一种聚酰亚胺中空纤维制备方法与流程

文档序号:18098100发布日期:2019-07-06 11:10阅读:343来源:国知局
一种聚酰亚胺中空纤维制备方法与流程

本发明涉及聚酰亚胺材料纳米纤维制备技术领域,特别涉及一种聚酰亚胺中空纤维制备方法。



背景技术:

聚酰亚胺(pi)是指分子主链中含有酰亚胺环的一类聚合物,聚酰亚胺中的高度共轭的刚性主链结构使其具有很好的耐热性、机械性能、电性能、碳化性能等,广泛地应用于航空航天、微电子、纳米、隔膜等领域。聚酰亚胺主要通过两步法制备,由芳香族四羧酸二酐与二胺为原料,初步缩聚成聚酰胺酸(paa)后,再高温或者通过化学亚胺化法而制得。

中空纳米纤维是一类拥有二级空腔结构、中空单通道或多通道结构的一维的功能纳米材料。中空纳米纤维具有超高的比表面积、超大的长径比及中空轻质的优点,在催化、过滤分离、纳米发电、感应、生物医药等领域具有巨大的潜在应用价值。

现有制备纳米中空纤维的方法有模板法、悬浮聚合法、乳液聚合法和自组装法,然而这些方法存在着一定的缺点,如制备过程冗杂、制备条件需严格控制、环境污染较大、成本较高等,因此寻求一种更加简便、可控、清洁、低廉的制备方法一直是纳米中空材料研究的热点。

通常制备聚酰亚胺中空纳米纤维的核介质一般为水溶性聚合物的溶液,如聚乙烯吡咯烷酮(pvp)、聚氧化乙烯(peo)、和聚乙二醇(peg),但该方法需要利用去离子水长时间浸泡烘干制孔,耗时繁琐而且消耗水资源较多,成本较高污染较大,且由于水的浸泡作用导致纤维强度很差,纤维直径大而空腔小,纤维形貌单一。

聚碳酸亚丙酯(ppc)是以二氧化碳(co2)和环氧丙烷(c3h6o)为原料共聚而成的一种全生物降解塑料。ppc的玻璃化转变温度为(35℃~40℃),在常温下能保证纤维形貌稳定;初始热分解温度在200℃左右,热分解出co2和h2o形成二次致孔且绿色环保无污染,无需进行水处理;惰性气体保护下,热分解无残留,清洁且具有良好的致孔效果;可溶于多种有机溶剂如二氯甲烷(dcm)、二甲基甲酰胺(dmf)、乙酸乙酯(eac)、四氢呋喃(thf)等,能与多种高分子互溶,保证能与聚酰亚胺进行同轴电纺,分子量范围为2000~100000,可用于调控纤维直径和中空孔径。



技术实现要素:

本发明的目的在于克服现有技术的不足,提供一种聚酰亚胺中空纤维制备方法,该方法制备工艺简单、过程条件可控、环保清洁且安全低价。

本发明的技术方案为:一种聚酰亚胺中空纤维制备方法,包括以下步骤:

(1)在密闭容器中预先将二氨基二苯醚(oda)溶于极性有机溶剂中,再向密闭容器中加入均苯四甲酸二酐(pmda),制得聚酰胺酸溶液为壳介质,0~5℃保存备用;

(2)二氯甲烷(dcm)与极性有机溶剂按照质量比为10:1~10:10混合形成溶剂,聚碳酸丙烯酸酯(ppc)溶解于上述溶液中,得到聚碳酸亚丙酯溶液为核介质;

(3)用步骤(1)制备的壳介质和步骤(2)制得的核介质,在室温下用同轴电纺的方法制备纳米复合纤维;

(4)将步骤(3)的纳米复合纤维经过热处理,得到聚酰亚胺中空纳米纤维。

所述步骤(1)中,壳介质的制备过程在常温下进行,均苯四甲酸二酐分多次加入密闭容器,边加入边搅拌反应至少5h。

所述步骤(1)中,二氨基二苯醚(oda)与均苯四甲酸二酐(pmda)的摩尔比为1:1.02~1:1.04。

所述步骤(1)中,聚酰胺酸溶液的固含量为10%~15%。

所述步骤(1)和步骤(2)中,极性有机溶剂采用二甲基甲酰胺。

所述步骤(1)中,密闭容器采用螺纹橡胶密封的宽口玻璃瓶。

所述步骤(2)中,聚碳酸亚丙酯溶液的固含量为10%~20%。

所述步骤(3)中,同轴电纺电压为13kv~30kv,壳介质注射速度为0.3~1.0ml/h,核介质注射速度为0.1ml/h~1.0ml/h,接收距离为10~20cm。同轴电纺的壳针头型号为15g,核针头型号为21g,壳介质针头外径为1.81mm,内径为1.45mm,核介质针头外径0.8mm,内径0.5mm,滚筒收集线速度为2.4m/s。

所述步骤(4)中,纳米复合纤维进行热处理时,将纳米复合纤维在50~80℃真空中烘干12~48h后,再使用一步煅烧法处理。

所述一步煅烧法为:将烘干后的纳米复合纤维放于马弗炉或者管式炉中,在空气或者惰性气体进行阶段性升温。一步煅烧法中高温处理温度为阶段升温,100℃保温1h,200℃保温1h,300℃保温1h,350℃保温40min。

上述同轴电纺的原理为,两个内径不同的针头嵌套组合,大内径的针头注入壳介质溶液,小内径的针头注入核介质溶液,壳介质溶液和核介质溶液在针口处汇合,在106~107伏的高压静电场作用下,壳介质溶液包裹着核介质溶液,在针口处形成复合泰勒锥,由于两种溶液扩散系数较低,汇合时间短,两种溶液保持分层状态并不会混合;随着电压升高,电场力变大,电场力克服液体表面的张力,复合泰勒锥被拖拽拉伸,经过强烈的鞭动、弯曲变形,壳介质溶液和核介质溶液的溶剂均迅速挥发固化在接收装置上,形成具有壳-核结构的复合纤维,再将核介质去除,即能得到中空纤维。

本发明相对于现有技术,具有以下有益效果:

本聚酰亚胺中空纤维制备方法首次选用全生物塑料聚碳酸亚丙酯(ppc)作为核介质,利用一步煅烧法,将核介质热分解成二氧化碳释放,制孔效果优异、环保清洁,并且通过气体的逸散进一步提高中空结构。

本聚酰亚胺中空纤维制备方法采用同轴电纺法制备聚酰亚胺中空纤维,工艺简单、纤维结构优异、均一,孔隙率高达94%~98%。

附图说明

图1为实施例3方法制备的聚酰亚胺中空纤维的电镜图。

图2为实施例4方法制备的聚酰亚胺中空纤维的电镜图。

具体实施方式

下面结合实施例,对本发明作进一步的详细说明,但本发明的实施方式不限于此。

实施例1

本实施例一种聚酰亚胺中空纤维制备方法,具体包括以下步骤:

(1)常温下在密闭容器中预先将二氨基二苯醚(oda)溶于二甲基甲酰胺(dmf)中,再向密闭容器中加入均苯四甲酸二酐(pmda),二氨基二苯醚(oda)与均苯四甲酸二酐(pmda)的摩尔比为1:1.02~1:1.04,均苯四甲酸二酐(pmda)分多次加入密闭容器后,搅拌反应5h。paa质量为3g,dmf质量为17g,制得聚酰胺酸溶液为壳介质,低温保存备用,聚酰胺酸溶液的固含量为15%。密闭容器采用螺纹橡胶密封的宽口玻璃瓶。

(2)二氯甲烷(dcm)与二甲基甲酰胺(dmf)按照质量比为8:2混合形成溶剂,dcm为14.4g,dmf为3.6g,2g聚碳酸丙烯酸酯(ppc)溶解于上述18g的上述溶液中,得到聚碳酸亚丙酯溶液为核介质,聚碳酸亚丙酯溶液的固含量为10%。

(3)用步骤(1)制备的壳介质和步骤(2)制得的核介质,在室温下用同轴电纺的方法制备纳米复合纤维;将paa溶液置于针筒中与同轴针头的壳层相连,聚碳酸亚丙酯溶液置于针筒中与同轴针头的核层相连,壳针头型号为15g,核针头型号为21g。室温下工作电压为15kv,注射速度与针头截面积适配,壳介质注射速度为0.6ml/h,核介质注射速度为0.1ml/h,接收距离为15cm,滚筒收集线速度2.4m/s,同轴电纺10h得到聚酰胺酸核壳纳米复合纤维。

(4)将步骤(3)的纳米复合纤维经过热处理,60℃真空烘干12h后,将纳米复合纤维置于马弗炉中使用一步煅烧法阶段升温,经过100℃保温1h,200℃保温1h,300℃保温1h,350℃保温40min,将paa转化为pi,同时ppc热分解成二氧化碳形成聚酰亚胺中空纤维,孔隙率为95.4%,纤维直径100~200nm左右,中空孔径50nm,拉伸强度为7.53mpa。

实施例2

本实施例一种聚酰亚胺中空纤维制备方法,具体包括以下步骤:

(1)常温下在密闭容器中预先将二氨基二苯醚(oda)溶于二甲基甲酰胺(dmf)中,再向密闭容器中加入均苯四甲酸二酐(pmda),二氨基二苯醚(oda)与均苯四甲酸二酐(pmda)的摩尔比为1:1.02~1:1.04,均苯四甲酸二酐(pmda)分多次加入密闭容器后,搅拌反应5h。paa质量为3g,dmf质量为17g,制得聚酰胺酸溶液为壳介质,低温保存备用,聚酰胺酸溶液的固含量为15%。密闭容器采用螺纹橡胶密封的宽口玻璃瓶。

(2)二氯甲烷(dcm)与二甲基甲酰胺(dmf)按照质量比为8:2混合形成溶剂,dcm为13.6g,dmf为3.4g,3g聚碳酸丙烯酸酯(ppc)溶解于上述17g的上述溶液中,得到聚碳酸亚丙酯溶液为核介质,聚碳酸亚丙酯溶液的固含量为15%。

(3)用步骤(1)制备的壳介质和步骤(2)制得的核介质,在室温下用同轴电纺的方法制备纳米复合纤维;将paa溶液置于针筒中与同轴针头的壳层相连,聚碳酸亚丙酯溶液置于针筒中与同轴针头的核层相连,壳针头型号为15g,核针头型号为21g。室温下工作电压为15kv,注射速度与针头截面积适配,壳介质注射速度为0.6ml/h,核介质注射速度为0.1ml/h,接收距离为15cm,滚筒收集线速度2.4m/s,同轴电纺10h得到聚酰胺酸核壳纳米复合纤维。

(4)将步骤(3)的纳米复合纤维经过热处理,60℃真空烘干12h后,将纳米复合纤维置于马弗炉中使用一步煅烧法阶段升温,经过100℃保温1h,200℃保温1h,300℃保温1h,350℃保温40min,将paa转化为pi,同时ppc热分解成二氧化碳形成聚酰亚胺中空纤维,孔隙率为95.9%,纤维直径在150~250nm左右,中空孔径为80nm左右,拉伸强度为7.09mpa。

实施例3

本实施例一种聚酰亚胺中空纤维制备方法,具体包括以下步骤:

(1)常温下在密闭容器中预先将二氨基二苯醚(oda)溶于二甲基甲酰胺(dmf)中,再向密闭容器中加入均苯四甲酸二酐(pmda),二氨基二苯醚(oda)与均苯四甲酸二酐(pmda)的摩尔比为1:1.02~1:1.04,均苯四甲酸二酐(pmda)分多次加入密闭容器后,搅拌反应5h。paa质量为3g,dmf质量为17g,制得聚酰胺酸溶液为壳介质,低温保存备用,聚酰胺酸溶液的固含量为15%。密闭容器采用螺纹橡胶密封的宽口玻璃瓶。

(2)二氯甲烷(dcm)与二甲基甲酰胺(dmf)按照质量比为8:2混合形成溶剂,dcm为12.8g,dmf为3.2g,4g聚碳酸丙烯酸酯(ppc)溶解于上述16g的上述溶液中,得到聚碳酸亚丙酯溶液为核介质,聚碳酸亚丙酯溶液的固含量为20%。

(3)用步骤(1)制备的壳介质和步骤(2)制得的核介质,在室温下用同轴电纺的方法制备纳米复合纤维;将paa溶液置于针筒中与同轴针头的壳层相连,聚碳酸亚丙酯溶液置于针筒中与同轴针头的核层相连,壳针头型号为15g,核针头型号为21g。室温下工作电压为15kv,注射速度与针头截面积适配,壳介质注射速度为0.6ml/h,核介质注射速度为0.1ml/h,接收距离为15cm,滚筒收集线速度2.4m/s,同轴电纺10h得到聚酰胺酸核壳纳米复合纤维。

(4)将步骤(3)的纳米复合纤维经过热处理,60℃真空烘干12h后,将纳米复合纤维置于马弗炉中使用一步煅烧法阶段升温,经过100℃保温1h,200℃保温1h,300℃保温1h,350℃保温40min,将paa转化为pi,同时ppc热分解成二氧化碳形成聚酰亚胺中空纤维,孔隙率为96.3%,纤维直径在200~250nm左右,中空孔径为100nm左右,拉伸强度为5.08mpa。

实施例4

本实施例一种聚酰亚胺中空纤维制备方法,具体包括以下步骤:

(1)常温下在密闭容器中预先将二氨基二苯醚(oda)溶于二甲基甲酰胺(dmf)中,再向密闭容器中加入均苯四甲酸二酐(pmda),二氨基二苯醚(oda)与均苯四甲酸二酐(pmda)的摩尔比为1:1.02~1:1.04,均苯四甲酸二酐(pmda)分多次加入密闭容器后,搅拌反应5h。paa质量为3g,dmf质量为17g,制得聚酰胺酸溶液为壳介质,低温保存备用,聚酰胺酸溶液的固含量为15%。密闭容器采用螺纹橡胶密封的宽口玻璃瓶。

(2)二氯甲烷(dcm)与二甲基甲酰胺(dmf)按照质量比为8:2混合形成溶剂,dcm为12.8g,dmf为3.2g,4g聚碳酸丙烯酸酯(ppc)溶解于上述16g的上述溶液中,得到聚碳酸亚丙酯溶液为核介质,聚碳酸亚丙酯溶液的固含量为20%。

(3)用步骤(1)制备的壳介质和步骤(2)制得的核介质,在室温下用同轴电纺的方法制备纳米复合纤维;将paa溶液置于针筒中与同轴针头的壳层相连,聚碳酸亚丙酯溶液置于针筒中与同轴针头的核层相连,壳针头型号为15g,核针头型号为21g。室温下工作电压为15kv,注射速度与针头截面积适配,壳介质注射速度为0.6ml/h,核介质注射速度为0.3ml/h,接收距离为15cm,滚筒收集线速度2.4m/s,同轴电纺10h得到聚酰胺酸核壳纳米复合纤维。

(4)将步骤(3)的纳米复合纤维经过热处理,60℃真空烘干12h后,将纳米复合纤维置于马弗炉中使用一步煅烧法阶段升温,经过100℃保温1h,200℃保温1h,300℃保温1h,350℃保温40min,将paa转化为pi,同时ppc热分解成二氧化碳形成聚酰亚胺中空纤维,孔隙率为97.6%,纤维直径在600~800nm左右,中空孔径为600nm左右,拉伸强度还能保留1.28mpa。

如上所述,便可较好地实现本发明,上述实施例仅为本发明的较佳实施例,并非用来限定本发明的实施范围;即凡依本发明内容所作的均等变化与修饰,都为本发明权利要求所要求保护的范围所涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1