结合使用蜡与空化连接层的具有改进的wvtr的膜的制作方法

文档序号:2447317阅读:189来源:国知局
专利名称:结合使用蜡与空化连接层的具有改进的wvtr的膜的制作方法
技术领域
本发明涉及具有增强的阻隔特性的多层包装膜,它特别适用于食品的包装膜,能成功地进行层压、印刷或涂覆操作。
塑料(如聚合物膜)被广泛地用于包装各种食品和非食品。为了确保这些聚合物膜所包装的产品能得到适当的保存,这些膜必需具有防止空气、湿气、有害味道等透过的阻隔性能。然而,单纯的、未经改性的聚合物膜都不具备适合包装需求的足够的气体和湿气阻隔性能。例如,聚烯烃膜(如聚丙烯膜)由于其成本低、制造容易特别适合于制备包装膜。然而,这些聚丙烯膜的固有特性是允许氧气和水蒸气从膜外部渗透入由膜制得的包装内部。当这些膜被用作食品包装时,透过这些膜的氧气和水蒸气会促使膜内所包装食品快速变质。
为了得到可以接受的阻隔性能,研究人员一直在研制具有改进的水蒸气透过率(water vapor transmission rates,WVTR)的多层聚合物膜。例如,已知将蜡混入膜结构中可以改进水蒸气透过率。据信,蜡能迁移或浮散(bloom)至膜结构的外表面并变成晶体,这样就赋予膜优越的WVTR和改进的隔氧性能(oxygen barrierproperties)。然而,在这一方法中表面上的蜡很容易被除去,因此难以保持这一WTVR和隔氧性能,尤其是当这些膜用于层压、印刷和涂覆操作时。
为了得到具有改进的阻隔性能的膜,美国专利5,141,801和5,155,160揭示了将蜡混入共挤出膜的聚烯烃表面层中。为了防止蜡迁移到将被用于层压和印刷的表面上,这两篇专利建议膜包括一层聚合物材料(如聚酰胺或乙烯-乙烯醇共聚物(EVOH))的阻隔层。然而,这些聚酰胺和EVOH阻隔层昂贵且难以制得。因此,虽然已有技术揭示了多种有用的膜,但是这些膜通常容易在随后的层压、印刷和涂覆过程中脱除蜡,并且制备困难且昂贵。
因此,需要一种包装膜,它能简单便宜地制备,能够得到增强的阻隔氧气和水蒸气透过的性能,并且能够进行随后的层压、印刷或涂覆操作。
本发明的一个目的是提供一种具有改进的隔氧和阻水蒸气性能的包装膜。
本发明还有一个目的是提供一种能有效地进行层压、印刷或涂覆操作的包装膜。
这些目的和其它目的都在本发明中得以实现,本发明提供了一种多层膜,该多层膜具有聚烯烃芯层、位于聚烯烃芯层至少一面上的共聚物或三元共聚物中间层(中间层中具有空隙(voids)并包含局限在空隙内的蜡)以及位于中间层上的一层表面层。较好的是,聚烯烃芯层和表面层是聚丙烯。中间层较好的是乙烯/丙烯共聚物或乙烯/丁烯/丙烯三元共聚物,含有2-20%的晶形费-托合成蜡局限在中间层中的空隙内。所述多层膜最好是五层双轴取向的膜,它具有聚丙烯芯层、位于芯层两面上的空化(cavitated)即有空隙(voided)的共聚物或三元共聚物中间层(包含局限于中间层中空隙内的蜡)和位于两层中间层上的聚丙烯表面层。
本发明还提供了一种制备所述多层膜的方法,该方法包括将其中包含蜡的第一种聚烯烃树脂、其中分散有颗粒的共聚物或三元共聚物的第二种聚烯烃树脂以及第三种聚烯烃树脂共挤出,形成多层基膜(base film),所述基膜具有包含蜡的聚烯烃芯层,位于聚烯烃芯层至少一面上的其中包含有颗粒的共聚物或三元共聚物中间层以及位于中间层上的聚烯烃表面层。该方法还包括对多层基膜进行取向,取向的条件足以使得微粒在中间层中形成空隙,并使得蜡从聚烯烃芯层迁移到中间层的空隙中。
因此,就此发现了空化的共聚物或三元共聚物中间层的空隙内包含蜡的多层膜能提供优良的WVTR和隔氧性能,同时防止蜡易于在随后的膜层压、印刷和涂覆过程中脱除。
本发明是针对多层膜结构,它包含聚烯烃芯层、位于聚烯烃芯层至少一面上的共聚物或三元共聚物中间层(中间层中具有空隙并包含局限于空隙内的蜡)以及位于中间层上的表面层。本发明的膜结构提供了优良的WVTR和隔氧性能,同时使得该膜结构能够进行层压、印刷和涂覆,而不会对WVTR和隔氧性能产生不利影响。
本发明设想的聚烯烃芯层可以是任何能适合用于制造热塑性膜的聚烯烃聚合物。特别好的聚烯烃聚合物包括丙烯的均聚物和共聚物。具有特别用途的丙烯均聚物包括80-100%全同立构聚丙烯,最好的是95-96%全同立构聚丙烯。较好的是,丙烯均聚物的熔体指数在2-10克/10分钟的范围内,最好的是熔体指数为3.5-6克/10分钟。较好的丙烯共聚物包括98-96/2-4丙烯/乙烯共聚物、50/50丙烯/1-丁烯共聚物、95/5丙烯/1-戊烯共聚物、90/10丙烯/1-己烯共聚物、80/20丙烯/4-甲基-1-戊烯共聚物等。
膜结构还包含位于芯层至少一面上的中间层即“连接”层,所述中间层是聚烯烃的共聚物或三元共聚物。较好的是在芯层的两面上都具有中间层。合适的聚烯烃的共聚物或三元共聚物的例子包括乙烯-丙烯(EP)共聚物和乙烯-丙烯-1-丁烯(EPB)三元共聚物,但不限于此。在乙烯-丙烯共聚物中乙烯与丙烯的比宜为2-4%(重量)乙烯和96-98%(重量)聚丙烯,而乙烯-丙烯-1-丁烯三元共聚物中乙烯与丙烯与1-丁烯的比宜为0-15%乙烯、70-100%丙烯和0-15%1-丁烯。
中间层包含其中的空隙,通常称其为“空穴”,由此得到具有空隙即空化的膜层。在多层膜结构中包含具有空隙即空化的层是已有技术中已知的,例如说明于美国专利4,377,616中。这些空隙通常是通过向形成膜层的树脂中混入产生空隙的颗粒或粒状材料而形成的。通过向树脂中混入这些粒状材料,形成粒状材料分散于整个膜层中的膜层。当对膜层进行取向时,分散的粒状材料在它们的位置上形成空隙层,这将在本文中更详细地加以论述。这些空隙通常能赋予膜高度的不透明性。
产生空隙的颗粒可以是能够在中间层中形成空隙而不会使膜材料变差的任何材料,如美国专利4,337,616中说明的材料。产生空隙的颗粒较好的是其熔点高于中间层聚合物熔点的热塑性树脂。较佳材料的例子包括聚酰胺、尼龙、聚酯、丙烯酸类树脂等。产生空隙的材料最好是聚对苯二甲酸丁二酯(PBT)。较好的是将PBT混入形成中间层的树脂中,这将在本文中更详细地论述,PBT的用量为4-15%,最好为6-10%。
在本发明中,将晶形蜡混入多层膜中。在制备膜时蜡迁移到中间层中的空隙内,并在那里富集。蜡赋予膜优越的WVTR和改进的隔氧性能。蜡较好的是烃类蜡,如矿物蜡或合成蜡。蜡更好是聚乙烯或聚丙烯蜡。特别好的蜡是根据费-托方法制得的聚丙烯蜡,通常被称为费-托合成蜡,通常具有640的平均分子量和80℃的熔点。
蜡最初就混入芯层中,在膜的制备和取向的过程中迁移至中间层的空隙内,这将在本文中更详细地论述。在将蜡混入膜结构的已有技术中,所有的蜡都容易地迁移或浮散至表面,它们会在对膜进行擦拭或随后的加工中脱除。中间层中的空隙为将蜡容纳或局限在膜结构内提供了内表面积,这样就能防止所有的蜡浮散至膜的表面。
加入膜结构中的蜡用量取决于整个膜结构的厚度和聚烯烃层的类型。蜡的用量较好的是2-20%,更好的是6-12%,最好的是12%。超过20%的用量往往会制得不耐用的膜结构。
如上所述,中间层是空化即有空隙的聚烯烃共聚物或三元共聚物。据信,在局限于空隙内的蜡与具有空隙的共聚物或三元共聚物中间层之间有独特的协同作用。我们认为这一协同作用的原因是蜡在共聚物或三元共聚物中的溶解度提高,并且蜡在该层中的扩散速率高。这使得蜡扩散至空隙的内表面,在空隙壁上产生高密度层。
本发明的膜结构还包含位于中间层上的表面层即“皮”层。当在芯层的两面上都有中间层时,较好的是在两层所述中间层上都有表面层。表面层宜为聚烯烃层。本发明设想的有用的聚烯烃包括任何适合用于制造热塑性膜的聚烯烃聚合物。较佳聚烯烃聚合物包括高密度聚乙烯、丙烯的均聚物和共聚物,如上述可用作芯层的聚合物,以及三元共聚物。应该注意,当PBT用作中间层空穴剂(cavitatingagent)的用量大于9%时,邻近中间层的表面层宜为具有较高熔体指数的聚烯烃(如熔体指数是7-10克/10分钟的聚丙烯均聚物)的层。
使用空化即有空隙的表面层也是本发明可以想到的。在特别好的实例中,表面层包含丙烯的共聚物或三元共聚物。虽然这些共聚物和三元共聚物被认为会帮助一部分的蜡浮散至膜结构的表面,但是据信具有空隙的中间层能够将大部分蜡容纳于中间层的空隙中,从而保持膜结构的阻隔性能。
本发明膜的厚度较好是0.5-1.25密耳,芯层宜为总厚度的52-88%,中间层宜为每一面的中间层是总厚度的2-12%,表面层宜为每一面的表面层是总厚度的4-12%。
本发明的膜可以是透明或不透明的。膜较好是不透明的,不透明性归因于中间层具有空穴的性质。
较好的是,本发明膜的防湿或阻水蒸气性为在37.8℃(100°F)的温度和环境相对湿度的条件下,透过率低于每天每100平方英寸0.25克,最好的是透过率低于每天每100平方英寸0.2克。
本发明的多层膜结构较好是其中不同树脂形成膜结构各特定层的共挤出膜。本发明还涉及一种具有优良的阻隔氧气和水蒸气透过性能的多层取向膜结构的制备方法。在该方法中,将三种聚烯烃树脂共挤出,得到具有对应于聚烯烃树脂的多层膜层的多层基膜结构。第一种聚烯烃树脂是用来得到聚烯烃芯层的形成芯层树脂,如上所述它较好的是丙烯的均聚物或共聚物。将晶形蜡混入形成芯层的聚烯烃树脂中。
第二种聚烯烃树脂是用来得到中间层的形成中间层树脂。如上所述,中间层是其中具有空隙的聚烯烃共聚物或三元共聚物。这样,形成中间层的树脂包含混入其中的产生空隙的颗粒或粒状材料。
第三种聚烯烃树脂是用来得到聚烯烃表面层即皮层的形成表面层树脂,宜为丙烯的均聚物、共聚物或三元共聚物。
将三种聚烯烃树脂共挤出形成多层基膜结构,所述基膜结构具有其中包含蜡的芯层、位于芯层至少一面上的其中包含产生空隙的颗粒的中间层以及位于中间层上的表面层。较好的是,将三种聚烯烃树脂共挤出,形成五层基膜结构,它具有其中包含蜡的芯层、位于芯层两面上的其中包含产生空隙的颗粒的中间层,以及位于两层中间层上的表面层。
如此形成的多层基膜结构是过渡或临时的产物,它将随后进行取向以制得多层取向膜产品。对这些挤出的基膜进行取向是已有技术熟知的,能得到改进的复合层的物理性能,如耐挠曲开裂性、埃尔曼多夫撕裂强度、伸长率、拉伸强度、冲击强度和低温强度性能。在本发明中,除了这些改进的物理性能以外,多层基膜结构的取向能使得中间层空化并使得蜡迁移到空穴即空隙中。
具体而言,进行多层基膜结构取向的取向条件是能够使得中间层中产生空隙的颗粒在中间层结构内产生空隙,如美国专利4,377,616中所述。较好的是,将该膜进行双轴取向纵向为4-6倍,横向为7-12倍,更好是纵向为4-5倍,横向为8-10倍。此外,进行多层基膜结构取向的取向条件是能够使得混入芯层中的蜡变得可运动,从而使得蜡能够流动或迁移。较好是在100℃-160℃对膜进行取向。
由于中间层位于含蜡芯层的表面上,并且膜的取向操作使得在中间层内形成空隙,还使得芯层内的蜡变得能够在膜结构中流动和运动,因此可运动的蜡从芯层迁移到中间层内产生的空隙中。随着取向膜冷却,可运动的蜡在中间层的空隙内结晶,在该空隙中蜡被有效地“局限”在多层膜结构中。这样防止了蜡全部迁移到膜的表面上。可以想到,一部分蜡仍然留在膜结构的芯层内。
根据本发明制得的膜具有优良的WVTR和隔氧性能,与已有技术的膜相比,这些性能不太容易由于蜡从表面上脱除而受到损害。这样,本发明的膜可用于随后的层压、印刷和涂覆技术,同时保持膜的WVTR和隔氧性能。
本发明可以参考以下实施例来进一步理解,但不局限于这些实施例。
实施例1本实施例(比较例)表明将蜡混入五层膜结构的芯层的效果。所述五层膜结构具有聚丙烯均聚物芯层、位于芯层两面上的聚丙烯均聚物中间层以及位于每一层中间层上的聚丙烯均聚物表面层。
将聚丙烯均聚物树脂与4.5%熔点为80℃的费-托合成蜡混合。将该聚丙烯/蜡树脂共混物与两种另外的聚丙烯均聚物树脂共挤出,形成五层基膜结构,它具有其中包含4.5%蜡的聚丙烯均聚物芯层、位于芯层两面上的聚丙烯均聚物中间层以及位于两层中间层上的聚丙烯均聚物表面层。对五层基膜结构进行双轴取向纵向4-5倍、横向8-10倍,制得透明的五层膜产品。
将该五层膜产品放在48.9℃(120°F)和环境湿度的加温室中老化72个小时,用ASTM F124-90方法试验水蒸气透过性,用ASTM D3985-81方法试验氧气透过性。
五层膜的水蒸气透过率为0.30克/100英寸2/天,氧气透过率为70厘米3/100英寸2/天,性能差。
实施例2本实施例(比较例)表明将蜡混入三层膜结构的芯层的效果。所述三层膜结构具有聚丙烯均聚物芯层,并包含没有空穴的三元共聚物表面层。
如实施例1中将聚丙烯均聚物树脂与4.5%熔点为80℃的费-托合成蜡混合。将该聚丙烯/蜡树脂共混物与包含乙烯/丁烯/丙烯三元共聚物的三元共聚物树脂共挤出,形成三层基膜中间体结构,它具有其中包含4.5%蜡的聚丙烯均聚物芯层、位于中间层两面上的乙烯/丁烯/丙烯三元共聚物表面层。对三层基膜中间体结构进行双轴取向纵向4-5倍、横向8-10倍,得到透明的三层膜产品。
将该三层膜产品放在48.9℃(120°F)和环境湿度的加温室中老化72个小时,用ASTM F124-90方法试验水蒸气透过性,用ASTM D3985-81方法试验氧气透过性。
三层膜的水蒸气透过率优良,为0.08克/100英寸2/天,氧气透过率良好,为37.3厘米3/100英寸2/天。然而,大部分蜡浮散至膜的表面,很容易被擦去,从而使得水蒸气透过率和氧气透过率增大,阻隔性能降低。
实施例3本实施例为比较例,本比较例中中间层是空化的聚丙烯均聚物,而不是空化的共聚物或三元共聚物,它表明将蜡混入五层膜结构的芯层的效果。所述五层膜结构具有聚丙烯均聚物芯层、位于芯层两面上的空化的聚丙烯均聚物中间层以及位于每一层中间层上的聚丙烯均聚物表面层。
将聚丙烯均聚物树脂与4.5%熔点为80℃的费-托合成蜡混合。将第二种聚丙烯均聚物与6%作为产生空隙材料的聚对苯二甲酸丁二酯(PBT)混合。将这两种树脂共混物与第三种聚丙烯均聚物树脂共挤出,形成五层基膜中间体结构,它具有其中包含4.5%蜡的聚丙烯均聚物芯层、位于芯层两面上的含有6%PBT的聚丙烯均聚物中间层以及位于两层中间层上的聚丙烯均聚物表面层。对五层基膜中间体结构进行双轴取向纵向4-5倍、横向8-10倍。对膜进行取向在中间层中产生空隙,使得芯层中的蜡变得可运动,迁移至中间层中的空隙内,并在空隙内结晶。由此制得不透明的五层膜产品,它具有空化即有空隙的中间层,中间层包含局限于空隙内的蜡。
将该五层膜产品放在48.9℃(120°F)和环境湿度的加温室中老化72个小时,用ASTM F124-90方法试验水蒸气透过性,用ASTM D3985-81方法试验氧气透过性。
五层膜的水蒸气透过率为0.35克/100英寸2/天,氧气透过率为112.1厘米3/100英寸2/天,性能差。
实施例4和5实施例4和5代表本发明制得的膜,由此显示了将蜡混入五层膜结构的芯层的效果。所述五层膜结构具有聚丙烯均聚物芯层、位于芯层两面上的空化的乙烯/丙烯共聚物或乙烯/丁烯/丙烯三元共聚物中间层以及位于每一层中间层上的聚丙烯均聚物表面层。
在实施例4中,将聚丙烯均聚物树脂与4.5%熔点为80℃的费-托合成蜡混合。将乙烯/丙烯共聚物与6%作为产生空隙材料的聚对苯二甲酸丁二酯(PBT)混合。将这两种树脂共混物与第三种聚丙烯均聚物树脂共挤出,形成五层基膜中间体结构,它具有其中包含4.5%蜡的聚丙烯均聚物芯层、位于芯层两面上的含有6%PBT的乙烯/丙烯共聚物中间层以及位于两层中间层上的聚丙烯均聚物表面层。对五层基膜中间体结构进行双轴取向纵向4-5倍、横向8-10倍。对膜进行取向在中间层中产生空隙,使得芯层中的蜡变得可运动,迁移至中间层中的空隙内,并在空隙内结晶。由此形成不透明的五层膜产品,它具有空化即有空隙的中间层,中间层包含局限于空隙内的蜡。
在实施例5中,如实施例4制备该膜,不同的是用乙烯/丁烯/丙烯三元共聚物代替中间层的乙烯/丙烯共聚物。由此形成不透明的五层膜产品,它具有空化即有空隙的乙烯/丁烯/丙烯三元共聚物中间层,中间层包含局限于空隙内的蜡。
将实施例4和实施例5的五层膜产品放在48.9℃(120°F)和环境湿度的加温室中老化72个小时,用ASTM F124-90方法试验水蒸气透过性,用ASTM D3985-81方法试验氧气透过性。
实施例4五层膜的水蒸气透过率良好,为0.22克/100英寸2/天,氧气透过率良好,为69.1厘米3/100英寸2/天。实施例5五层膜的水蒸气透过率良好,为0.20克/100英寸2/天,氧气透过率良好,为62.6厘米3/100英寸2/天。
实施例4和5与实施例1的比较表明,使膜结构包含空化的中间层能够改进其阻隔水蒸气和氧气透过的性能。实施例4和5与实施例2的比较表明,空化的中间层的重要性在于实施例2的膜虽然具有优良的阻隔性能,但是蜡会在擦拭表面时很容易地被除去。实施例4和5与实施例3的比较显示了用空化的共聚物或三元共聚物作为中间层与用空化的均聚物作为中间层相比的益处,使用空化的共聚物或三元共聚物中间层能够得到改进的WVTR和透氧性能。
实施例6-11实施例6-11表明向五层膜结构的芯层中混入增加量的蜡得到的改进的水蒸气透过率和隔氧性能,所述五层膜结构具有聚丙烯均聚物芯层、位于芯层两面上的空化的乙烯/丙烯共聚物或乙烯/丁烯/丙烯三元共聚物中间层以及位于每一层中间层上的聚丙烯均聚物表面层,作为本发明中的膜。
在实施例6、7和8中,聚丙烯均聚物树脂分别与6%、9%和12%的熔点为80℃的费-托合成蜡混合。将乙烯/丙烯共聚物与10%作为产生空隙材料的聚对苯二甲酸丁二酯(PBT)混合。将聚丙烯均聚物/蜡树脂各自与乙烯/丙烯共聚物和第三种熔体指数为9克/10分钟的聚丙烯均聚物树脂共挤出,形成三片独立的五层基膜中间体结构,这些中间体结构具有其中分别包含6%、9%和12%蜡的聚丙烯均聚物芯层、位于芯层两面上的含有10%PBT的乙烯/丙烯共聚物中间层以及位于两层中间层上的聚丙烯均聚物表面层。对每片五层基膜中间体结构进行双轴取向纵向4-5倍、横向8-10倍。对膜进行取向在中间层中产生空隙,使得芯层中的蜡变得可运动,迁移至中间层中的空隙内,并在空隙内结晶。由此形成三片不透明的五层膜产品,它具有空化即有空隙的中间层,中间层包含局限于空隙内的蜡。
在实施例9、10和11中,按实施例6、7和8制备三片膜,不同的是用乙烯/丁烯/丙烯三元共聚物代替中间层的乙烯/丙烯共聚物。由此形成三片不透明的五层膜产品,它具有空化即有空隙的乙烯/丁烯/丙烯三元共聚物中间层,中间层包含局限于空隙内的蜡。
将实施例6-11的五层膜产品放在48.9℃(120°F)和环境湿度的加温室中老化72个小时,用ASTM F124-90方法试验水蒸气透过性,用ASTM D3985-81方法试验氧气透过性。试验结果示于表A。
由表A中的结果可见,实施例6-11的五层膜的每一片都具有优良的水蒸气透过率和氧气透过率。而且,实施例6、7和8的比较(表示增加空化的共聚物中间层的蜡含量)和实施例9、10和11的比较(表示增加空化的三元共聚物中间层的蜡含量)表明,增加蜡的含量能够改进水蒸气透过性和隔氧性能。而且,在擦拭膜表面之后水蒸气透过率仍保持在可接受的水平,这表明蜡被局限于中间层的空隙中。
权利要求
1.一种多层取向膜,它包含聚烯烃芯层,位于所述聚烯烃芯层至少一面上的共聚物或三元共聚物中间层,所述中间层中具有空隙并包含局限于所述空隙内的蜡,以及位于所述中间层上的表面层。
2.如权利要求1或2所述的多层取向膜,其中所述聚烯烃芯层是聚丙烯。
3.如权利要求1或2所述的多层取向膜,其中所述蜡是费-托合成蜡。
4.如权利要求1或2所述的多层取向膜,其中所述蜡的存在量是所述膜的2%-20%。
5.如权利要求1或2所述的多层取向膜,其中所述中间层是乙烯/丙烯共聚物。
6.如权利要求1或2所述的多层取向膜,其中所述中间层是乙烯/丁烯/丙烯三元共聚物。
7.如权利要求1或2所述的多层取向膜,其中所述表面层选自聚烯烃的均聚物、共聚物和三元共聚物。
8.如权利要求1或2所述的多层取向膜,其中所述芯层包含位于其中的空隙。
9.一种五层膜,它包含聚丙烯均聚物芯层,位于所述聚丙烯芯层两面上的共聚物或三元共聚物中间层,所述中间层中具有空隙并包含局限于所述空隙内的蜡,以及位于所述中间层上的聚丙烯均聚物表面层。
10.一种具有改进的阻隔性能的多层取向膜,它包含用以下方法形成的膜结构提供其中包含蜡的第一种聚烯烃树脂、包含其中分散有颗粒的共聚物或三元共聚物树脂的第二种聚烯烃树脂以及第三种聚烯烃树脂;将所述第一种聚烯烃树脂、所述第二种聚烯烃树脂和所述第三种聚烯烃树脂共挤出,形成多层基膜,所述基膜具有包含所述蜡的聚烯烃芯层,位于所述聚烯烃芯层至少一面上的其中包含所述颗粒的共聚物或三元共聚物中间层,以及位于所述中间层上的聚烯烃表面层;对所述多层基膜进行取向,取向的条件足以使得所述颗粒在所述中间层中形成空隙,并使得所述蜡从所述聚烯烃芯层迁移到所述中间层的所述空隙中。
全文摘要
提供了一种具有增强的阻隔氧气和水蒸气透过的性能的多层膜。该多层膜包含聚烯烃芯层、位于聚烯烃芯层至少一面上的共聚物或三元共聚物中间层(中间层中具有空隙并包含局限于空隙内的蜡)以及位于中间层上的表面层。本发明的多层膜特别可用作食品的包装膜,并能成功地进行层压、印刷或涂覆操作。
文档编号B32B37/15GK1265062SQ98807188
公开日2000年8月30日 申请日期1998年7月1日 优先权日1997年7月16日
发明者M·T·赫菲尔芬格 申请人:美孚石油公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1