投影设备及其控制方法与流程

文档序号:11585378阅读:206来源:国知局
投影设备及其控制方法与流程

本发明涉及一种投影设备及其控制方法和投影系统。



背景技术:

用于根据图像数据来控制光源的发光量以提高动态范围或对比度感的机构被并入投影器中。这是一种为了提高显示质量而通过减小针对黑暗场景的光源的发光量并且增大针对明亮场景的光源的发光量来增大运动图像的动态范围的技术。近年来,这种投影器使用除传统上使用的灯以外的光源。例如,使用发光二极管(led)、半导体激光或有机电激发光(有机el或oel)作为光源。这些光源使得发光量能够被控制,并且被称为固态光源。

另一方面,已知有作为在投影面上将投影图像进行接合以投影大画面图像的多投影的技术。在多投影中,多个投影器并排并且投影图像的一部分彼此重叠。为了使投影图像中的轻微位置偏移不那么醒目,进行降低重叠区域的灰度的处理(边缘融合处理),以使得重叠区域与非重叠区域的亮度水平变得相同。利用如上所述的涉及投影图像部分重叠的方法,在重叠区域和非重叠区域之间会产生黑色亮度(blackbrightness)方面的差异。这归因于被称为黑浮(blackfloating)的现象,其中在该现象中,即使在投影设备投影了黑色的情况下,由于光无法被充分地遮挡,因此甚至黑色图像也具有轻微的亮度。由于黑浮的产生不依赖于灰度,因此边缘融合处理对于黑浮而言是无效的。在重叠区域中,由于相加了与将图像投影至重叠区域的投影设备的数量相对应的黑浮,因此重叠区域的黑浮会超过非重叠区域的黑浮。结果,在重叠区域和非重叠区域的黑浮量之间产生差异。

作为用于校正重叠区域的这种黑浮的方法,存在通过向非重叠区域的黑浮添加补偿来使重叠区域和非重叠区域的黑浮量彼此接近的方法。例如,日本特开2014-137386通过使进行重叠的投影设备固有的黑浮分布在参与多投影的投影设备之间共享、计算重叠区域的黑浮量并且计算非重叠区域的补偿值来使黑浮在整个图像上均匀一致。



技术实现要素:

然而,上述技术没有假设投影器的光源的发光量根据图像而动态改变。由于黑浮量是由各投影设备预先确定的固有分布,因此上述技术无法处理投影设备的黑浮量根据投影图像而动态改变的情况,并且在重叠区域和非重叠区域之间会产生黑浮量方面的差异。

本发明的目的是在进行多投影的投影设备中,抑制根据图像数据来动态可变地控制光源的亮度的情况下的重叠区域中的黑浮,并且提高显示质量。

本发明的第一方面,一种投影设备,用于构成用于通过在投影面上将多个投影设备所投影的多个图像的一部分重叠并接合在一起来将单个图像显示在所述投影面上的投影系统,所述投影设备包括:光源;光阀,用于基于图像数据对来自所述光源的光进行调制;以及投影单元,用于投影通过所述光阀进行调制后的光,其特征在于,所述投影设备还包括:确定单元,用于基于所述图像数据来确定所述光源的发光量;获取单元,用于获取与用于构成所述投影系统的其它投影设备的光源的发光量有关的信息;以及校正单元,用于基于所述投影设备自身的光源的发光量和所述其它投影设备的光源的发光量来对所述图像数据进行校正。

本发明的第二方面,一种投影设备的控制方法,其中,所述投影设备用于构成用于通过在投影面上将多个投影设备所投影的多个图像的一部分重叠并接合在一起来将单个图像显示在所述投影面上的投影系统,所述投影设备包括:光源;光阀,用于基于图像数据对来自所述光源的光进行调制;以及投影单元,用于投影通过所述光阀进行调制后的光,其特征在于,所述控制方法包括以下步骤:基于所述图像数据来确定所述光源的发光量;获取与用于构成所述投影系统的其它投影设备的光源的发光量有关的信息;以及基于所述投影设备自身的光源的发光量和所述其它投影设备的光源的发光量来对所述图像数据进行校正。

根据本发明,在进行多投影的投影设备中,在根据图像数据来动态可变地控制光源的亮度的情况下,可以抑制重叠区域中的黑浮,并且可以提高显示质量。

通过以下参考附图对典型实施例的说明,本发明的其它特征将变得明显。

附图说明

图1是示出第一实施例的整体结构的图;

图2是示出根据第一实施例的投影器的结构的框图;

图3是根据第一实施例的黑色校正处理的流程图;

图4是发光量和平均灰度值的查找表;

图5是示出根据第一实施例的光源亮度的示例的图;

图6是示出根据第一实施例的黑浮的校正的示例的图;

图7是示出根据第一实施例的补偿值的示例的图;

图8是示出根据第二实施例的整体结构的图;

图9是示出根据第二实施例的投影器的结构的框图;

图10是根据第二实施例的黑色校正处理的流程图;

图11是示出根据第二实施例的光源亮度的示例的图;

图12是示出根据第二实施例的补偿值的示例的图;

图13是示出根据第三实施例的投影器的结构的框图;以及

图14是根据第三实施例的黑色校正处理的流程图。

具体实施方式

第一实施例

以下将说明本发明的第一实施例。

图1是示出使用根据本发明的第一实施例的投影设备(投影器)来实现多投影的系统(多投影系统)的配置概要的图。将根据本发明的第一实施例的多投影系统描述为如下示例,其中,在该示例中,如图1所示,在横向方向上使用两个投影器100和200。

图像输出设备300通过图像线缆而连接至投影器100和200,并且发送图像数据。另外,投影器100和200经由lan线缆进行通信。

投影器100和200接收从图像输出设备300发送来的图像数据(图像信号),并且分别基于图像数据来投影图像。通过在投影面上将两个投影器100和200所投影的两个图像的一部分(边界附近的部分)进行重叠并接合,来将单个大画面图像投影并显示在投影面上。

投影区域1是投影器100所投影的图像的投影区域,并且投影区域2是投影器200所投影的图像的投影区域。重叠区域是投影区域1和2彼此重叠的区域。将投影区域1和2中的除了重叠区域以外的区域称为非重叠区域。

此外,图像输出设备300可以是诸如个人计算机、照相机、游戏装置和智能电话等的任意设备,只要该设备能够输出图像数据即可。

图2是示出根据第一实施例的投影器100的示意结构的框图。

现在将说明投影器100的结构。

根据第一实施例的投影器100包括图像输入单元101、用户设置单元102、边缘融合处理单元103、统计量获取单元104、发光量确定单元105、光源控制单元106、光源107、发光量发送/接收单元108、以及亮度分布计算单元109。投影器100还包括补偿量确定单元110、校正单元111、液晶面板112和投影光学系统113。

图像输入单元101接收来自外部设备的图像数据。例如,图像输入单元101包括合成端子、s图像端子、d端子、组件端子、模拟rgb端子、dvi-i端子、dvi-d端子、displayport端子或hdmi(注册商标)端子等。另外,在图像输入单元101接收到模拟图像数据的情况下,图像输入单元101将所接收到的模拟图像数据转换成数字图像数据。此外,图像输入单元101将所接收到的图像数据发送至边缘融合处理单元103。

用户设置单元102接受并管理用户所进行的对投影器100的主体按钮的操作,以输入投影器的设置信息。投影器的设置信息包括边缘融合处理中的重叠区域的位置、大小、伽马曲线、重叠投影器的数量、以及其它重叠投影器的识别信息。

此外,可以采用包括通过远程控制器的操作进行设置或者通过来自远地方的网络通信进行设置等的设置方法来替代对主体按钮的操作。

边缘融合处理单元103从用户设置单元102获取在邻接的投影图像的一部分彼此重叠的边缘融合处理中的重叠区域的诸如位置、大小和伽马曲线等的设置信息。另外,边缘融合处理单元103针对从图像输入单元101输入的图像数据的重叠区域进行伽马调节。

统计量获取单元104获取边缘融合处理单元103所处理的图像数据的统计量(特征量)。统计量获取单元104获取图像数据的全部像素的平均灰度值作为统计量。统计量获取单元104将所计算出的统计量输出至发光量确定单元105。

此外,尽管在第一实施例中展现了获取平均灰度值作为统计量的示例,但是统计量不限于此,并且例如可以使用最频灰度值或其它表示图像的亮度的统计量。

发光量确定单元105基于图像数据来确定光源107的发光量。在第一实施例中,发光量确定单元105基于统计量获取单元104所获取到的图像数据的平均灰度值和查找表来确定投影器的光源107的发光量(光源亮度值)。发光量确定单元105将所确定出的发光量输出至光源控制单元106、发光量发送/接收单元108以及亮度分布计算单元109。

此外,尽管在第一实施例中发光量确定单元105使用查找表来确定发光量,但是还可以使用计算公式来确定发光量。

光源控制单元106基于从发光量确定单元105接收到的发光量,来对光源107进行控制并且使光发出。

光源107是发光量能够被控制的固态光源(led)。使用来自光源107的光来将图像投影在屏幕上。此外,尽管在第一实施例中使用led作为光源107,但是作为替代还可以使用发光量能够被控制的半导体激光、有机el和其它光源。

发光量发送/接收单元108获取与构成投影系统的另一投影设备的光源的发光量有关的信息。在第一实施例中,发光量发送/接收单元108将与发光量确定单元105所确定的投影器100的发光量有关的信息发送至通过通信线缆而连接的投影器200。另外,发光量发送/接收单元108以与投影器100同样的方式接收与投影器200所确定出的发光量有关的信息。

作为通信设置所需的信息(例如,当连接至作为通信目的地的投影器的ethernet(注册商标)地址或者连接至多个投影器时的投影器识别信息),发光量确定单元105使用用户利用用户设置单元102所设置的信息。

此外,尽管在第一实施例中使用ethernet作为通信系统,但是还可以使用诸如无线lan或usb等的其它通信系统,只要在一帧期间(在帧频为60fps的情况下是16毫秒)内完成对发光量的发送和/或接收即可。

亮度分布计算单元109基于投影设备自身的光源的发光量和其它投影设备的光源的发光量,来计算投影设备自身的投影区域中的亮度分布。在第一实施例中,亮度分布计算单元109计算包括通过边缘融合所构建的重叠区域的投影器100的投影区域的亮度分布。

此外,由于液晶面板112的遮光不充分而导致会产生黑浮。光源107的发光量越大,黑浮的程度越高(黑浮量越大)。投影区域中的亮度分布是基于光源107的发光量的。因此,投影区域中的黑浮量的分布是基于投影区域中的亮度分布的。因此,尽管第一实施例为了简要而使用未修改的发光量的值来考虑投影区域中的亮度和黑浮,但是可以通过查找表或计算公式来定义光发量、亮度、黑浮之间的对应关系。

亮度分布计算单元109从用户设置单元102获取与重叠区域的位置和大小有关的信息,并且使用发光量确定单元105所计算出的投影器100的光源107的发光量作为非重叠区域的亮度。

另外,亮度分布计算单元109基于发光量确定单元105所计算出的发光量和发光量发送/接收单元108所获取到的投影器200的光源的发光量来计算重叠区域的发光量。稍后将提供详情。

如上所述,在第一实施例中,作为投影器100的投影区域的亮度分布,亮度分布计算单元109计算投影设备自身所投影的图像和其它投影设备所投影的图像彼此重叠的重叠区域的亮度,并且计算作为除了重叠区域以外的区域的非重叠区域的亮度。

补偿量确定单元110计算用于校正图像数据的校正量,以使亮度(在投影黑色图像时的亮度、即黑浮量)在基于亮度分布计算单元109所获得的投影区域的亮度分布的非重叠区域和重叠区域之间均匀一致。

补偿量确定单元110将所计算出的校正量输出至校正单元111。

校正单元111基于补偿量确定单元110所计算出的校正量来设置针对图像数据的非重叠区域的补偿,并且将相加了补偿的图像数据输出至液晶面板112。

液晶面板112是基于校正单元111所校正的图像数据来对来自光源107的光进行调制的光阀。尽管利用液晶面板112所进行的光调制涉及调节透过率,但是光阀对光进行调制的方法不限于调节透过率。

投影光学系统113将通过液晶面板112进行调制后的光投影在屏幕上。投影光学系统113包括投影用的诸如棱镜和透镜等的一般光学元件。这里将省略其详细描述。

现在将参考图3来说明根据第一实施例的投影器100所进行的黑色校正的流程图。

首先,基于作为统计量获取单元104所获取到的图像数据的统计量的平均亮度灰度值,发光量确定单元105使用查找表来计算光源107的发光量(s401)。

图4示出第一实施例中所使用的查找表。图4在横轴上示出图像数据的平均灰度值,并且在纵轴上示出光源107的发光量。在发光量为0的情况下,光源不发光。在发光量是100的情况下,光源以最大亮度发光。在图4所示的查找表中,发光量和平均灰度值具有成比例的关系,使得在平均灰度值为最大值255的情况下发光量也具有最大值100。例如,在图像数据的平均亮度值是127的情况下,所计算出的发光量是50。图像数据的平均灰度值和光源的发光量之间的关系不限于该查找表。

接着,发光量发送/接收单元108将发光量确定单元105所计算出的投影器100的光源107的发光量发送至投影器200(s402)。

发光量发送/接收单元108接收投影器200以同样的方式所计算出的投影器200的光源的发光量(s403)。

亮度分布计算单元109基于进行边缘融合的投影器100和200的发光量来计算投影器100的投影区域中的亮度分布(黑浮量的分布)(s404)。

图5示出进行边缘融合的投影器100和200的亮度分布的示例。纵轴表示亮度,并且横轴表示投影区域中的位置。尽管图5示出包括投影器100和200的投影系统的整个投影区域的亮度分布,但是亮度分布计算单元109所计算出的亮度分布是投影器100的投影区域1的亮度分布。

例如,假设如下:投影器100的光源的发光量是50,并且投影器200的光源的发光量是30,通过将两个投影器的光源的发光量的值相加来计算重叠区域的亮度值、即50+30=80。非重叠区域的亮度值是投影器100的发光量的值50。

此外,尽管在第一实施例中通过对投影器100和200的发光量的相加处理来确定重叠区域的亮度,但是除了相加处理以外,还可以使用诸如乘以校正系数等的其它计算公式或者使用查找表来确定重叠区域的亮度。

接着,补偿量确定单元110基于亮度分布计算单元109所计算出的亮度分布来计算用于为了使黑浮量在重叠区域和非重叠区域之间均匀而对非重叠区域的图像数据进行校正的校正量作为补偿(s405)。

补偿量确定单元110基于亮度分布计算单元109所计算出的非重叠区域的亮度和重叠区域的亮度之间的差来计算要应用于非重叠区域的图像数据的补偿。

图6示出针对图5所示的亮度分布的黑浮的校正的示例。

虚线表示在黑浮校正之前的黑浮量(由于未进行校正,因此黑浮量等于发光量),并且实线表示在黑浮校正之后的黑浮量。针对投影器100,重叠区域和非重叠区域的发光量分别是80和50,并且计算出要相加至非重叠区域以使黑浮量均匀为80的补偿为30。

图7示出基于图5所示的亮度分布所计算出的补偿。纵轴表示补偿并且横轴表示位置。

补偿量确定单元110将与诸如图7所示的投影区域1中的位置相对应的补偿的信息输出至校正单元111。

接着,校正单元11通过将补偿量确定单元110所计算出的补偿值与图像数据相加来校正图像数据(s406)。在第一实施例中,校正单元111针对与非重叠区域相对应的图像数据进行设置补偿的处理。

另外,在投影器200中,通过与投影器100同样的处理来进行用于使重叠区域的黑浮量和非重叠区域的黑浮量均匀一致的校正。因此,可以利用在边缘融合的边界附近减少了黑浮方面的差异的多投影系统来进行大画面显示。

如图6所示,在第一实施例中,基于投影设备自身的投影区域的亮度分布中的最大亮度来设置黑浮的校正的目标值,并且确定用于图像校正的校正量。然而,校正方法不限于此,并且仅需要进行使得重叠区域的亮度(黑浮量)和非重叠区域的亮度(黑浮量)变得均匀一致的校正。

如上所述,在第一实施例中,通过投影器经由发送和接收来共享基于各投影器所投影的图像数据所确定的光源的发光量。基于本投影器的光源的发光量和其它投影器的光源的发光量来计算本投影器的投影区域中的黑浮量的分布。基于黑浮量在重叠区域和非重叠区域之间的差异来进行涉及将补偿与图像数据相加的校正。因此,在包括使用发光量能够被控制的固态光源的投影器的边缘融合处理的多投影系统中,可以使整个投影区域的黑浮量变得均匀一致。

第二实施例

第一实施例展现在通过两个投影器来进行多投影的情况下使黑浮量均匀一致的方法,其中,可以通过仅考虑邻接投影器的投影区域的亮度分布来使系统的整个投影区域的黑浮量均匀一致。

在第二实施例中,将说明在使用三个或更多投影器来进行多投影的系统中产生多个重叠区域的情况下使黑浮量均匀一致的方法。

此外,在以下描述,将不详细描述与第一实施例相同的部分,并且将描述与第一实施例的不同点。

图8是示出在根据第二实施例的多投影系统中的投影器的配置概要的图。如图7所示,根据本发明的第二实施例的多投影系统在横向方向上包括三个投影器500、600和700。

图像输出设备300通过图像线缆连接至投影器500、600和700,并且将图像数据发送至各投影器。另外,投影器500、600和700分别通过lan线缆连接,并且经由lan线缆传送信息。

投影器500、600和700接收从图像输出设备300发送来的图像数据,并且分别基于图像数据来投影图像。可以通过在投影面上将三个投影器500、600和700所投影的三个图像的一部分(边界附近的部分)重叠并接合在一起,来将单个大画面图像投影并显示在投影面上。

投影区域1、2和3分别是投影器500、600和700所投影的图像的投影区域。重叠区域1是投影区域1和2彼此重叠的区域,并且重叠区域2是投影区域1和3彼此重叠的区域。

图9是示出根据第二实施例的投影器500的示意结构的框图。

将省略投影器500的结构中的与第一实施例的块相同的块的描述。

在第二实施例中,发光量发送/接收单元108构成第一获取单元,其中,该第一获取单元从构成投影系统的其它投影设备中,获取与投影了其中一部分与投影设备自身所投影的图像相重叠的图像的邻接投影设备的光源的发光量有关的信息。在这种情况下,投影器500的邻接设备是投影器600和700。因此,发光量发送/接收单元108获取与投影器600和700的光源的发光量有关的信息。

亮度分布计算单元109构成第一计算单元,其中,该第一计算单元用于基于投影器500的光源107的发光量以及作为投影器500的邻接投影设备的投影器600和700的光源的发光量来计算与投影器500的投影区域中的亮度相关的特征量。

在第二实施例中,亮度分布计算单元109计算投影器500的投影区域中的亮度分布,并且获得亮度分布中的亮度的最大值(最大黑浮量:以下称为局部最大黑浮量)作为与投影设备自身的投影区域中的亮度相关的特征量。特别地,在第二实施例中,亮度分布中的亮度的最大值是投影器500的投影区域中的重叠区域的亮度的最大值。在投影器500的情况下,由于在投影区域1中存在两个重叠区域1和2,因此亮度分布计算单元109采用这些重叠区域的亮度中较大的亮度作为与投影设备自身的投影区域中的亮度相关的特征量。在投影器600和700的情况下,由于在投影区域2和3中仅存在一个重叠区域,因此与投影区域中的亮度相关的特征量是重叠区域的亮度。

亮度发送/接收单元501将与投影器500的局部最大黑浮量有关的信息发送至投影器600和700。另外,亮度发送/接收单元501构成第二获取单元,其中该第二获取单元用于从投影器600和700接收关于与以同样的方式所计算出的各投影器的投影区域中的亮度相关的特征量(局部最大黑浮量)的信息。亮度发送/接收单元501将所接收到的信息输出至最大亮度计算单元502。

亮度发送/接收单元501将关于与最大亮度计算单元502所确定出的投影系统的整个投影区域中的亮度相关的特征量(将在后面描述)的信息,发送至构成投影系统的其它投影器(投影器600和700)。

最大亮度计算单元502计算与投影系统的整个投影区域中的亮度相关的特征量。在第二实施例中,与投影系统的整个投影区域中的亮度相关的特征量是投影系统的整个投影区域的亮度分布中的亮度的最大值(最大黑浮量:以下称为全局最大黑浮量)。特别地,在第二实施例中,整个投影区域的亮度分布中的亮度的最大值是整个投影区域中的重叠区域的亮度的最大值。在第二实施例的情况下,由于投影系统的整个投影区域中存在两个重叠区域1和2,因此最大亮度计算单元502采用重叠区域1和2的亮度中较大的亮度作为与投影系统的整个投影区域中的亮度相关的特征量。在如在第一实施例中投影系统包括两个投影器的情况下,由于投影系统的整个投影区域仅具有一个重叠区域,因此最大亮度计算单元502采用重叠区域的亮度作为与投影系统的整个投影区域中的亮度相关的特征量。

在第二实施例中,最大亮度计算单元502确定从亮度发送/接收单元501所获取到的投影器500、600和700的局部最大黑浮量中的最大值作为全局最大黑浮量。最大亮度计算单元502将所计算出的全局最大黑浮量输出至亮度发送/接收单元501和补偿量确定单元503。

补偿量确定单元503基于从最大亮度计算单元502所获取到的全局最大黑浮量、从亮度分布计算单元109所获取到的亮度分布以及从用户设置单元102所获取到的边缘融合区域的位置和大小,来确定用于校正图像数据的校正量。在第二实施例中,补偿量确定单元503确定补偿,以使得:在系统的整个投影区域中,各投影器的投影图像和邻接投影器的投影图像的重叠区域的亮度与非重叠区域的亮度变得均匀一致。补偿量确定单元503将与要针对图像数据设置的补偿有关的信息输出至校正单元111。

现在将参考图10所示的流程图来说明第二实施例的处理。

s401~s404的处理与第一实施例相同。发光量确定单元105基于输入至投影器500的图像数据来确定光源107的发光量,并且发光量发送/接收单元108将该发光量发送至构成投影系统的其它投影器600和700。另外,发光量发送/接收单元108接收与其它投影器600和700所确定出的各投影器的光源的发光量有关的信息。亮度分布计算单元109基于与本投影器的光源107的发光量有关的信息以及与邻接投影器600和700的光源的发光量有关的信息,来计算投影器500的投影区域中的亮度分布。采用与第一实施例同样的方式,亮度分布计算单元109基于本投影器的光源107的发光量来计算非重叠区域的亮度,并且基于本投影器的光源107的发光量以及与本投影器邻接的投影器600和700的光源的发光量来计算重叠区域1和2的亮度。

图11示出根据第二实施例的整个投影区域的亮度分布的示例。纵轴表示亮度,并且横轴表示位置。

假设如下:投影器500、600和700的发光量分别是50、30和70。在这种情况下,重叠区域1和2的亮度分别是80和120。

接着,亮度发送/接收单元501判断投影器500是否是多投影系统的主装置(s901)。

在这种情况下,主装置是指如下的投影器:其从构成多投影系统的各投影器接收与局部最大黑浮量有关的信息,确定全局最大黑浮量,并且将与全局最大黑浮量有关的信息发送至各投影器。可以通过用户利用用户设置单元102来指示构成投影系统的要作为主装置的投影器的设置。

然而,代替用户设置主装置,可以将主装置自动设置成构成投影系统的投影器中的任意投影器。

在投影器500是主装置的情况下(s901中为“是”),亮度发送/接收单元501从构成多投影系统的其它投影器600和700接收与局部最大黑浮量有关的信息(s902)。

在图11所示的示例中,投影器600的局部最大黑浮量是重叠区域1中的80,并且投影器700的局部最大黑浮量是重叠区域2中的120。

最大亮度计算单元502确定所接收到的投影器600和700的局部最大黑浮量以及投影器500的局部最大黑浮量中的最大值作为全局最大黑浮量(s903)。在图11所示的示例中,最大亮度计算单元502将作为投影器500和700的局部最大黑浮量的重叠区域2的亮度120确定为全局最大黑浮量。

最大亮度计算单元502将所确定出的全局最大黑浮量发送至投影器600和700(s904)。

在投影器500不是主装置的情况下(s901中为“否”),亮度发送/接收单元501将与亮度分布计算单元109中所计算出的投影器500的局部最大黑浮量有关的信息发送至规定的投影器(主装置或第一投影设备)(s905)。在图11所示的示例中,亮度发送/接收单元501将作为投影器500的局部最大黑浮量的重叠区域2的亮度120发送至作为主装置的投影器。

亮度发送/接收单元501是第二获取单元,其中该第二获取单元用于从主装置接收与全局最大黑浮量有关的信息(s906)。

根据上述处理,将通过构成多投影系统的全部投影器来共享与全局最大黑浮量有关的信息。

此外,尽管以上描述了不是主装置的投影器(从装置或第二投影设备)将与局部最大黑浮量有关的信息发送至规定的投影器(主装置),但是可以将该信息发送至全部投影器。在这种情况下,从装置不必具有描述哪一个投影器是主装置的信息。

接着,补偿量确定单元503基于全局最大黑浮量和亮度分布来计算非重叠区域的补偿值(s907)。在第二实施例中,补偿量确定单元503基于非重叠区域的亮度和投影系统的整个投影区域中的全局最大黑浮量之间的差来计算用于对与非重叠区域相对应的图像数据进行校正的补偿。另外,补偿量确定单元503基于重叠区域的亮度和投影系统的整个投影区域中的全局最大黑浮量之间的差来对与重叠区域相对应的图像数据进行校正。

在图11所示的示例中,由于全局最大黑浮量是120并且投影器500的非重叠区域的黑浮量是50,因此补偿量确定单元503确定其差70作为要针对图像数据的非重叠区域设置的补偿。

接着,补偿量确定单元503基于全局最大黑浮量、亮度分布以及投影至重叠区域的投影器的数量来计算重叠区域的补偿值(s908)。

由于多个投影器的投影图像在重叠区域中彼此重叠,因此采用通过将与最大全局黑浮量的差除以将图像投影至重叠区域的投影器的数量而获得的值作为重叠区域的补偿值。因此,可以抑制由于利用校正所进行的与针对重叠区域的投影器的数量相对应的补偿的相加而导致的过度的亮度。

在图11所示的示例中,全局最大黑浮量是120,投影器500的重叠区域1和2的黑浮量分别是80和120,并且差分别是40和0。由于投影至重叠区域1和2的投影器的数量分别是2,因此,分别将补偿计算为40/2=20和0/2=0。

此外,尽管在第二实施例中使用通过将全局最大黑浮量和重叠区域的亮度之间的差除以投影用的投影器的数量而获得的值作为重叠区域的补偿,但是除了相除以外,还可以使用利用校正系数的计算公式。

校正单元111基于补偿量确定单元503所计算出的补偿来对图像数据进行校正(s909)。

图12示出用于在整个多投影系统中使重叠区域和非重叠区域的黑浮量均匀一致的校正。纵轴表示亮度(黑浮量),并且横轴表示位置。另外,虚线表示校正之前的亮度(黑浮量),并且实线表示校正之后的亮度(黑浮量)。

在重叠区域1中,通过将针对用于将图像投影至重叠区域1的投影器500和600中的各投影器而进行与补偿的相加来实现使系统的整个投影区域中的黑浮量均匀一致。

在第二实施例中,黑浮量的最大值被包括三个或更多投影器的多投影系统中的全部投影器共享,并且基于黑浮量的最大值来在各投影器处进行包括重叠区域的补偿相加。因此,使重叠区域和非重叠区域的黑浮量在投影系统的整个投影区域均匀一致。

然而,由于与第一实施例相比,在发送和接收发光量的处理之后,需要相对于各连接的投影器发送和接收局部最大黑浮量以及发送和接收全局最大黑浮量的处理,因此直到显示为止的延迟比第一实施例长。

根据上述操作,可以在使用发光量能够被控制的三个或更多固态光源的投影器的边缘融合中,抑制图像整体的黑浮量方面的差异。

第三实施例

第三实施例针对包括三个或更多投影器的多投影系统中的黑浮量的校正以与第二实施例不同的结构展现示例。

如图8所示,与第二实施例同样地,根据第三实施例的多投影系统包括三个或更多投影器,投影器500配置在中央,投影器600配置在左侧,并且投影器700配置在右侧。与第二实施例同样地,各投影器通过lan线缆而彼此连接,并且通过图像线缆而连接至图像输出设备300。

图13是示出根据第三实施例的投影器500的示意结构的框图。

将省略投影器500的结构中与第一实施例和第二实施例的块相同的块的描述。

在投影器500是主装置的情况下,发光量发送/接收单元801从构成多投影系统的全部投影器中接收与在各投影器处所确定的各投影器的光源的发光量有关的信息,并且将所接收到的信息发送至最大亮度计算单元802。

在投影器500不是主装置的情况下,发光量发送/接收单元801将与发光量确定单元105所确定出的光源107的发光量有关的信息发送至主装置。

在这种情况下,主装置是指用于从构成多投影系统的各投影器接收与光源的发光量有关的信息的投影器,基于所接收到的信息来计算全局最大黑浮量,并且将该全局最大黑浮量发送至其它投影器(从装置)。

通过用户利用设置单元102来设置对主装置的设置。可选地,可以采用将任意投影器自动设置为主装置的结构。

最大亮度计算单元802是第二计算单元,其中,在投影器500是主装置的情况下,第二计算单元基于与构成投影系统的全部投影器的光源的发光量有关的信息、与各投影器的配置有关的信息以及与各投影器的重叠是否存在有关的信息,来计算与整个投影区域的亮度相关的特征量。与构成投影系统的全部投影器的光源的发光量有关的信息包括与发光量确定单元105所确定的本投影器(投影器500)的光源的发光量有关的信息。与构成投影系统的全部投影器的光源的发光量有关的信息还包括发光量发送/接收单元801所接收到的与其它投影器(投影器600和700)的光源的发光量有关的信息。在第三实施例中,与投影系统的整个投影区域的亮度相关的特征量是全局最大黑浮量。

在投影器500是主装置的情况下,亮度发送/接收单元501将关于最大亮度计算单元802所计算出的与投影系统的整个投影区域的亮度相关的特征量的信息发送至其它投影器。

在投影器500是从装置的情况下,亮度发送/接收单元501从主装置获取同与投影系统的整个投影区域的亮度相关的特征量有关的信息。

现在将参考图14的流程图来说明第三实施例的处理。

首先,与第一实施例同样地,发光量确定单元105基于输入至投影器500的图像数据来确定光源107的发光量(s401)。

接着,发光量发送/接收单元801判断投影器500是否为多投影系统中的主装置(s1101)。

通过用户利用用户设置单元102来设置对主装置的设置。

然而,可以代替用户设置主装置,而采用将主装置自动设置成连接的投影器中的任意投影器的结构。

在投影器500是主装置的情况下(s1101中为“是”),发光量发送/接收单元801接收与构成系统的其它投影器600和700所确定的各投影器的光源的发光量有关的信息(s1102)。

另外,最大亮度计算单元802计算全局最大黑浮量(s1103)。

最大亮度计算单元802基于所接收到的与各投影器的发光量有关的信息以及与用户利用用户设置单元102所设置的各投影器的配置有关的信息和与各投影器的重叠是否存在有关的信息,来计算各重叠区域(重叠区域1和重叠区域2)的亮度。尽管最大亮度计算单元802计算重叠区域的亮度作为投影系统的整个投影区域中的亮度分布,但是所计算出的亮度分布不限于此。

最大亮度计算单元802确定所计算出的各重叠区域的亮度中的最大值作为全局最大黑浮量。

亮度发送/接收单元501将与最大亮度计算单元802所计算出的全局最大黑浮量有关的信息发送至其它投影器(从装置)(s1104)。

另外,在投影器500不是主装置的情况下(s1101中为“否”),发光量确定单元105将与所计算出的光源的发光量有关的信息发送至主装置(s1105)。

亮度发送/接收单元501从主装置接收与全局最大黑浮量有关的信息(s1106)。

根据以上描述,全局最大黑浮量被构成多投影系统的全部投影器共享。

基于与黑浮量最大值有关的信息来计算用于对图像数据进行校正的补偿、以使得重叠区域的亮度和非重叠区域的亮度在整个投影区域变得均匀一致的方法与参考图10的第二实施例中所描述的方法相同(s907~s909)。

在第三实施例中,全局最大黑浮量被包括三个或更多投影器的多投影系统中的全部投影器共享,并且基于黑浮量的最大值来在各投影器处进行包括重叠区域的补偿相加。因此,使重叠区域和非重叠区域的黑浮量在投影系统的整个投影区域均匀一致。

尽管在第二实施例中在各从装置处进行局部最大黑浮量的计算处理,而由于在第三实施例中不需要由从装置进行局部最大黑浮量的计算处理,因此直到显示为止的延迟减小。此外,在第三实施例中,主装置必须具有与构成多投影系统的全部投影器的配置和是否存在重叠相关的信息。

根据上述操作,可以在使用发光量能够被控制的三个或更多固态光源的投影器的边缘融合中,抑制图像整体的黑浮量的变化。

上述各实施例可以在如下模式下实现:通过计算机、处理器或cpu执行存储装置或存储器中所存储、记录或保存的程序来实现各功能块的功能。应当理解,本发明的范围包括具有处理器和存储器的结构,其中该存储器用于存储用于在计算机执行时实现以上所展现的实施例中所描述的各功能块的功能的程序。

其它实施例

本发明的实施例还可以通过如下的方法来实现,即,通过网络或者各种存储介质将执行上述实施例的功能的软件(程序)提供给系统或装置,该系统或装置的计算机或是中央处理单元(cpu)、微处理单元(mpu)读出并执行程序的方法。

尽管已经参考典型实施例说明了本发明,但是应该理解,本发明不局限于所公开的典型实施例。所附权利要求书的范围符合最宽的解释,以包含所有这类修改、等同结构和功能。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1