可调谐光学仪器的制作方法

文档序号:2763042阅读:400来源:国知局
专利名称:可调谐光学仪器的制作方法
技术领域
可调谐光学仪器是这样一类仪器,其中光的一种性质,如象功率级,在不止一个波长上被测量。这种仪器包括光谱分析器(OSA),光通道监视器(OCM)和其他用于波分多路(WDM)光通信领域和其他领域的仪器。
背景技术
一个OSA是一个设备或一个测量仪器,它接收一个光输入并产生一个输出,该输出表示在一个波长范围内,包含在该光输入中的光功率。当我们用术语“光学”或“光”(Optical)时,我们是指一个电磁辐射的波长带,它至少包括可见光,紫外光(UV),和红外光(IR)。我们应当包括性地看待这个术语,特别当上述技术的某个应用复盖一个有明确名字的带以及也包括这些带外面邻近波长时。
就象在“真实世界”中实现的所有仪器那样,OSAs有一个有限的分辨率,它由该仪器藉以构成的部件的特性来确定。然而谱分析通常被想成在某一测量波长带上产生功率分布的一个连续表示。也即表示成在一个测量带内在每一个波长上的功率,虽然分辨率限制可以意味着该表示的功率实际上也包括从附近波长进入的某些功率。
在某些光通信系统中,在单个媒质上可以通过把每个通道都调制在具有不同波长的载波上来传播多个通道的信息。这样的系统包括波分多路(WDM)系统。一种适于测量在给定的,分立通道载波波长上光功率的仪器是OCM。我们特别感兴趣,但不是唯一感兴趣的,是使用波长约为1500nm的通道载波的WDM系统。
常规的OSA和OCM体积大,并且昂贵,这是因为所用的可调谐滤波器采用机械调谐方法,如象移动-光栅,伸长-光纤,等等。这种系统调节也慢,通常要几秒钟才把波长调谐几个纳米。

发明内容
按照本发明各个实施方案的各个方面,提供了几个系统以及其变化。
一个光学仪器可以包括一个可调谐自由空间滤波器,作为波长选择器。一个自由空间滤波器被定义为一个滤波器,对于它,光以光束的形式正交于滤波器的平面表面传播,以区别于在波导中或光纤中引导光的装置。该光学仪器可以是一个光谱分析器(OSA)。事实上,OSA可以被构造并安置成用于波分多路光通信系统的光通道监视器。
按照某些改变,可调谐自由空间滤波器是一个可调谐薄膜滤波器(TTFF)。该TTFF可以是热-光可调谐的。该可调谐滤波器可以是一个插入薄膜半导体材料的多层膜结构。该TIFF的温度,因而波长,可以用一个外部热能转移器件来改变。该热能转移器件可以是一个电阻性加热器件。该电阻性加热器件可以是一个环状金属膜,它确定了光通过滤波器的孔径。该电阻性加热器件也可以是一层光学透明层,并在这样一个位置与滤波器集成在一起,使得光通过该电阻性加热器件。在某一组变型中,该透明层可以是一层透明导电氧化物。该透明层也可以是一层掺杂的薄膜,该薄膜可以是非晶态,微晶态,和多晶半导体薄膜,它也可以是一种掺杂结晶半导体。
可以有各种TTFF结构,该TTFF可以有一个单一腔法布里-珀罗结构或者有一个多-腔体结构。
能够有各种封装变型。例如,该TTFF和光检测器能够安装在一个单个的密封封装中。该单个密封封装可以是一个TO-型的封装。在这单个密封封装中,可以有一个或多个分立的温度传感器。另外,在该单个密封封装中,可以有一个或更多个温度-稳定装置。
其中也能包括一些准校附件。该光学仪器还可以包括一个或多个已知波长信号的外部源。或者,该仪器可以包括一个或多个已知波长信号的内部源。在另一种选择中,该仪器还可以在光学仪器内包括无源干涉测量结构以建立一个稳定的波长参照。在这种选择中,该干涉测量结构可以包括一个可调谐自由-空间滤波器基底。该干涉测量结构可以和一已知光源相互作用以建立一个参照信号。
该光学仪器可以还包括一个测量热-光可调谐TTFF温度的器件,以确定波长。该测量温度的器件可以和TTFF集成在一起。该TTFF还可以包括一个加热层。在此情况下,该加热层还可以包括测量温度的器件。例如,该测量温度的器件可以监视加热层的电阻。在测量温度的器件监视加热层电阻情况下的某一个变型中,有一个DC电流源以加热该加热层,以及一个迭加的AC电流源,其电流足以监视加热层电阻。
该光学仪器还可以包括一个有一个输出端的检测器,以及一个与之连接的信号处理器以从检测器输出端接收信号,该信号处理器把从检测器接收到的信号转换为不同波长下的功率v.数据。
在另一个封装变型中,该光学仪器可以包括一个电子学组件;一个光学检测器;一个光纤输入端;和一个晶体管外形(TO)封装(transistoroutline package),在TO封装中安装了可调谐自由-空间滤波器,光检测器和光纤输入,该TO封装包括针脚,通过它们,在可调谐自由-空间滤波器和光检测器以及电子学组件之间进行电连接。在该情况下,该仪器还可以包括一个单一的外壳以支撑TO封装和电子学组件。


在各图中,同样的参照数字表示同样的元件图1是包括一个TTFF的光学仪器的一个示意框图图2是图1的仪器的框图,进一步详述了其信号处理流程;图3是有一个环状加热器的可调谐法布里-珀罗滤波器的平面图;图4是图3的滤波器的一张示意截面图;图5是有底部加热器的滤波器的一张示意截面图;
图6是有顶部加热器的滤波器的一张示意截面图;图7是有底部晶体半导体加热器的滤波器的一张示意截面图;图8是在同一个滤波器结构中,既有顶加热器又有底加热器的滤波器的一张示意截面图;图9是其中间隔层同时用作加热器的滤波器的一张示意截面图;图10是一张dn/dT图,它把具有优越热-光特性的SiGe合金和Si加以比较;图11是一张dn/ndT的图,图中比较在图10所示性质的SiGe合金和Si材料;图12是透射率和波长关系的图,它把标称设计的法布里-珀罗滤波器和在层的淀积中最多有0.5%厚度误差的滤波器加以比较;图13是透射率和波长关系的图,它把标称设计的在间隔器中没有吸收的法布里-珀罗滤波器,和具有吸收系数,k=0.001的滤波器加以比较;图14是透射率和波长关系的图,它把接收一束准直光束的法布里-珀罗滤波器和接收从单膜光纤出来未经准直光线的滤波器加以比较;图15是透射率和波长关系的图,它把标称设计的法布里-珀罗滤波器和在镜层的二个折射系数之间具有更高对比比值的滤波器加以比较;图16是透射率和波长关系的图,它把标称设计法布里-珀罗滤波器的调谐范围与具有更厚间隔层的滤波器加以比较;图17是透射率和波长关系的图,它把只有间隔器具有热-光性质的法布里-珀罗滤波器的调谐范围与间隔器和高折射率镜层都有热光性质的滤波器,以及所有的层都有热光性质的滤波器加以比较;图18是在复合TTFF和共振腔增强检测器的截间图上电场强度的图;图19是用于封装TTFF的芯片载体的侧视图;图20是图19的芯片载体的顶视图;图21是一晶体管外形(TO)封装的截面图,在该封装中,图19和20中芯片载体已被安装上;图22是和图21类似的一个TO封装的截面图,但在其中还已经安装了一个热-电冷却器;图23是一个完整光学仪器封装的截面图;图24是一个薄膜堆层的截面图,其中插入一个共振增强PIN检测器和一个TTFF;图25是一个TO封装的截面图,它给出通过顶部的光纤连接;图26是三个TO封装的透视图,它们在其顶部有不同的光纤连接口。
图27是双排直列管脚(DIP)封装的透视图,在封装顶上有一个光学口;图28是为装配一个光学部件的掩膜对准系统的透视部份分解图;图29是为装配一个光学部件的表面安装技术(SMT)对准系统的透视部分分解图;图30是为装配一个光学部件的中间掩膜对准系统的透视部分分解图;图31是一张透视图,给出在一个大片上多个模块装置;图32是一张透视图,给出在图31所示的片上一个单独的模块;图33是一个光学装置的一张截面图,该装置包括一个外部双光纤准直器,用以把光导入封装,并接收从装置中为滤波器反射出的光线;图34是一个光学装置的一张截面图,该装置包括一根裸光纤,它通过一个准直透镜把光线引入,以及衍射光栅,它把光引到滤波器和检测的阵列上;图35是一个TO封装的截面图,该封装有一个套圈以接受光纤;图36是一个TO封装的截面图,该封装在帽中有接受光纤的直接固定装置;图37是一个TO封装管座的透视图,一个光学部件已经被安装并连接至该管座,以供电连接;以及图38是一个滤波器加热器的顶视图,它具有四点接触安排。
具体实施例方式
在结合着附图阅读本发明各个实施方案的各个方面的以下详细描述以后,就能对本发明有更好的了解。
可调谐薄膜滤波器(TTFFs)是自由-空间滤波器,它允许光束,例如准直光进入并对透射或反射滤掉某个波长或某组波长。要被滤过的光束除了对于输入和输出光学部件以外,没有用波导来引导,而输入输出端光学部件从波导,如象光纤,提取光束或向它注入光束。
在图1中所示的是包括一个TTFF101,如象一个OSA或OCM的光学仪器100的框图。该TTFF101包含具有大热-光系数的半导体薄膜,从而导致宽的可调谐性而不需要运动部件。与该TTFF101集成在一起或紧密连系的是在宽的温度范围内加热和/或冷却滤波器的器件。一根带信号的光纤110通过一个顶耦合器111。在光纤112中信号的一部分被传送到该仪器100。信号在113处从光纤输出,并通过一准直透镜114传送到TTFF101。控制电子学装置102通过控制到达电阻性加热器的电流驱动103来使TTFF101通过一个波长范围来扫描。该TTFF101也能够调谐到一个确定的波长。无论在波长扫描时,还是TTFF波长已经稳定时,而这依赖于测量的类型,都要读从PIN检测器105输出的光电流104。所得的结果被适当地处理,接着系统把所得到的谱或测量传送到外部接口106。在OSA应用中,其结果是一张功率测量对于TTFF已经扫描的连续波长范围的表。而在简单的OCM应用中,所得的结果是一张“通道功率表”,它只是一张在光通信系统中用的或可以用的每一个分立载波波长或通道上功率测量的清单。
OSA和OCM的内部功能已经在多个以前的专刊或出版物中加以叙述,我们将集中在这类仪器中使用TTFF所特有的那些方面。
作为一个例子,图2给出用TTFF来构造的OSA或OCM的一个实施方案。一个模拟电路201周期性地用一个迅速加热滤波器101的电流脉冲202驱动可调谐薄膜滤波器,从而把它的透射移动到要扫描范围以外的一个波长。无论在加热脉冲时或TTFF冷却时,一个模-数转换器203交替地取样PIN光电二极管204输出和一个从薄膜温度测量电路205输出的,表示活性薄膜温度的信号。PIN光电二极管204输出可以用,例如,对数放大器206加以放大。一个多路复用器207在PIN光电二极管输出和温度测量输出之间进行选择。一旦转换成数字信号,其结果就输到一个微处理器或数字信号处理器208。可以用带有内建A/D转换器和全功能接口的DSP,从而把刚刚叙述的几个功能集成到一个部件中去。接着对信号加以处理以产生如上述的输出谱或载波表。最后,该结果通过一个标准的串行接口209传送到主系统。
下面,我们讨论产生和测量上述温度摆动以及控制热可调谐滤波器的温度。温度控制方案的质量将最终决定滤波器的许多性能参数,包括调谐速率,调谐范围,峰宽,以及功率消耗。当选择一种温度控制方法时,加热和冷却速率和效率,温度均匀性,以及材料性质等都要被考虑到。
薄膜滤波器的加热和冷却元件能够按其和活性层接近的程度分成三类。第一类包括器件以外的加热/冷却元件,它和其基底或封装热耦合。第二类包括集成在器件中的加热或冷却元件,由于它和活性层更加接近,因而提供更有效的热控制。第三类,高度有效的热设计用活性层本身作为加热或冷却元件。
外部温度控制器是一种简单的方法来控制热可调谐装置的温度。例如,该滤波器可以安装在反馈控制热-电(T/E)加热器/冷却器上。这个方法是简单的,但有许多缺点。首先,T/E加热器/冷却器有一个有限的温度范围,从而导致有限的调谐范围,另外,为了实现大的温度摆动,它是太慢了,为了调谐整个范围,需要秒的量级,这样就抵消了TTFF的一个优点,即它的小的热质量的优点。另外,因为T/E元件是在器件本身之外,基底和封装将随着器件一起加热或冷却,这就导致由于增加系统热质量而引起的比较大的功率消耗和比较慢的温度控制和调谐速率。
为了解决这些问题,可以把一个电阻性的加热元件直接和滤波器集成在一起。图3中所示的是可调薄膜法布里-珀罗滤波器的一个实施方案。金属板301,对一个加热滤波器300的薄膜金属环状电阻器302形成电接触。在图4的截面图中,401表示法布里-珀罗滤波器中的电介质薄膜镜面堆层。而法布里-珀罗腔体层402是一种热可调谐材料。
用接触板301使电流通过电阻加热器302,从而产生出电阻性的热量,它将改变腔体层402以及其他层的光学性质,从而调谐滤波器300。在图3中光垂直于低面传播,通过在电阻加热器中心的孔303,即活性滤波器区域。这种类型的加热器可以用能够传送足够电流以产生所需电阻性热量的任意一种合适的材料来制成。例如一个具有300微米直径,50微米宽,有200微米孔径303,由100纳米厚的铬做成的环状加热器302有约10欧姆的电阻。在这样一个电阻性加热器上消耗的功率由P=I2R给出。假定加热滤波器使之足以有所需调谐范围需要1mW的功率,那么在加热元件两3.2V的电压将产生0.32mA的电流以及1mW的功率。该器件可以安装在一个热壑(heat sink)上,而该热壑与保持在一个恒定低温上提供冷却的T/E冷却器相连接。这样,用如上所述的脉冲驱动,就得到一个温度锯齿波,从而一个波长的锯齿波。
该加热方法比起上述外部加热器是更为有效的,因为加热元件更接近于活性层。这将导致更快的加热和调谐,以及更低的功率消耗。另外,这种类型的加热元件除了TTFF和导电环自身材料的使用温度限制以外,没有别的温度限制。然而,这种结构的缺点是在活性滤波器区域上差的温度均匀性,因为热必须从加热器的内边缘转移到活性滤波器区域的中心。这种非均匀的温度分布将导致透射峰的变宽或畸变,因为光束占据了活性滤波器区的一个有限的、非零区,以及因而,对应于不同的局部温度,将在不同滤波器性质的一定范围上分布。
按照另一种安排,薄膜电阻性加热器可以做成对所用波长范围是透明的。在这种情况下,它能放在光路中,提供更均匀的加热。图5给出一个可调谐薄膜法布里-珀罗滤波器501,它用了集成在基底503和滤波器堆层504之间的这种类型的加热元件502。这样一个加热元件502也能够是镜面堆层505中的一个,甚至是法布里-珀罗腔体层506,如果所述层被安置为既对所用波长透明又充份地导电。虽然在波分多路(WDM)工业中的滤波器当前所用的薄膜主要是电介质,我们的半导体薄膜的一个优点是它把好的光学性质和低损耗和所要求的热-光性质以及适当掺杂后的好的电导率结合在一起。用于无线电通信工业中的这种类型的加热元件502能够用下面几个透明导体中的一个做成,如象氧化锌,氧化铟锡,非晶态,微晶或多晶半导体掺杂薄膜等。用在炉中再结晶形成的多晶硅薄膜,作为非晶硅淀积的薄膜是特别适用于本目的。因为这些透明的导体比起多数纯金属有更高的电阻率,加热元件应当做到尽可能地小,以把电阻性功率密度增至最大。
对于半透明电阻性加热器的另外一个可能的材料是掺杂单晶硅或某些其他半导体晶体。在这种情况下,滤波器基底将是晶体半导体的晶片,而滤波器将在一个掺杂区域的顶上制造。当然,无论是本片的或掺杂的半导体,都必须对所用波长是透明的。
掺杂半导体,和薄膜透明电阻性加热器,二者相对于上述环状电阻性加热器都大大改进了在滤波器上温度的均匀性。同样,该滤波器和加热器的结合体能够做得更小,从而导致更小的功率消耗和小的器件尺寸。
图6给出集成在滤波器堆层602顶部的加热元件601。图7给出了在结晶半导体的一个掺杂区701的顶部上制造的一个滤波器700。该掺杂区701形成一个加热元件。图8给出了一个滤波器801,它在滤波器堆层804的顶部802和底部803分别有一个透明薄膜电阻性加热元件。
有两个加热元件的优点是使加热能力增加一倍,另外,其中一个元件能够用作一个温度计,如果它是由这样一种材料做成,即其电阻是温度的一个函数。结构的选择依赖于具体的应用需求。
上面所考虑的所有集成电阻性加热元件设计具有在滤波器整个面积上均匀温度分布,很靠近可调谐层,以及没有固有温度限制的优点。然而,因为加热元件是在光路中,它可能吸收或散射光线,从而导致小的透射峰和较高的滤波器插入损失。另外,许多有可能用于此目的的透明导电氧化物是对于温度不稳定的。最后,这些结构并不是加热可调谐层最有效的方法。例如,对于如图5所示的结构,加热元件502所产生的许多热量没有直接到达可调谐层506,而是到达基底503白白损失掉。
加热可调谐层最有效的方法是用该层自身作为加热元件,如上面提到的,如果它是导电的,例如一掺杂半导体薄层。图9给出一个可调谐法布里-珀罗滤波器900,它用电接触层301直接连向可调谐层901,该层又以与以前对集成加热器所述的同样方式,用作一个电阻性加热器。当然在这个情况下,可调谐层901除了要满足法布里-珀罗腔体层的全部光学要求以外,还须有一个足够低的电阻率,以能够载足够的电流来产生必要的电阻性热量。
这种结构包含加热器和调谐性能间最少的妥协因为该调谐层本身是加热元件,因而没有对这层更加有效的加热方法了,也即,它具有最快的调谐时间和最低的功率消耗。另外,就如同前面所述的透明集成加热元件那样,可以获得比较均匀的加热。最后,对于该结构,在通过法布里-珀罗滤波器的光路中没有附加层,因而对于光信号没有不必要的损失或修改。对于具有折射率为3.5,在1500nm的通道上调谐30nm的间隔器而言,需要大于350℃的温度变化。在我们的实施方案中,获得了这么大的局部加热,而这是通过把在一个微观体积内集中的电功率消耗,非常强的薄膜粘结,以及在重复使用下性质稳定的材料相结合起来以得到的。
现在来考虑在上述结构中用热光系数为dn/dT=2×10-4/℃的间隔器材料。
为了对材料性质的要求获得一个印象,我们让加热元件的长度L和宽度W是L=W=1mm,并把操作电压设成10V。功率密度是P/WL=I2R/WL=V2/RWL,这个值应当约1W/cm2。因而目标加热器薄膜电阻R应当约10K欧姆。对于一个薄膜加热器层厚度d=100nm以及W/L=1,加热器材料的目标电阻率应当是RdW/L=0.1ohm-cm。
能用于加热器的材料不仅必须有在所用波长(≈1550nm)上小的光吸收,而且必须有低的电阻率以提供在操作电压下足够大的电流来对于滤波器(间隔器层)产生足够的热量,能够满足这些要求的材料包括,但不限于,多晶,微晶,或纳米晶硅,氧化铟锡和氧化锌。为了优化加热器操作,请注意功率密度=V2d/rhoL2。也即功率密度随(V/L)的平方变化,而随厚度d线性变化。
如上所述,基于TTFFs热结构驱动加热器的一种方法包括向滤波器加热层提供一个电流尖峰(它非常迅速地加热滤波器)并在冷却过程中进行测量。在一个模拟电路中,该电流尖峰能够只是电容器放电的结果。藉助适当的热学的和电学的设计,能够得到一相对线性的曲线。
按照第二种方法,滤波器被设置到一个确定的波长,稳定在这个波长上,接着进行一次测量。如果波长能够很好地锁住,在一确定的波长上的测量可以有很高的准确性。
无论用什么方法来实现扫描或实现波长设置,当发生扫描或波长设置时,可以用几种方法来测量波长。现在将叙述数种。
在一种方法中,用事先校准的,确定稳定温度和时间关系的曲线来估算被滤波器透过的波长。如果TTFF是在一个温度稳定的环境中,不需要附加的测量和计算,因为可以假定在OCM的使用寿命内,温度和时间的关系保持不变。然而,如果TTFF不是温度稳定的,则温度随时间变化的关系很可能变化。加上一个热敏电阻计来测量TTFF装置的温度,并在不同的环境温度下进行一系列校准使能得到对波长和时间关系的合理的估计。
按照另一个方法,TTFF温度能够用的该器件集成在一起的电阻随温度变化的薄膜电阻器(热敏电阻计)来直接测量,因为波长直接与TTFF的温度相关该测量给出透射波长的一个非常好的瞬时估计值。为了得到的结果和滤波器的波长关连得很好,器件温度的测量应当准确地进行,并且应当被局域在光线通过器件的位置,而该位置只是器件面积的一小部分。现在将叙述三种可能的结构。
在TTFF中的薄膜加热元件能够既用作加热器,又用作温度监视器。为了实现这一点,必须有小量的电流连续地流进薄膜并测量薄膜上的电压。可以监视在电流和电压之间的关系以确定薄膜电阻,以及因而,温度。提供这些测量的一个具有潜在优势的方法是在加热电流上迭加一个小的AC信号,其频率相对于TTFF的热时间长数要足够高,以使得它事实上只引起非常小的DC加热,并且以这样的方式直接测量电阻,能够构造一个简单的模拟电路以提供这种功能而又不干扰TTFF操作。该电路将提供一单个的模拟输出,该输出是代表温度的加热器电阻。的一个函数,而该温度又用来确定滤波器的波长。
在某些结构中,因为加热器薄膜的温度可能不能准确地代表滤波器整体的温度,特别如果它在TTFF的一侧时,因而在结构中插入另一层能更好反映活性层温度的热敏电阻层可能是更可取的。这一层可以用与加热的非常相似的材料组成,例如ZnO,多晶硅,单晶硅,铟金属线,以及其他等等,可以用和以上所述非常相似的方式,包括AC信号,来测量。应当注意到,既用于温度测量,又用于加热的理想层是在TTFF中的腔体层。即使其间的材料不允许间隔层的直接加热,把这一层用作热敏电阻温度计也电非常有利的。即使用高阻材料也能够做到这一点,给以正确的电路,以得到非常准确的波长确定。
为了更加准确的温度测量,应当用加热器层和膜中另外一层,而这一层最好位于从加热层算起,间隔器的另一侧。这些膜的复合测量和热通量的简单模型一起将给出间隔器薄膜温度,以及因而,透过滤长的非数准确的数值。
确定波长最准确的方法是用校准的方法对它进行光学测量。现在要叙述至少三种可能的方法。
作为OCM目标的光纤网络系统能够构造成包括在多个参照波长上的多个校准光学信号,这些波长可以为OCM所监视。最好有至少两个这样的参照波长以提供在频带的每一个界限制的“终端标志”。然而这种方法现在还没有在商业通信设备中被采用,因而不能依靠这种方法。
能够在OSA或OCM内建立一个稳定波长参照源。许多OCM和光谱分析器事实上采用这种方法。用一个有相对宽带发射的LED,和一个滤波器,例如一个稳定的法布里-珀罗标准具,来建造一个波长参照。其优点是,这是一个稳定的,绝对的参照。其缺点包括更加昂贵的部件和封装,附加的可靠性的考虑,以及增大的封装尺寸。
因为热的耗散是通过热导接触板和基底的,用前面两种方法中的任意一种,在整个加热器上的温度都不是均匀的。因而,用这些两点方法中的任一个所测量的温度并不准确地对应于在光线透过所在空间位置上的温度。一个解决办法,如图38中所示,是用四个电接触,而不是用两个电接触,也即,一个四点探针以在加热时只测量中心电阻。对加热器3801通过接触3802供以电流。两个细的探针3803延伸到加热器膜3801相对边缘上接近中心的两点3804、3805,以在操作时只测量中心电阻。形成这些探针3803的导体必须很细,以使它本身不会影响温度的均匀性。
按照第三种方法,能够用光路中一个附加的光学元件来建立在透射谱中规则和固定的扰动。例如,一个具有较弱的镜面和相对于波长较大的腔体的法布里-珀罗腔体将具有在进入的透射光线的顶部建立一种“起伏”这样的效应。因为这是一种具有已知效应的固定图样,这种起伏在波长扫描时可以容易地从接收到的整个信号中分离出来。于是该信号可以用作对于在扫描时收集到的真实信号数据的一种“尺度”,它又是一种相对尺度,又是一种绝对尺度,这样一种腔体和功能可以容易地集成进TTFF。在其上构造滤波器的基底事实上能作为用于这个目的的法布里-珀罗腔体。它将是温度稳定的,至少对于高分辨率应用是如此,其中这样一种尺度确实是必须的。从电子学方面来讲,这种“导频音”可以用一种模拟电路检出以测量在扫描时在波长中的“上升/下降的速率”。注意,这种波长参照的方法可以不仅应用到TTFF,也能用于其他类型的可调谐滤波器。
总之,对收集到的每个检测器数据点,有许多方法来估计波长,从在工厂中只作一次的校准到连续的光学信号监视。其中有些方法有助于在基于TTFF的OCM封装中实现低成本。
我们现在把我们的注意力转向对材料更详尽的讨论。如前所述,适合于此处所述实施方案的材料应综合地具有在所用波长上极好的透明度,大的热-光系数,低的散射,在层间以及堆层和基底之间高的附着力,兼容的热膨胀系数以及在一个长的使用寿命中几百度摄氏度的重复温度循环中的稳定的性能。另外,该材料应当准确地,具有均匀厚度和均匀性质地形成和淀积。等离子体增强化学蒸汽淀积(PECVD)对于淀积含氢非晶硅(a-Si:H)和有关材料的层以作为薄膜滤波器是有用的。虽然可以用任何一种适应做法布里-珀罗滤波器或其他结构并有一有用的热-光系数的材料,我们现在来叙述a-SiH和相关材料作为适当的例子。
除了要控制各种薄膜的物理厚度,因而光学厚度以外,还要控制它们的折射率。PECVD是一个淀积如象SiO2,a-Si:H、和a-SiNx这样的半导体和电介质薄膜的一种成熟的技术。许多滤波器,包括上述法布里-珀罗薄膜滤波器,包含交替的高和低折射率材料层。而其他滤波器则用一种连续变化的折射率以构成一个折痕滤波器(rugate filter)(参阅Applied Optics 25(16),P.2644(1986)hy P.Baumeister)制造任何一种这些结构需要控制所用各种材料的折射率和厚度。
a-SiNx的低折射率和a-Si:H的相对高的折射率,在1.55μm上它们分别是1.77-2.05,具体数值依赖于气体成份,和3.62,在我们的方法中,这两种折射率能够用来制造反射带中心在1550mm的镜。薄膜堆层镜部份的所有的层是具有四分之一波长光程,即nd=λ/4。在间隔层,我们用a-Si:H,它具有高的热-光系数,其光学厚度为半波长或半波长的整倍数,从而形成一热可调谐滤波器。因而,只用了两种兼容的材料。通过改变这些材料的折射率,例如缓慢地改变组成,使从a-SiNx变到a-Si:H(在PECVD过程中,减小NH3的流量对于SiH4流量的比值),我们能以一种准连续的方式,把折射率从1.77改变到3.62。另外,通过在等离子体中把GeH4加入到气体混合物中去,我们可以把间隔层和镜堆层的高折射率层的折射率增加到4.2。把折射率增加到这个限度以外并不能进一步改善滤波器的性能,因为a-SiGe:H在Ge超过某个比例以后,开始更强烈地吸收。因而通过改变等离子体化学组成和淀积参数,我们能够非常好地控制这些薄膜的折射率和厚度。
现在讨论加热层的材料。加热器材料应当是与其他提到的材料兼容的一种材料,这种兼容包括与其制作相关的热过程和化学处理,另外这种材料是能用作加热器的一种材料。当前优选的是用具有合适折射率的导电薄膜,它同时用作滤波器的光学层和电阻性的加热器。因而该材料不应当散射或吸收光,应当有一个合适的折射率,并且有一个足够大的电导率,以使通过它的电流并不需要非常大的电压。有几个有潜力的候选者,为首的是多晶硅。其他包括透明导电氧化物,简化掺杂宽禁带半导体和掺杂微晶硅或纳米晶硅。
透明导电氧化物(TCOs)包括象氧化铟锡(ITO),SnO2,和ZnO这样的化合物。后面两种化合物被掺以铝或者氟以获得有用的导电性。然而这种掺杂也增加其自由载流子吸收,这可以使得这些材料在某些应用中吸收太多。这些薄膜是在一个隋性(例如Ar)气氛中或在一个反应气氛(例如O2)中通过溅射一个靶淀积而成的。TCOs有一个有用的电导率(已得到200S/cm-1000S/cm)。通过淀积薄的膜(~100-200nm)潜在的吸收问题被减至最小。另外,这些膜通常能够抵抗由于温度以及用来淀积基于a-Si:H的薄膜的等离子体过程可能造成的损伤。
半导体工业中,多晶,微晶,和纳米晶体硅这几个术语在一定程度上被交换地使用,以描述具有各种结构尺度的薄膜。在任何一种情况下,它们或者能掺以磷,或者掺以硼,也可以用作电阻性元件。能够生产出电导率为10-20S/cm的N型μc-Si。另外,能够得到高达39S/cm的硼掺杂,P-型,μc-Si薄膜。微晶Si也是和a-Si:H淀积兼容,它们用相同的关键设备,只是稍稍变动淀积的处方。另外,它在1550nm处的吸收是极小的,这类似于单晶或非晶硅。在μc-Si生长时,它的表面能变得比较粗。它可以有一个~33的AFM平均表面粗糙度,而a-Si:H只有~3,这样就引起光的散射。然而,在μc-Si的淀积后用化学和机械抛光该表面,这个表面粗糙性就能变得光滑,从而使可能把μc-si作为加热元件直接插入滤波器。再结晶的掺杂多晶硅有一个光滑的表面和适当的导电和光学性质以形成该加热层。
薄膜直接淀积半导体的热-光系数,也即折射率随温度的变化,dn/dT的物理机理只是部份地被了解。然而,考虑到这里给出的其他理由,应当用尽可能最高系数的薄膜。发表的最好的值表明,对于c-Ge在1.9μm上dn/dT=5×10-4/k(J.phys.and Chem.Ref.Date vol.9,P.561(1980)byH.H.Li),而对晶体或非晶硅为1.9×10-4/k。图10给出在25-200℃温度范围内测量到的dn/dT。我们已经准备了一个a-si:H样品,其dn/dT=3.6×10-4k,如曲线1001所示,想来该值大于任何一个已发表的值。另外,我们已经表明,如曲线1002所示,对于气相中以22%Ge和78%Si由我们制备的合金样品,dn/dT=11×10-4/k。该数值超过我们所知的,在热-光半导体科学文献中报导过的任何一个值。
图11给出根据图10的测量结果画出的1/n dn/dT图,该数值与在TTFF间隔层中光程长度的分数变化相关。
对于Si,dn/ndT=1×10-4k,如曲线1101所示。
对于SiGe样品#2231,dn/ndT=3×10-4/k,如曲线1102所示。
采用计算滤波器结构中心波长的任何一种方法,我们预言用a-Si材料,在如上描述的薄膜堆层中,调谐范围超过40nm。总之,用a-Si:H我们已经构造了自由空间滤波器,它没有运动部件,其调谐范围超过40nm。
在已经建立了基本设计原理和材料以后,现在将叙述一个具体的实施方案。在这个实施方案中,加热发生在淀积在基底上并在滤波器膜堆层以下的一层多晶硅层中。然而对某些应用,最好把它放置在堆层内部的分隔器的邻近,因为用于这个例子中的材料在近红外多少有些吸收,因而如果用在光线要作多次内反射的区域,将使滤波器的透射率下降。然而,在基底附近只有一次通过。
本实施方案是用如上所述的PECVD方法来淀积光学薄膜制得的。其他方法,如象电子束蒸发或离子-肋溅射也能被使用。然而,给予淀积原子更高能量的方法导致更致密更稳定的涂层;在PECVD中,这意味着用更高的频率,更高功率的放电。PECVD能够甚至在非平面表面上产生涂层,而PECVD的厚度控制通常用气体阀门来实现,而在某些情况下,用脉冲阀门以作“数字化”淀积。这方法是充份地可重复的,以致原来的光学监视可能不需要了,这是比起PVD方法的一个优点。
作为一个解释性的例子,考虑在象玻璃,熔凝硅,红宝石或硅片的基底上,对于一个法布里-泊罗谐振器,淀积的薄膜序列如下基底|Z(HL)4S(LH)4Z|空气Z=四分之一波长的n-掺杂多晶硅;L=四分之一波长的低折射率材料,如象SiN,n=1.77,或者,SiO2,n=1.44;H=四分之一波长的高折射率材料,如象a-Si:H,n=3.4;以及S=半波长整数倍的高折射率材料。
在这个示例性的实施方案中,S能够是两个半波长的纯a-Si:H或者,为了增强热调谐能力,两个半波长的a-SiGe:H(气相中有21.66%的Ge),在1.5μm上,n=4.2。
所有光程长度都是对于1550nm来计算的。因而半波长层的物理厚度由下式确定n×d=l=1/4 1550nm;其中n=折射率d=物理厚度;以及l=光程长因为SiO2的低折射率(在1500nm上是1.44),该结构以相同的HL循环数目将改善镜反射率,从而导致窄的通带。每一种材料的四分之一波长光物理厚度如下260nm SiO2114nm a-Si:H219nm SiN92nm a-SiGe:H这些厚度能够用在玻璃基底上淀积测试薄膜并观察其反射谱来确定;四分之一波长的薄膜将在1500nm上有最大的反射率,而在775nm上有零反射率。在低-高堆层中用相同的阀门-控制淀积时间将导致准确的四分之一波长堆层;一种更准确的方法是用脉冲气体阀门,它把淀积“数字化了”。在“数字化”淀积中,已知数目的非常短的气体脉件产生已知的厚度。原来的光学监视器也能够被用于得到更加准确的层厚度,这是通过观察透射或反射的“转折点”,从而表明每一层恰当结束来实现的。
淀积厚度和其他物理参数的不准确性影响最后的性能。某些简单的计算将有助于说明在热-光滤波器制作中各种干扰的影响。
所有上述的薄膜在以前都叙述过。图12-17给出各种改变的影响。
图12给出以0.5%的小的误差,这对于薄膜淀积是一个非常接近的容差,随机变化薄膜厚度的影响。请注意,其效果是在包络线1202内,标称滤波器特性1201的平行移动,但没有使滤波器曲线形状畸变或显著影响插入损失。
图13给出只在间隔器内引入少量吸收(或与之等效的,散射)的影响。当K=0时间隔器有80%的透射率,如曲线1301所示;而如果在1550上K=0.001,则透射率降到28%,如曲线1302所示。这说明低吸收,低散射,高光学质量透明材料的重要性。最好,K<1×10-5。
图14给出非性直光输入的影响。图中把用准直光的滤波器特性1401,和用从单模光纤中出来的光(没有透镜)的滤波器特性1402加以比较,而该光纤具有数值孔径0.12,对应于7°的半光锥角。当后面讨论封装时,应当注意到可以选择包括一个准直透镜。
图15给出通过增加镜堆层的H层和L层之间折射率对比而又保持HL周期的数目(4)不变所得到的好处。在该例中,把在L层中用SiN所得的曲线1501和L层用SiO2所得的曲线1502加以比较,而H层保持不变(a-Si)。其效果是使通带大大变窄。
图16给出较厚的间隔器对于热-光调谐范围所能得到的好处。曲线1601基线通带对应dn/n=0,也即,没有加以调谐。第二条曲线1602是对应于dn/n=0.01,而间隔器的厚度是两倍半波长。最右边的曲线1603也是dn/n=0.01,但间隔器的厚度是三个半波长。该调谐范围稍有改善,约10%。
图17给出如果不仅间隔器,并且镜堆层的H层和L层都同时是热-光改变的。所产生的效果。在1550处的基线曲线1701对应于没有温度变化。曲线1702对应于只有间隔器有热-光效应。曲线1703对应于间隔器和H层都有热-光效应,这与我们的情况相同。曲线1704给出所有的薄膜,包括间隔器,H,和L具有相同的热-光系数。因而,如果几个镜的高折射率层也是热-光可调谐的,而不是只有间隔器是热-光可调谐的,那么滤波器的可调谐范围就显著地被改善。因而如果加热所有的层,而不仅加热间隔器,并用类似于间隔器的热-光媒质来做镜堆层,或至少做H层,就能增强热调谐。例如,如果只有间隔器是热可调谐的,那么d(波长)/波长≈1/3dn/ndT,但如果所有的薄膜是相同地热调谐,因子1/3变得接近于1.0。
认识到这一点是有启发性的,即在过去,薄膜WDM滤波器工业一直避免使用具有大的热-光系数的半导体和其他薄膜材料,以专门来避免温度灵敏性。而在这里所述的技术中,我们把这点恰好反过来,而是要这种温度灵敏性尽可能大。因而常规滤波器的滤波器中心波长的移动<0.5微微米/度,而我们已经得到可调谐性>150微微米/度,因而我们发现原来以为对高质量光学器件有害的一种性质,也即半导体薄膜的温度敏感性,能够用来生产,据我们的了解,迄今为止所能构造的最高度可调谐的薄膜滤波器。
在前面所述内容中,OCM的检测器部件曾被假定是一个常规的分立的检测器,如象InGaAs检测器。然而,也可能插入薄膜PIN检测器,它用非常相同于已利用其热光性质的那种材料的掺杂版本制成。现在我们要叙述一个进一步的观点,在其中,滤波器内部的某个薄膜层起着检测器的作用。
为了形成一个完整的测量装置,TTFF能够和一个检测器按如下方式组合在一起。该TTFF包括一个或几个建立有效通道的腔体(图18,1901)。这些谐振腔体内有驻波场(图18,1902),该场比起入射幅射要强得多。其结果是,如果即使一个低灵敏度,半透明检测器(图18,1901)能够改进这个腔体,它也会提供一个显著的光响应,特别在腔体已被调谐到的那个波长上。这就使得有一个内建反馈和监视机构,例如,一个非常紧凑的光谱仪器一个可调谐滤波器装在一单一的封装中,在这封装中调谐元件和件感元件被包含在同一薄膜堆层中,可能甚至在一个CMOS芯片的顶部,而CMOS芯片起着系统驱动器的作用。
在薄膜光学堆层中能够包括操作在850nm,1310nm,或1550nm上的各个半透明传感器。这些PIN检测器在1550nm上有非常低的吸收(<<1%),它们可以和可调谐薄膜滤波器所需要的各种薄膜一起淀积。另外,用作薄膜PIN检测器的材料也可能用于在TTFF中的热-可调谐腔体。构造这种PIN检测器的原理是在2001年3月20号申请的美国专利申请系列号09/813,454提出的,现在这里引入以供参考。用透明导体来完成PIN结构。它们是由在1550nm上也没有大的损失的导电材料组成。虽然在以前的传感器结构中,我们利用ZnO或ITO接触,但对谐振一腔体薄膜传感器的优选接触材料是掺杂微晶硅。这种材料需要在一定条件下加以处理,以保证在一个非常薄的层中有最大的电导率。最好用较薄的层,一则因为它们的体光学性质,因为导电材料通常有一个较高的消光系数,一则是因为这些薄膜的晶状结构,它随着薄膜厚度快速增加。在这些薄膜面上的大的晶状结构会引起散射,从而妨碍谐振腔的效应。然而,已经公布了使微晶薄膜具有高的电导率,小的厚度,以及非常小的晶状结构的处理方法。一个方法是“闭反应室”PECVD,其中薄膜在一个封闭的机器中非常慢地生长,有效地同时进行淀积和优选地腐蚀非晶材料,以及导致层中非常快速地转变为晶状。
我们现在讨论光学仪器,例如上述的OSA或OCM,的封装的例子。OSA,OCM或其他的仪器并不限于任何具体的封装方式或载体。这里讨论的封装假定有从一光纤来的一个输入信号。
有一个检测器和TTFF的基本的子装置,这子装置对于下面所述的所有封装都是适用的。在图19和图20中画出了这个子装置的几个结构,包括一个陶瓷芯片载体2001,它具有一个贯穿孔2002。在载体2001的一侧,安装了检测器2003。而在另一侧,安装了滤波器2004,对于检测器2003和滤波器2004做了电接触2005,并从该处连向外连接2006。
为了从操作可靠性和成本两个方面来优化封装,它可以安装在一个标准的晶体管管座芯片载体中,例如一个晶体管外形(TO)盒中。TO盒能够广泛的用于封装电子学和光-电子学器件。如象晶体管,光检测器,LED,和固态激光器,有许多种类的TO盒,这使得它们能灵活地集成进各种应用中。
一个TO封装包括两个主要部件管座(安装表面),它等有用焊接玻璃密封的集成管脚,以及管帽。对于光学部件,该管帽上有一窗,以使外部光学设备把光件播进密封的腔体中。这样就允许构造各种“终端”器件,如象光学通道监视器(OCMs)和光接收器,或者,相反地,构造各种源器件,如象垂直腔体表面发射激光器(VCSEL)和可调谐源。
这里所述的TO管座能够以一个集成的馈通结构加以修改,以便允许通过光线的光学器件的封装。该馈通结构可以用许多方法来密封,可能最有效的是用直接封进管座表面的一个窗口(或透镜),复盖在馈通孔或管上。
TO管座是用冲压操作大规模生产的,经常一下就生产数千个。具有集成馈通管的用作电压力传感器的管座的制作也是众所周知的。这种馈通管可以有任意适当的直径,它只受电管脚圆的内直径的限制,以接受象小球透镜,光纤,渐变折射率(GRIN)透镜等光学元件。
该管座上接着安装以要封装的任何光学部件,用适当的方法加以对准,而这种方法依赖于所用光学元件,并按需要做上电连接。把管帽焊接到管座上的方法是众所周知的,因而这里不复讨论。可以用任何一种适当的方法。然而,对于用标准的带窗口的管帽的一种取代方法是用带有透镜的管帽,而这是终端器件所常用的。和管座上相类似的馈通结构也能集成进管帽,以安置光学部件,参阅,例如图36。
有三个或更多个口的封装,如象对光学加/减多路复用器(OpticalAdd/Drop multiplexer)所需的封装,能够用广泛可采用的双光纤准直器作为一个安装在帽上,管座上,或安装在二者上面的光学装置来构造,参阅例如图33。常规的自由空间或GRIN光学装置,采用有限几个馈通结构,也能被用来建立多个口。
用薄膜可调谐滤波器的组合光学加/减多路复用器的一个普通的结构,如象我们在2001年8月4日申请的,专利应用序列号60/310,047中所公布并在此插入以供参考的,能够被封装在一个三个口的TO封装内,如图33中所示。
TO型式封装技术是在约50年以前为早期晶体管建立的。TO管座和管帽都是用被证明有效的冲压技术以小的公差大规模生产,导致管座和带窗口的管帽一起的成本常常不足1美元(没有窗的管帽成本还要少得多)。
除了成本低以外,最普通的TO封装,TO-46比起其他更昂贵的同类产品,如象上述的蝶形和miniDIL形式封装要小。
为了装配方便,管座的公差,特别是安装表面和馈通管的内孔之间的角关系应当严格地控制。用在管座/管子生产和装配级上仔细的质量控制能够避免较大公差。
图21画出了一个简单的封装设计,包括密封在一个TO盒2201中的滤波器和检测器装置2200。在这个设计中,带有一个光学访问口2202的三引线盒2201是足够了。该封装能够连上一根光纤,口2202可以是一个抗反射涂层透镜。以把光线聚焦在滤波器/检测器装置2200上,或者是一个被动(passive)的光学窗口,只是让信号进入盒2201。用一个比较大面积的TTFF2204和检测器2003能简化光耦合和光对准。外部温度控制,信号加工处理电路可以被用来增强监视器的能力而不一定要包括在所述封装中。如果要用一个集成进TTFF的温度传感器,如前所述,电接触的数目仍保持在如图21所示。
一个单个的分立温度传感器,例如一个热敏电阻计或半导体温度传感器2301,可以加到封装中以监视基底的温度或者整个装置的温度,如图22所示,加上一个分立的监视器2301所必需的唯一的封装变化是对于TO盒另外加上两个电接触,从而形成总数为5的电接触。
为了主动地控制装置的温度,可以在封装内装入一个小的TE冷却器2302,如图22中所示。该主动温度控制服务于两个目的它降低并稳定操作温度,从而提高了PIN二极管检测器2303的灵敏度并改善滤波器2304和检测器2303二者的整体运行,对测量的准确性和器件的长寿命作出重要贡献。该温度控制电路也包括一个温度传感器,以用于反馈。
用以驱动温度控制单元/滤波器/检测器并加工和处理信号的电子学电路能够位于密封体积以外,例如在一个PC板上。一个较大的TO盒能够安置TE冷却器,并要求安装在一个热壑上。对于光学连接,该盒能够与图20中一样,引连上2304,还是用一个平的或一个形成透镜的窗口2305。
像OSA或OCM这样光学仪器的最完整的设计包括把驱动和信号处理电路集成到一个或几个芯片上。这些芯片和温度监视和控制装置都置于一个封装2400中,该封装可以是密封的,也可以是不密封的,如图23中所示。虽然这个结构,特别如果是密封的话,从可靠性和准确性这一角度来看是理想的,但它大大增加了整个装置的成本,因而只有不考虑成本,而对性能和可靠性有严格要求时,才是切实可行的。如图23所示,一根光纤2401配合并通过一个套圈2402以对在一个TO盒2403中的TTFF,检测器等等提供一个光学信号输入,如前所述。TO盒2403的管脚2404在TO盒2403的元件和封装2400中电路板2405上的外部控制和处理电子学电路之间传送信号。封装2400能包括热壑2406和用以连接到其他电路或系统的管脚2407。
图24进一步详细地画出了一个薄膜堆层的结构,它包括一个腔体2411,镜堆层2412和一个顶部加热器2413,该薄膜堆层还装有一个谐振增强薄膜PIN检测器以代替一个分立检测器。图25给出在象OSA或OCM这样的光学仪器结构的另一种方案,在其中没有用TE冷却器。
上面简述的和下面将更详尽叙述的封装是适用于很多种自由空间滤波器中的任何一种,如象TTFF,基于微机电系统(MEMS)的法布里-珀罗滤波器,全息或光栅滤波器和基于压电法布里-珀罗的滤波器。
由于光通信系统的严格可靠性要求,这里公布的这种类型的密封封装,对于光学部件是合宜的。现代密封多口光学装置封装技术包括蝶形封装,miniDIL封装以及各种机器铝封装。为了保持密封,几乎所有用于通过光线的封装都用激光焊接来使缝密封,在生产中要实现这一点是复杂并昂贵的。这种类型最简单的封装的成本常常要每个多达20美元,而更复杂的可以达到几百美元。
其他封装形式也是可用的,用以安置光电子学装置的封装可以包括,但不限于,具有用于单个检测器的前窗类型的TO型封装,如图26所示;以及具有用于直线检测器阵列前窗类型的双列直插式封装,如图27所示。
优选的实施方案包括低成本的装置,以在封装内对准和固定各个有源光电子学部件。这些部件在封装窗口下面堆迭在相互的顶部,同时对低成本装置提供适当的热管理和好的电接触。具体讲,我们用像陶瓷,例如氧化铝或氮化铝,这样的电绝缘材料做成的“支座”元件。该元件用来悬挂可调谐滤波器并使它在检测器或发射器元件上方维持一个固定的,很好控制的距离。另外,在该支座上可以安置导电布线或接触板,以供接触和内部连线。用被动的对准引导或参考记号,光电子学部件可以在x-y平面内准确地对齐,并准确地沿着Z轴放置。对于自由空间元件的典型要求是10微米量级。这种装置,它可以用标准的芯片安装设备来完成,以及可能在自动线上大量地制造,比起典型地用作多元件光通讯装置的“硅微台”型装置要大大地节省成本。另外,它显著地更具有机械弹性,因为所有部件都平躺在支座或封装表面上。
Z-轴装配方法是低成本的,它包括,但不限于·多级(台阶)支座,如象陶瓷,用来把部件沿着Z轴分开并把它们在x-y平面内对齐。
·光学/光电子学和其他芯片倒装在无源基底和/或其他光电子学元件制作于其上的基底上。
·事先把部件安装在基底/支座上,并用这些基底的被动对准把它们装配进封装;以及·把基底或部件直接安装进在封装内部的电管脚上。
几种形成图形的方法可以装配精度和所用的努力这两个方面的要求减至最小,这包括,但不限于(a)在一个部件,如可调谐滤波器2802上安置一个掩膜2801或孔径,并用有显著更大活性区域2803的其他部件,该区域足以允许被动对准容差2804,如图28所示;(b)用标准化的表面安装技术(SMT)装配方法和机器,以得到高的对准准确性,可能借助于光学对准导引2901,该导引由SMT机械来示出,如图29中所示。
(c)用基底上的中间掩膜或光学方法来对准各个光学/光电子学部件3002,如图30所示。
基于常规电子学方法部件的大量装配,例如SMT,可以用来建立光电子学装配“薄片”3100,之后再切割并封装它们。这种装配过程的一个例子在图31中给出,其中检测器3101和热敏电阻元件3102被安装在可调谐薄膜滤波器基底的相反侧面。几百个或几千个这种子装置可以被自动地装配,然后再焊料回流或引线键合过程,之后再对薄膜滤波器薄片切割,并把得到的子装置封装起来。图32给出建立这种装置的一种方法。一个单一的基底上被形成图形以能接受检测器,滤波器和或许其他部件,接着被切割;基底的某些部件被叠装上以与有图形的金属布线组成支座元件。
以这样一个封装的光学配置可以用于,包括,但不限于·只有输入,只有输出,或又有输入又有输出的光信号;·准直的或聚焦的光束;·只有外部光学系统,外部和内部光学系统的组合,或只有内部/封装集成光学系统;·用在外部光学系统上用在封装透明窗口上,或象基底这样内部元件上的被动光学涂层,以作为抗反射涂层,高反射涂层,或选择性波长滤波;·这种光学系统可以包括如象在封装以外用的单纤或双纤准直器,集成进封装自身内透镜,或在封装内部用于部件堆层中的微光学元件等元件。
图33和34给出两个这种光学装置的例子。图33给出一个用在封装以外的双光纤准直器,以通过光学访问口把光线引入封装,而在该访问口处光线被自由空间可调谐滤波器滤波。而反射,也即被拒绝通过的光被准直进一个输出光纤。而剩余的处在滤波器通道中的光线通过安装在一个支座上的滤波器基底,射到安装在滤波器直接下方的检测器上。该设计把在光电子学封装内所要求的光学系统减至最小,并显著减小了在安装时对准确性的要求。图34给出了一个在套圈中的裸光纤,它被用来通过与封装集成在一起并起着准直器作用的透镜,把光线引入封装。这里,该光线被一个衍射光学元件偏转一个角度,并导入一个光学芯片,在芯片上形成多重光学涂层的图形,包括在输入的“拒绝”口处的抗反射涂层,高反射涂层,它可以是电介质的或是金属的,以在芯片内保持光线,以及一系列可调谐薄膜滤波器,这些滤波器可以独立地调谐。最后,在可调谐滤波器下方,用一检测器阵列来把光学信号转化为电子学信号。
图35给出和一个InGaAs检测器集成在一起的可调谐薄膜滤波器的一个例子。该设计用了一个金属化的陶瓷支座元件,它起着(1)把可调谐薄膜滤波器置于检测器的上方(2)使得可以同时电接触到倒装可调谐薄膜滤波器和检测器。请注意该倒装芯片并不是一个必需的要求,电接触也能用连线直接做到顶部。图36给出在封装帽和准直器被装上以前,在支座上的子装置。请注意该准直器能够直接装在封装帽上,以减少一个元件和装配步双,如图37中所示。该封装被用作一个小型光谱分析仪的光电子学部份,其中可调谐滤波器被用来扫描一个波长范围,而检测器记条在每一个波长上的光功率,这在前面已经叙述过。
可以有广阔的应用范围需要这样类似的系统,其中活性光学元件,除了可调谐滤波器以外是检测器,发射器,或用以测量或处理光的其他光学元件。本发明的各实施方案的上述方面允许这种系统以一种低成本,小形状因子的方式使得它们广泛的应用变得可行。
本发明已经结合着其多个具体的实施方案加以描述。然而,对于本领域的技术人员,明显地可以在本发明的范围内,作种种修改。因而,本作者要求,本发明的范围只受所附权利要求的范围的限制。
权利要求
1.一种光学仪器,包括作为波长选择器的一个可调谐自由空间滤波器。
2.权利要求1的光学仪器,其中光学仪器是一个光谱分析器。
3.权利要求2的光学仪器,其中光谱分析器被构造及安置成用于波分复用光通信系统中的一种光通道监视器。
4.权利要求2的光学仪器,其中可调谐自由空间滤波器是一种可调谐薄膜滤波器(TTFF)。
5.权利要求4的光学仪器,其中TTFF是热-光可调谐的。
6.权利要求5的光学仪器,其中可调谐滤波器是一种多层膜结构,其中结合了薄膜半导体材料。
7.权利要求5的光学仪器,其中TTFF的温度是用一外部热能转移器件使之变化的。
8.权利要求7的光学仪器,其中热能转移器件是一个电阻性加热器件。
9.权利要求8的光学仪器,其中电阻性加热器件是一个环状金属膜,它确定一个孔径,光线通过该孔径通过滤波器。
10.权利要求8的光学仪器,其中电阻性加热器件是一层光透明层,它与滤波器在一个位置集成在一起,使得光通过该电阻性加热器件。
11.权利要求10的光学仪器,其中透明层是一个透明传导氧化层。
12.权利要求10的光学仪器,其中透明层是一种掺杂薄膜,选自包括非晶态,微晶,和多晶半导体薄膜。
13.权利要求10的光学仪器,其中透明层是一种掺杂的晶体半导体。
14.权利要求4的光学仪器,其中TTFF有单腔体法布里-珀罗结构。
15.权利要求4的光学仪器,其中TTFF有多腔体结构。
16.权利要求4的光学仪器,还包括一个光检测器,其中TTFF和光检测器被安装在单一的密封封装中。
17.权利要求16的光学仪器,其中该单一的密封封装是一个TO-型封装。
18.权利要求16的光学仪器,在该单一密封封装内还包括一个或多个分立的温度传感器。
19.权利要求16的光学仪器,在该单一密封封装内还包括一个或多个温度稳定器件。
20.权利要求1的光学仪器,其中波长校准是自动进行的,还包括一个或多个已知波长信号的外部源。
21.权利要求1的光学仪器,其中波长校准是自动进行的,还包括一个或多个已知波长信号的内部源。
22.权利要求1的光学仪器,其中波长校准是自动进行的,还包括在该光学仪器中的被动干涉仪结构,以建立一个稳定的波长参照。
23.权利要求22的光学仪器,其中干涉仪结构包括一个可调谐自由空间滤波器的基底。
24.权利要求23的光学仪器,其中干涉仪结构与已知光源相互作用以建立一个参照信号。
25.权利要求5的光学仪器,还包括一个测量热-光可调谐TTFF温度的器件以确定波长。
26.权利要求25的光学仪器,其中测量温度的器件被与TTFF集成在一起。
27.权利要求26的光学仪器,该TTFF还包括一个加热器层,而其中该加热器层还包括测量温度的器件。
28.权利要求27的光学仪器,其中测量温度的器件监视加热器层的电阻。
29.权利要求28的光学仪器,还包括一个DC电流源以加热该加热器层,以及迭加上的AC电流的源,而该电流足以监视加热器层的电阻。
30.权利要求28的光学仪器,还包括对加热器层的四个接触,其中四个接触中的两个向加热器层的边缘提供加热器电流,而四个接触中另外两个从加热器层的相对侧测量电阻。
31.权利要求1的光学仪器,还包括具有输出端的检测器,和相连的信号处理器以接收从检测器输出端来的信号,该信号处理器把从检测器输出端接收到的信号转换为功率对波长的数据。
32.权利要求1的光学仪器,还包括一个电子学组件;一个光检测器,一光纤输入端,和一个晶体管外形(TO)封装,而可调谐自由空间滤波器、光检测器、和光纤输入端被安装在该封装内,该TO封装包括各个针脚,通过这些针脚,在可调自由-空间滤波器和光检测器,以及电子学组件之间加以电连接。
33.权利要求32的光学仪器,还包括单个外壳以支持TO封装和电子学组件。
全文摘要
一种光学仪器,可以包括一个可调谐自由空间滤波器作为波长选择器。该可调谐自由空间滤波器可以是一个可调谐薄膜滤波器(TTFF)。该TTFF可以是热-光可调谐的。该可调谐滤波器可以是一种多层膜结构,其间插有薄膜半导体材料。TTFF的温度,因而其波长可以用各种加热和冷却结构来控制。也可以有各种TTFF结构。TTFF结构可以有一种单腔法布里-珀罗结构或可以有一种多腔结构。也能包括校准附件,如象一个或多个已知波长信号的外部源,或一个或多个已知波长信号的内部源。该仪器还可以包括一个被动干涉测量波长参照,一个测量热-光可调谐TTFF温度的装置以确定波长,以及一个光检测器。
文档编号G02B5/02GK1668961SQ02818387
公开日2005年9月14日 申请日期2002年8月2日 优先权日2001年8月2日
发明者劳伦斯·多玛施, 尤金·马, 罗伯特·穆拉诺, 尼库雷·尼姆楚克, 亚当·佩恩, 史蒂文·谢尔曼, 玛斯尔斯·瓦格纳, 吴明(音译) 申请人:伊吉斯半导体公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1