步骤一中确定的功率谱密度PSD,得到在一定的空间频率区间内刀尖处的频域误差分布,用PSDf表示,其中PSDf彡PSD-PSDd ;步骤五、分析产生飞切机床误差的误差单元,对误差单元作耦合处理;步骤六、确定所述的各个误差单元的频域误差组合原则,即各个误差单元的频域误差和刀尖处频域误差之间的数学关系模型;所述数学关系模型指一定空间频率区间内各个误差单元在运动中的误差变化曲线所对应的功率谱密度的总和PSDz等于刀尖在运动中的误差变化曲线所对应的PSDf ;步骤七、根据所述的机床结构确定各个误差单元在频域内相对于刀尖处的误差敏感度系数;步骤八、根据所述的各个误差单元的频域误差和刀尖处频域误差之间的数学关系模型、各个误差单元在频域内相对于刀尖处的误差敏感度系数和所述的刀尖处频域误差分布确定在一定空间频率区间内所述的各个误差单元的频域误差分布;步骤九、根据所述的各个误差单元的频域误差分布进行机床相应运动部件的精度设计。本实施方式的步骤一中确定组成部件是指床身、导轨、主轴、刀具的布置和选择。本实施方式的步骤三中的动态波动估计模型可基于所述的机床结构刚度模型、刀具特性、工艺参数组合、工件材料特性综合分析估算得到。 本实施方式的步骤四中频域误差目标可量化为特定空间频率区间内的功率谱密度要求。所述的刀尖处的频域误差分布是指刀尖在加工过程中给定运动轨迹下空间频率区间内的功率谱密度要求。本实施方式的步骤五中的误差单元主要是指机床各运动部件,包括回转部件和直线运动部件,如主轴和导轨。本实施方式步骤六中各个误差单元的频域误差组合原则是指从各个误差单元的频域误差与刀尖在给定运动轨迹下频域误差的数学关系模型。本实施方式的步骤九中机床各个运动部件的精度需达到所述的各个误差单元在特定空间频率区间内误差曲线所对应的功率谱密度要求,进而实现满足工件频域误差要求的精度设计。本实施方式所述的动态波动估计模型与频域误差分布均以一定参考方向来进行计算,如机床坐标系下的Z轴方向。实施例为了进一步说明本发明,结合图I和图2说明本实施例,惯性约束激光核聚变系统中所使用的KDP晶体元件不但具有极高的空间域误差要求,而且有很高的频域误差要求。KDP晶体元件面形的中频误差,它对光束质量的影响主要影响是引起中心亮度的降低并使其展宽,它是引起非线性自聚集的重要原因,对激光系统的安全运行存在着很大的危害。中频误差对应的空间频率区间为O. 03mm 1 < f < 8. 3mm S即空间域周期范围为O. 12mm < L
<33mm,KDP晶体的使用要求规定此误差对应的PSD值应小于15nm2mm。本实施例以该数据作为工件面形在特定空间频率范围的目标频域误差要求的例子来阐述本发明。本实施例的一种基于频域误差分配的超精密飞切机床精度设计方法按照以下步骤实现步骤一、根据工件加工要求确定超精密机床的结构布局和组成部件,如床身、导轨、主轴、刀具的布置和选择。工件为KDP晶体,要求其面形Z向(沿刀具方向)的PSD值在O. 03mm_1 < f < 8. 3mm_1的空间频率区间内< 15nm2mm。超精密飞切机床示意图如图2所示,刀具2采用单晶金刚石刀具,Z向布置,与刀盘3边缘固定且上下可调。主轴I与刀盘3相连,由电机驱动。X向导轨5可带动工件4沿X向进给。为适应KDP晶体各向异性的特点,加工采用飞切的方式;
步骤二、根据刀具特性、机床结构刚度模型、工件材料特性确定经验型的切削工艺参数组合。根据已确定的机床结构布局和各部件特点可通过有限元方法进行分析计算机床结构刚度模型,进而确定经验型的切削工艺参数组合,如加工采用负前角切削,相应的主轴转速和进给速率;步骤三、确定刀具-工件耦合条件下的动态波动估计模型。给出刀尖处在一定的空间频率区间的波动误差,即刀尖处的功率谱密度,用PSDd表示,在O. 03mm 1 < f < 8. 3mm 1的空间频率区间PSDd的值应> 5nm2mm ;动态波动估计模型可基于所述的机床结构刚度模型、刀具特性、工艺参数组合、工件材料特性综合分析估算得到;步骤四、根据所述的动态波动估计模型和所述的工艺参数组合中的进给速率和主轴转速值,结合工件表面的频域误差目标要求,得到刀尖处的频域误差分布。根据工件面形Z向PSD值的要求和所述的刀尖处频域误差传递模型,得到刀尖Z向运动误差在O. 03mm 1
<f < 8. 3mm_1的空间频率区间内的PSDf值应彡10nm2mm ;·步骤五、分析产生机床误差的各个误差单元,对各个误差单元作耦合处理,以便实现误差单元之间的数值计算;步骤六、确定所述的各个误差单元的频域误差组合原则,即各个误差单元的频域误差和刀尖处频域误差之间的数学关系模型。所述的数学关系模型指特定空间频率区间内各个误差单元在运动中的误差变化曲线所对应的功率谱密度的总和PSDz等于刀尖在运动中的误差变化曲线所对应的PSDf值;步骤七、根据所述的机床结构确定各个误差单元在频域内相对于刀尖处的误差敏感度系数。本实施例中引起机床误差的误差单元是主轴和X向导轨,根据结构分析可得到频域内主轴和X向导轨对于刀尖处的Z向误差敏感度系数,例如主轴相对于刀尖处的Z向误差敏感度系数为O. 8,X向导轨相对于刀尖处的Z向误差敏感度系数为O. 2 ;步骤八、根据所述的各个误差单元的频域误差和刀尖处频域误差之间的数学关系模型、各个误差单元在频域内相对于刀尖处的误差敏感度系数和所述的刀尖处频域误差分布确定所述的各个误差单元的频域误差分布。故得到主轴Z向的运动误差在O. 03mm 1 < f
<8. 3mm 1的空间频率区间内所对应的PSDzh值应彡8nm2mm, X向导轨Z向的运动误差在O. 03mm 1 < f < 8. 3mm 1的空间频率区间内所对应的PSDdg值应彡2nm2mm ;步骤九、根据所述的各个误差单元的频域误差分布进行机床各个运动部件的精度设计,根据步骤八中所述的主轴和X向导轨的频域误差分布可进行机床精度设计,即设计所述的主轴其Z向运动误差需满足在O. 03mm^ < f < 8. 3mm 1的空间频率区间内的?30&值应彡8nm2mm,X向导轨其Z向运动误差需满足在O. 03mm 1 < f < 8. 3mm 1的空间频率区间内的PSDdg值应彡2nm2mm。工作原理本发明基于工件频域误差要求进行超精密飞切机床精度设计,工件频域误差要求以特定空间频率区间内的功率谱密度值来衡量,且需以一定参考方向进行量化。先确定超精密机床的结构布局和组成部件,接着确定经验型的切削工艺参数组合,结合机床刚度分析再确定刀具-工件耦合条件下的动态波动估计模型。根据所述的动态波动估计模型和频域误差目标要求将工件频域误差要求转移到刀尖处的频域误差分布要求。然后建立机床各个误差单元的频域误差与刀尖在给定运动轨迹下频域误差的数学关系模型,根据所述的各个误差单元的频域误差相对于刀尖处频域内误差敏感度系数和所述的刀尖处频域误差分 布要求确定所述的各个误差单元的频域误差分布要求。进而,根据所述的各个误差单元的频域误差分布要求来指导各个误差单元的精度设计,即各个误差单元的精度需满足其对应的频域误差分布要求。
权利要求
1.一种基于频域误差分配的超精密飞切机床精度设计方法,其特征在于所述设计方法的具体步骤为 步骤一、根据光学工件的加工要求,即给出的评价待加工的光学元件一定的空间频率区间的误差即频域误差的功率谱密度,用PSD表示,确定超精密机床的结构布局以及组成部件; 步骤二、根据刀具特性、机床结构刚度模型以及工件材料特性确定切削工艺参数;所述机床刚度模型通过有限元方法得到,所述切削工艺参数是指主轴转速、刀具进给速率、刀具前角和切削深度; 步骤三、确定刀具和工件耦合条件下的动态波动估计模型,给出刀尖处在一定的空间频率区间的波动误差,即刀尖处的功率谱密度,用PSDd表示,其中30% PSD ( PSDd ( 35%PSD ; 步骤四、根据工件表面的频域误差目标要求,即步骤一中确定的功率谱密度PSD,得到在一定的空间频率区间内刀尖处的频域误差分布,用PSDf表示,其中PSDf ( PSD-PSDd ; 步骤五、分析产生飞切机床误差的误差单元,对误差单元作耦合处理; 步骤六、确定所述的各个误差单元的频域误差组合原则,即各个误差单元的频域误差和刀尖处频域误差之间的数学关系模型;所述数学关系模型指一定空间频率区间内各个误差单元在运动中的误差变化曲线所对应的功率谱密度的总和PSDz等于刀尖在运动中的误差变化曲线所对应的PSDf ; 步骤七、根据所述的机床结构确定各个误差单元在频域内相对于刀尖处的误差敏感度系数; 步骤八、根据所述的各个误差单元的频域误差和刀尖处频域误差之间的数学关系模型、各个误差单元在频域内相对于刀尖处的误差敏感度系数和所述的刀尖处频域误差分布确定在一定空间频率区间内所述的各个误差单元的频域误差分布; 步骤九、根据所述的各个误差单元的频域误差分布进行机床相应运动部件的精度设计。
全文摘要
一种基于频域误差分配的超精密飞切机床精度设计方法,它涉及一种超精密加工机床精度设计方法,以解决现有超精密飞切机床的设计,没有考虑工件表面的频域误差要求,工件的加工质量和可靠性较差,应用于大型光学系统中适应性差的问题,所述设计方法的主要步骤为步骤一、确定刀具和工件耦合条件下的动态波动估计模型;步骤二、得到刀尖处的频域误差分布;步骤三、分析产生飞切机床误差的误差单元;步骤六、确定所述的各个误差单元的频域误差组合原则;步骤四、确定各个误差单元在频域内相对于刀尖处的误差敏感度系数;步骤五、确定在一定空间频率区间内所述的各个误差单元的频域误差分布。本发明用于超精密飞切机床精度设计。
文档编号B28D5/00GK102862238SQ20121034429
公开日2013年1月9日 申请日期2012年9月18日 优先权日2012年9月18日
发明者梁迎春, 陈国达, 孙雅洲, 张强, 张飞虎, 刘海涛, 陈万群, 苏浩 申请人:哈尔滨工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1