液晶显示器及其驱动方法

文档序号:2686075阅读:190来源:国知局
专利名称:液晶显示器及其驱动方法
技术领域
本发明涉及一种液晶显示器及其驱动方法。
背景技术
液晶显示器(LCD)是便携式平板显示器(FPD)中使用最广泛的一种。
LCD包括具有场产生电极和起偏器的一对面板;和,介电性能各向异性的液晶(LC)层,该层介于面板之间,受电极产生的电场的作用。场强的变化可改变LC层的分子取向,分子取向趋于平行或垂直场方向对齐。该LCD利用起偏器使光线穿过LC层,该LCD重新定位LC分子,以便改变光线的偏振。起偏器将偏振的变化转变为光透射率的变化,并因而得到所需的图像。
该LCD的视角很窄。尤其是,具有带有扭曲排列的向列LC的扭曲向列(TN)模式的LCD由于其具有许多优点而被广泛使用,其在监视器和电视机上的应用由于其窄视角而受到限制。
开发出了若干种用于扩宽LCD视角的技术,例如多域和补偿膜。尤其是,常常被称为宽视角膜的补偿膜提供了在横向上和其他宽视角技术一样好的可视特征。但是,垂直方向上的灰度逆变(亮度随着灰度电压在常规的黑色模式LCD中的增加而减小,或者亮度随着灰度电压在常规的白色模式LCD中增大而增大)依然存在,当从底部观看时,这种现象尤其严重。
而且,横向观看时,由于横向观看和从前方观看时伽马曲线的不一致性,和常规的TN模式LCD相比,多域LCD显示了差的可视性能。例如,当从前方走到横侧时,具有用以形成域的截断区的带图案垂直对准(PVA,patterned-vertically aligned)模式的LCD显示出更亮和更白的图像。有些时候,更高灰度的亮度会变得难以辨认,从而使图像不清晰。

发明内容
根据本发明一方面的液晶显示器包括多个布置在一列的像素、多个栅极线和与像素相邻的第一和第二数据线,其中,每个像素和一个栅极线相连,像素与第一和第二数据线至少每一行交替地相连,第一和第二数据线提供极性至少每行相反的数据信号,从而使像素接收具有相同极性的数据电压。
根据本发明一方面的液晶显示器包括液晶显示面板组件,该组件包括布置在具有多个行和多个列的矩阵内的多个像素、多个栅极线、以及多个数据线,其中,数据线的数目大于列的数目,在面板组件中,数据线彼此分开,每个像素与一个栅极线相连,并与两个数据线相邻,并且,每列中的像素至少每一行交替地与相邻的数据线相连。
每个像素包括两个子像素,每个子像素包括一个转换件。一列中的两个相邻像素被电容耦合。
优选地,给数据线中的至少两个,尤其是第一数据线和最后数据线供送相同的数据信号。
该液晶显示器还包括多个数据驱动IC,所述数据驱动IC具有多个和数据线相连的输出端,并包括第一驱动IC,该第一驱动IC具有与第一数据线和最后数据线电连接的第一输出端。
该液晶显示器还包括印刷电路板,其具有用以驱动数据驱动IC的电路元件;和,第一和第二挠性印刷电路膜,所述第一和第二挠性印刷电路膜连接面板组件和上述印刷电路板,装有数据驱动IC,并且分别包括与第一驱动IC的第一输出端相连的第一信号线以及和第一数据线相连的第二信号线,其中,印刷电路板包括在第一信号线和第二信号线之间连接的第三信号线。
该液晶显示器还包括用以提供图像信号和控制信号的信号控制器,所述控制信号用以控制用于数据驱动IC的图像信号,信号发生器最后为与第一数据线相连的第一列内的像素供送图像信号,首先为与第二数据线相连的第一列内的像素供送图像信号。
根据本发明的一个实施例,一种驱动液晶显示器的方法,该液晶显示器包括多个以包含多个行和多个列的矩阵形式布置的像素、多个栅极线和多个数据线,每个像素与一个栅极线相连,并与两个数据线相邻,每列的像素与相邻的数据线至少每一行交替地相连,所述方法包括接收多个用于一行内的像素的图像信号;储存接收到的信号中的第一图像信号;顺序输出来自第二图像信号的图像信号;和,输出所存储的第一图像信号。
该方法还包括将图像信号转换为数据信号;和,为数据线供送数据信号,要施加给一行中的两个相邻像素的数据信号具有相反的极性,要施加给一列中的两个相邻像素的数据信号具有相同的极性。


上述的优点和其他优点通过结合附图详细描述本发明的优选实施例将变得更加明了,其中图1是根据本发明一个实施例的LCD的方框图;图2是根据本发明一个实施例的LCD的像素的等效电路图;图3是根据本发明一个实施例的LCD的概要视图;图4显示根据本发明一个实施例的LC面板组件的像素和数据线之间的连接;图5显示根据本发明一个实施例的LC面板组件的相邻数据线上所施加的数据信号的波形;图6显示从信号控制器供送给根据本发明一个实施例的LCD的数据驱动器的图像信号的波形;图7显示根据本发明另一个实施例的LC面板组件的数据线和像素之间的连接;图8显示根据本发明另一个实施例的LC组件的相邻数据线上所施加的数据信号的波形;图9显示从信号控制器供送给根据本发明另一个实施例的LCD的数据驱动器的图像信号的波形;图10是根据本发明另一个实施例的LC面板组件的布局图;图11A是沿着XIB-XIB’截取的图10中的LC面板组件的剖视图;图11B是图11A中所示的TFT阵列面板的剖视图,除了滤色器阵列面板和极化薄膜之外,该阵列面板是图11A所示LC面板组件的一部分;图11C是沿着XIC-XIC’截取的图10中的TFT阵列面板的剖视图;图12至15C是图10、11B和11C所示的TFT阵列面板的剖视图和布局图,它们处于根据本发明一个实施例的制造方法的中间步骤;图16是用于根据本发明的另一个实施例的LCD的TFT阵列面板的布局图;图17A和图17B是沿着XVIIA-XVIIA’和XVIIB-XVIIB’截取的图16中所示的TFT阵列面板的剖视图;
图18A至图20C是图16、17A和17B所示的TFT阵列面板的剖视图和布局图,它们处于根据本发明另一个实施例的制造方法的中间步骤。
具体实施例方式
现在参照附图对本发明的具体实施例进行详细描述。但是,本发明可以以多种不同的形式体现,不应理解为局限于所示的实施例。
附图中,清楚起见将层和区域的厚度夸大。类似的附图标记指代类似的元件。应该知道,如果将如层、薄膜、区域、衬底或面板的元件称作“在另一个元件之上”,那么该元件可以直接在另一个元件之上,或者它们之间存在中间元件。相比之下,当一个元件被称为“直接在另一个元件之上”,则不存在中间元件。
然后,参照附图描述根据本发明实施例的液晶显示器及其驱动方法。
图1是根据本发明一个实施例的LCD的方框图,图2是根据本发明一个实施例的LCD的像素的等效电路图。图3是根据本发明一个实施例的LCD的概要视图。
参照附图1,根据本发明一个实施例的LCD包括LC面板组件300;栅极驱动器400和数据驱动器500,它们和面板组件300相连;和栅极驱动器400相连的驱动电压生成器560;和数据驱动器500相连的灰度电压生成器800;和,控制上述元件的信号控制器600。
面板组件300包括多个显示信号线G1-Gn,D0-Dm,和多个与显示信号线相连并基本布置在矩阵内的像素。
显示信号线G1-Gn,D0-Dm包括多个传送栅极信号(被称为扫描信号)的栅极线G1-Gn和多个传送数据信号的数据线D0-Dm。该栅极线G1-Gn基本沿着行的方向延伸并基本彼此平行,数据线D0-Dm基本沿着列的方向延伸并基本彼此平行。
显示信号线131还包括多个位于栅极线G1-Gn之间和像素之间、被供送共用电压Vcom的存储电极线131。
参照图2,每个像素Pi,j(i=1,2,...n且j=1,2,...m)包括一对子像素Pi,j1和Pi,j2,并且,每个子像素Pi,j1或Pi,j2包括和栅极线G1-Gn中的一个和数据线D0-Dm中的一个组成的对相连的转换元件(switching element)Q1或Q2;和转换元件Q1或Q2相连的LC电容CLC1或CLC2和储存电容CST1和CST2。
在列方向内的两个相邻像素通过耦合电容Cpp电容耦合。例如,像素Pi,j的上子像素Pi,j1和上像素Pi-i,j的下子像素Pi,j2电容耦合,像素Pi,j的下子像素Pi,j2和下像素Pi+1,j的上子像素Pi+1,j1电容耦合。
一个像素列内的像素交替地和位于像素列两端的两个数据线相连。例如,位于第j列内的像素Pi,j和第(j-1)条数据线Dj-1基相连,而下一个像素Pi+1,j的和第j条数据线Dj相连。相反地,一个像素行内的像素和同一端的数据线相连。例如,第i行内的所有像素和左侧数据线相连,而第(i+1)行内的所有像素和右侧数据线相连。
像素和数据线D0-Dm之间的这样的连接要求数据线D0-Dm比像素列数多一个。
根据本发明的另一个实施例,一个像素列内的所有像素和相同的数据线相连。在这种情况下,要求数据线D0-Dm和像素列数相同。
转换元件Q1或Q2具有三个接线端和栅极线G1-Gn中的一个相连的控制端;和数据线D0-Dm中的一个相连的输出端;和LC电容CLC1或CLC2、储存电容CST1和CST2、耦合电容Cpp相连的输出端。
LC电容CLC1或CLC2被连接在转换元件Q1或Q2和共用电压Vcom之间。存储电容CST1或CST2被连接在转换元件Q1或Q2和储存电极线131之间。
该像素结构可以防止仰视时的灰度逆变并能在所有方向上提高可见度,其中,该像素包括两个转换元件和两个LC电容,并且相邻的像素通过耦合电容电容耦合。
参见图1,驱动电压生成器700生成用以导通转换元件Q1和Q2的栅极导通电压Von和用以切断转换元件Q1和Q2的栅极切断电压Voff。
灰度电压生成器800生成和像素的穿透率相关的两组多个灰度电压。一组中的灰度电压具有相对于共用电压Vcom的正极性,而另一组中的灰度电压具有相对于共用电压Vcom的负极性。
通常被称作扫描驱动器的栅极驱动器400和面板组件300的栅极线G1-Gn相连,并为栅极线G1-Gn提供栅极信号,每个栅极信号是来自驱动电压生成器700的栅极道通电压Von和栅极切断电压Voff的组合。
通常被称作源驱动器的数据驱动器500和面板组件300的数据线D0-Dm相连,并对数据线D0-Dm施加从来自灰度电压生成器800的灰度电压中选取的数据电压。
信号控制器600控制栅极驱动器400、数据驱动器500和驱动电压生成器560。
参见图3,将信号发生器600、驱动电压生成器700和灰度电压生成器800设置在印刷电路板(PCB)450和550上,栅极驱动器400和数据驱动器500分别包括多个栅极驱动集成电路(“IC”)440和多个数据驱动IC541-543。
具体地,栅极PCB450位于面板组件300的左侧,通过多个栅极挠性印刷电路薄膜(FPC)410和面板组件300相连。数据PCB550位于面板组件300的顶部,通过多个多个数据FPC薄膜511-513和面板组件300相连。栅极驱动IC440安装在每个栅极FPC薄膜410上,同时数据驱动IC541-543安装在每个数据FPC薄膜511-513上。另外的FPC薄膜412被连接到栅极PCB450和数据PCB550上。该FPC薄膜412包括多个用以在栅极PCB450和数据PCB550之间提供电连接的信号线(图中未示)。
在数据FPC薄膜511-513上形成多个信号线521,将数据驱动IC541-543的输出端和面板组件300的数据线D0-Dm连接。和最右边的数据线Dm连接的最右边的数据驱动IC542的最后的接线端与被称作虚设数据线的最左边的数据线D0电连接,该连接是通过以下元件完成的在装有最右边的驱动IC542的最右侧FPC薄膜512上形成的信号线522a,在数据PCB550上形成的信号线522,在装有最左边的驱动IC541的最左侧FPC薄膜511上形成的信号线522b。在数据PCB550的信号线522的端点处或中点处可以设置例如运算放大器的放大器(图中未示),用以补偿最右侧的数据驱动IC542和虚设数据线D0之间由于信号线522的阻抗而引起的电压降。
不像图3,栅极驱动器400和数据驱动器500可以被安装在面板组件300上,或通过形成显示信号线G1-Gn,D0-Dm和131的过程形成在面板组件300上。灰度电压生成器800可以被局部地设置在数据PCB550和数据驱动IC541-543之中。
如果根据本发明的另一个实施例,一个像素列内的所有像素都和相同的数据线相连,可以省略虚设数据线D0和信号线522、522a和522b。
现在,详细描述LCD的工作情况。
RGB图像信号R,G和B被供送给信号控制器600,该信号控制器600从外部图像控制器(图中未示)输入控制其显示的控制信号,例如,垂直同步信号Vsync,水平同步信号Hsync,主时钟CLK和数据使能信号DE。在基于输入控制信号生成栅极控制信号CONT1和数据控制信号CONT2并且处理适于面板组件300工作需要的图像信号R、G和B之后,信号控制器600为栅极驱动器400提供栅极控制信号CONT1和经处理的图像信号R’、G’和B’,还为数据驱动器500提供数据控制信号CONT2.
栅极控制信号CONT1包括用以通知帧起始的垂直同步起始信号STV,用以控制栅极导通电压Von的输出时间的栅极时钟信号CPV,用以限定栅极导通电压Von的宽度的输出使能电压OE。数据控制信号CONT2包括用以通知水平周期的起始的水平同步起始信号STH,用以指导为数据线D0-Dm提供适当数据电压的负载信号LOAD或TP,用以反转数据电压(相对共用电压Vcom)的极性的反转控制信号RVS,和数据时钟信号HCLK。
数据驱动器500接收来自信号控制器600的用于像素行的一组图像数据R’、G’和B’,还将图像信号R’、G’和B’转换为模拟数据电压,该模拟数据电压是响应来自信号控制器600的数据控制信号CONT2从灰度电压生成器800提供的灰度电压中选取的。
响应来自信号控制器600的栅极控制信号CONT1,栅极驱动器400将栅极导通电压Von供送给栅极线G1-Gn,从而接通与其相连的转换元件Q1和Q2。
因为使用了与数据驱动器500相连的栅极线G1-Gn,数据驱动器500在转换元件Q1和Q2的导通时间内(被称作“一个水平周期”或“1H”,等于水平同步信号Hsync、数据使能信号DE和栅极时钟信号CPV的一个周期)为相应的数据线D0-Dm施加数据电压。然后,通过导通的转换元件Q1和Q2将数据电压供送给相应的像素。
数据电压和施加给像素的共用电压Vcom之间的差异以LC电容CLC1或CLC2的放电电压的形式来表述,即,像素电压。液晶分子的取向依赖像素电压的大小,并且该取向决定穿过LC电容CLC1或CLC2的光的偏振。起偏器(图11A中的附图标记11和21所指代)将光偏振转变为光透射。
通过重复该步骤,在一个帧内,所有的栅极线G1-Gn被顺序施加栅极导通电压Von,从而为所有的像素施加数据电压。当一帧结束、下一帧开始时,施加给数据驱动器500的反转控制信号RVS受控,使得数据电压的极性被反转(被称作“帧反转”)。该反转控制信号RVS还可受控,使得流入一个帧内的数据线中的数据电压的极性被反转(这被称为“线反转”),或者,一组内的数据电压的极性被反转(这被称作“点反转”)。
接下来,将参照附图4-6详细描述为根据本发明一个实施例的LC面板组件施加数据电压的方法。
图4显示根据本发明一个实施例的LC面板组件的像素和数据线之间的连接,图5显示利用根据本发明一个实施例的LCD的数据驱动器施加给LC面板组件的相邻数据线的数据信号的波形,图6显示从信号控制器施加给根据本发明一个实施例的LCD的数据驱动器的图像信号的波形。
根据本发明一个实施例的LCD的一行中的像素在同一端和数据线相连,同时,相邻两行中的像素在相对端和数据线相连。如图4所示,奇数行中的第j个像素在右端和数据线Dj相连,而偶数行中的第j个像素在左端和数据线Dj-1相连。
施加给一行中的相邻两个像素的数据电压具有相反的极性,而施加给一列中的相邻两个像素的数据电压具有相同的极性。为了得到这样的极性配置,施加给相邻两个数据线的两个数据信号dj和dj+1具有相反的极性,每个数据信号dj和dj+1在每行中都反转极性,如图5所示。
图6显示从信号控制器600施加给数据驱动器500的图像数据R’、G’和B’。对于奇数行,信号发生器600顺序地供送信号,从用于第一列的图像数据d11,d31...到用于最后一列的图像数据d1m,d3m...但是,对于偶数行,因为第一列中的像素和虚设数据线D0相连,而该虚设数据线又和最后的数据线Dm相连,所以信号发生器600顺序地供送信号,从用于第二列的图像数据d22,d42...到用于最近一列的图像数据号d2m,d4m...,然后,最后供送用于第一列的图像数据d21,d41...。出于这一目的,信号发生器600暂时存储图像数据d21,d41...,以用于稍后的输出。
如果像素和数据线之间的连接和图4所示的相反,即,奇数行中第j个像素在左端和数据线Dj-1相连,偶数行中的第j个像素在右端和数据线Dj相连,信号处理器600对图像数据R’、G’和B’的输出顺序改变。具体地,对于奇数行,信号发生器600顺序地供送信号,从用于第二列的图像数据d12,d32...到用于最后一列的图像数据d1m,d3m...,然后,最后供送用于第一列的图像数据d11,d31...,而对于偶数行,信号发生器600顺序供送信号,从用于第一列的图像数据d21,d41...到用于最后一列的图像数据d2m,d4m...。
然后,用于面板组件300内的像素的反转类型是列反转,而用于数据线D0-Dm的反转类型是点反转。
根据本发明的另一个实施例,如果一列中的所有像素都和相同的数据线D0-Dm连接,一行中的相邻像素的极性相反。沿着所述列的极性遭受到点反转(一列中的相邻像素具有不同的极性)或列反转(一列中的相邻像素具有相同的像素)。
点反转控制数据信号的极性,使得施加给两个相邻数据线的数据信号相反,并且,只要所应用的行改变,数据信号沿着数据线反转。
列反转控制数据信号的极性,使得施加给两个相邻数据线的数据信号也相反,同时,数据信号沿着数据线具有相同的极性。
在这种情况下,不需要重新布置图像数据R’、G’和B’的顺序。即,对于所有行,信号控制器600顺序输出信号,从用于第一列的图像数据d11,d21...到用于最后一列的图像数据d1m1,d2m...。
和这个实施例相比,图4所示的像素和数据线之间的连接具有如下优点用于LC面板组件300的像素的列反转所提供的亮度高于点反转,从而提高可视性和降低闪烁,其中具体地,该LC面板组件300具有如下配置像素包括两个转换元件,并且像素通过耦合电容电容耦合。此外,由于仍然保留用于数据线的点反转,可以反转和数据线相连的转换元件的切断电流的极性,从而减小色度亮度干扰。
接下来,参照图7至图9详细描述为根据本发明另一个实施例的LC面板组件施加数据电压的方法。
图7显示根据本发明另一个实施例的LC面板组件的数据线和像素之间的连接;图8显示根据本发明另一个实施例的LC组件的相邻数据线上所施加的数据信号的波形;图9显示根据本发明另一个实施例的LCD,从信号控制器供送给数据驱动器的图像信号的波形。
根据本发明的这一实施例的像素和数据线之间的连接不同于图4所示之处在于,相连的数据线每两行反转。即,如果前两行中的第j个像素和数据线Dj相连,那么,在接下来的两行中的第j个像素和数据线Dj-1相连。如图7所示,第(4k+1)行(k=0,1,...)和第(4k+2)行中的第j个像素在右端和数据线Dj相连,而第(4k+3)行和第(4k+4)行中的第.j个像素在左端和数据线Dj-1相连。
如图7所示,极性设置与图4所示的相同。即,施加给一行中的相邻两个像素的数据电压具有相反的极性,而施加给一列中的相邻两个像素的数据电压具有相同的极性。为了得到这样的极性设置,施加给相连两个数据线的数据信号dj和dj+1具有相反的极性,并且,如图8所示,数据信号dj和dj+1中的每个每两行反转其极性。
图9显示从信号控制器600施加给数据驱动器500的图像数据R’、G’和B’。对于第(4k+1)行和第(4k+2)行,即,对于第一行、第二行,第五行、第六行等等,信号发生器600顺序供送信号,从用于第一列的图像数据d11,d21...到用于最后一列的图像数据d1m,d2m...。而对于第(4k+3)行和第(4k+4)行,即第三行、第四行、第七行、第八行等等,信号发生器600顺序供送信号,从用于第二行的图像数据d32,d42...到用于最后一行的图像数据d3m,d4m...,最后供送用于第一列的图像数据d31,d41...。出于这一目的,信号发生器600暂时存储图像数据d21,d41...,以用于稍后的输出。
如果像素和数据线之间的连接和图7所示的相反,即,第(4k+1)行和第(4k+2)行中的第j个像素在左端和数据线Dj-1相连,第(4k+3)行和第(4k+4)行中的第j个像素在右端和数据线Dj相连,信号处理器600对图像数据R’、G’和B’的输出顺序改变。具体地,对于第(4k+1)行和第(4k+2)行,信号发生器600顺序供送信号,从用于第二列的图像数据d12,d22...到用于最后一列的图像数据d1m1,d2m...,最后,供送用于第一列的图像数据d11,d21...,对于第(4k+3)行和第(4k+4)行,信号发生器600顺序供送信号,从用于第一列的图像数据d31,d41...到用于最后一列的图像数据d3m,d4m...。
用于面板组件300中的像素的反转类型是列反转,而用于数据线D0-Dm的反转类型是双点反转。
像素和数据线之间的连接可以至少每三行反转一次。
现在,参照图10至11C详细描述用于根据本发明的一个实施例的LCD的LC面板组件。
图10时根据本发明一个实施例的LC面板组件的布局图;图11A是沿着XIB-XIB’截取的图10中的LC面板组件的剖视图;图11B是图11A中所示的TFT阵列面板的剖视图,除了滤色器阵列面板和偏振薄膜之外,该阵列面板是图11A所示LC面板组件的一部分;图11C是沿着XIC-XIC’截取的图10中的TFT阵列面板的剖视图。
参照图11A,根据这个实施例的LC面板组件包括TFT阵列面板100,面对该TFT阵列面板的滤色器阵列面板200,和插在它们之间的LC层3。
参照图10至11C,该TFT阵列面板100包括形成在绝缘衬底110上的多个栅极线121和多个存储电极线131,该绝缘衬底110优选地由透明玻璃制成。每个栅极线121基本沿着行的方向延伸并包括多个栅极124。该存储电极线131基本沿着行的方向延伸,并被局部弯曲。
在栅极线121和存储电极线131上形成栅极绝缘层140,在和栅极电极124相对的栅极绝缘层140上形成多个半导体岛154。每个半导体岛154优选由无定形硅(“a-Si”)制成,并形成TFT的通道。在半导体岛154上形成多个欧姆触点163、165a和165b,它们优选由高度掺杂诸如磷(P)的N型杂质的a-Si制成。
在欧姆接触163、165a和165b以及栅极绝缘层140上形成多个数据线171、多对漏极175a和175b、以及多个耦合电极177。
每个数据线171基本在列的方向上延伸,并包括多个源极173,每个源极173和一对漏极175a和175b相对,该漏极175a和175b相对于栅极124从该处分开。源极173的位置在每行的左侧和右侧之间变化,因而,给定源极173的位置和前一行中源极的位置几乎左右对称。
每一对漏极175a和175b相对于栅极线124沿着相反的方向延伸。
每个耦合电极177在列的方向上跨过存储电极线131延伸。
位于源极173和漏极175a和175b之间的半导体岛154的位置是暴露的,仅将欧姆接触163、165a、165b设置在半导体岛154与数据线171和漏极175a和175b之间。
在数据线171、漏极175a和175b以及耦合电极177上形成钝化层180。该钝化层180具有多个暴露漏极175a和175b的端部的接触孔183a和183b,以及多个暴露耦合电极177的端部的接触孔187。该钝化层180还有多个暴露数据线171的端部179的接触孔182,钝化层180和栅极绝缘层140具有多个暴露栅极线121的端部129的接触孔181。
在钝化层180上形成的多个成对的像素电极190a和190b、以及多个接触辅助件91和92。像素电极190a和190b以及接触辅助件91和92优选由例如铟锡氧化物(ITO)和铟锌氧化物(IZO)的透明导电材料或反射材料制成。
每对像素电极190a和190b包括下像素电极190a和上像素电极190b,它们分别通过接触孔183a和183b和漏极175a和175b相连。上电极190b通过接触孔187和耦合电极177相连,下电极190a和耦合电极177重叠,使得上像素的下像素电极190a和下像素的上像素电极190b被电容耦合。此外,上像素的下像素电极190a和下像素的上像素电极190b跨过存储电极线131相对,并和存储电极线131重叠,从而形成多个存储电容。跨过存储电极线131相对的像素电极190a和190b的边缘被弯曲成V形,并且,像素电极190a的V形边缘是凸起的,而像素电极190b的V形边缘是凹陷的。
每个下像素电极190a具有上、下和中心直线切口191-193。中心切口193位于列方向的中间部分,并且该切口从左至右进入像素电极190a,从而将像素电极190a分为上下两个部分。上下切口191和192分别在上下部分中倾斜延伸,并相对于中心切口193对称设置。
接触辅助件91和92分别通过接触孔181和182连接到栅极线121和数据线171的暴露端部129和179,并用以保护暴露端129和179,但是这些辅助件是可选的。
除了接触辅助件91和92外,在TFT阵列面板100的整个表面上涂覆对准层(alignment layer)11。
一个栅极124、一个源极173和一对漏极175a和175b,与一个半导体岛154一起形成分别和像素电极190a和190b相连的一对TFT。
参照图10和图11B,滤色器阵列面板200包括形成在绝缘衬底210上的黑矩阵220,该绝缘衬底210优选由透明玻璃制成。该黑矩阵220限定出多个窗口,在这些窗口处形成多个红色、绿色和蓝色的滤色器。在滤色器上形成上涂覆层,并在上涂覆层上形成公共电极270。该公共电极270优选由诸如ITO和IZO的透明导电材料制成,并具有多组的四个直线切口271-274。切口271-274中的三个271-273和下像素电极190a重叠,从而沿着切口191-193将像素电极190a分成多个子区域。V形的切口274和上电极190b重叠,从而将上像素电极190b分为两个子区域。在滤色器阵列面板200上涂覆对准层21。
由切口191-193和271-273限定出的每个子区域具有基本四边形的形状,该四边形的两个主边和栅极线121和数据线171成大约45度的角。由上像素电极190b的边缘和切口274限定的子区域具有V形形状,这些子区域是两个四边形的组合。
一对起偏器12和22分别和面板100和200的外表面连接在一起。起偏器12和22的偏振轴相交并基本平行于栅极线121或数据线171。
LC层3的分子被对准,从而使它们的主轴在没有电场的情况下基本垂直于面板100和200的表面。
接下来,参照图12A至图15C以及图10至图11C详细说明根据本发明实施例的、制造图10至图11C所示的TFT阵列面板的方法。
如图12A至12C所示,在玻璃衬底110上形成多个栅极线121和多个存储电极线131。
如图13A至13C所示,沉积SiNx栅极绝缘层140、优选由无定形硅制成的半导体层、以及掺杂无定形硅层,并且使该掺杂无定形硅层和该半导体层形成图案,以形成多个岛164和165。
如图14A至14C所示,在形成多个数据线171、多个漏极175a和175b及多个耦合电极177之后,去除掺杂无定形硅岛164没有被数据线171、漏极175a和175b及耦合电极177覆盖的部分,从而使半导体岛154的下层部分暴露。为了稳定半导体层1 54的暴露表面,优选执行氧气等离子体处理。
如图15A至15C所示,通过在衬底110上涂敷或使用如等离子体加强化学气相沉积(PECVD)的方法沉积具有良好偏振特性的硅的碳化物或光敏有机材料来形成钝化层180。该钝化层180和栅极绝缘层140一起被光蚀刻,从而形成多个分别暴露漏极175a和175b、耦合电极177、栅极线121和数据线171的端部129和179的接触孔183a-185。
参照图10至图11C,对透明导电材料进行沉积和光蚀刻,以形成多个像素电极190a和190b以及多个接触辅助件91和92。通过接触孔183a和183b将像素电极190a和190b连接到漏极175a和175b上,通过接触孔187将像素电极190a和190b连接到耦合电极177上。分别通过接触孔181和182将接触辅助件91和92连接到栅极线121和数据线171的暴露的端部129和179上。
最后,在TFT阵列面板100的整个表面上涂覆对准层11,如果需要的话,可进行表面处理。
现在,参照附图16至17B详细说明根据本发明另一个实施例的LCD的LC面板组件。
图16是根据本发明另一个实施例的LCD的TFT阵列面板的布局图,图17A和图17B是沿着XVIIA-XVIIA’和XVIIB-XVIIB’截取的图16中所示的TFT阵列面板的剖视图。
根据本发明的这一实施例的LCD包括TFT阵列面板100,滤色器面板200和插入上述两者之间的LC层。
TFT阵列面板100包括在绝缘衬底110上形成的多个栅极线121和多个存储电极线131,该衬底优选由透明玻璃制成。每个栅极线121基本在行的方向上延伸,并且还包括多个形成栅极电极124的扩展部分。每个存储电极线131基本平行于栅极线延伸,并且可以包括多个分支。
在栅极线121和存储电极线131上形成栅极绝缘层140。在栅极绝缘层140上形成多个半导体带和岛151和157,它们优选由氢化a-Si制成。每个半导体带151包括多对和栅极电极124重叠以形成TFT通道的部分154a和154b。在半导体带和岛151和157上形成多个欧姆接触带和岛161、165a、165b和167,它们优选由硅化物或高度掺杂有诸如P的n型杂质的氢化a-Si(hydrogenated a-Si)制成。
在欧姆接触带和岛161、165a、165b和167上分别形成多个数据线171、多对漏极175a和175b和多个耦合电极177。每个数据线171沿着半导体带151延伸,还包括多个从该处延伸并位于栅极线121上的源极173。漏极175a和175b相对于源极173彼此相对,并从栅极电极124向上和向下延伸。
每个耦合电极177基本在行的方向上延伸,并且局部地和存储电极线131重叠。
欧姆接触161、165a、165b和167只设置在半导体带和岛151和154与数据线171、漏极175a和175b以及耦合电极177之间。
数据线171和漏极175a和175b具有和欧姆接触带和岛161、165a、165b基本上相同的平面形状,半导体带151除了位于数据线171与漏极175a和175b之间的通道部分154a和154b外,具有与数据线171和漏极175a和175b基本上相同的平面形状。耦合电极177具有与欧姆接触岛167和半导体岛157相同的平面形状。
在数据线171、漏极175a和175b以及耦合电极177和半导体带151的通道部分154a和154b上形成优选由硅的氮化物或有机绝缘体制成的钝化层180。
该钝化层180设置有多个用以分别暴露漏极175a和175b及耦合电极177的端部的接触孔183a、183b和187,以及多个用以暴露数据线171的端部的接触孔187。栅极绝缘层140和钝化层180设置有多个用以暴露栅极线121的端部的接触孔183a。
在钝化层180上形成多对像素电极190a和190b,以及多个接触辅助件91和92。像素电极190a和190b以及接触辅助件91和92优选由例如铟锡氧化物(ITO)和铟锌氧化物(IZO)的透明导电材料或反射材料制成。
每对像素电极190a和190b包括下像素电极190a和上像素电极190b,它们分别通过接触孔183a和183b与漏极175a和175b相连。上电极190b通过接触孔187和耦合电极177相连,下电极190a和耦合电极177重叠,使得上像素的下像素电极190a和下像素的上像素电极190b被电容耦合。此外,上像素的下像素电极190a和下像素的上像素电极190b跨过存储电极线131相对,并和存储电极线131重叠,从而形成多个存储电容。
每个下像素电极190a具有在行的方向上延伸的直线切口191。每个下像素电极190还可以有至少一个在行的方向上延伸的切口,并且,每个上像素电极可以具有至少一个在列的方向上延伸的切口。优选地,被下像素电极190a占据的面积大约是下上像素电极190a和190b的总面积的30%到70%。
接触辅助件91和92通过接触孔181和182分别和栅极线121和数据线171的端部129和179相连。
除了接触辅助件91和92外,在TFT阵列面板100的整个表面上涂覆对准层11。
根据这个实施例的滤色器阵列面板200的结构和图11A所示的类似。即,该滤色器面板200也包括黑色矩阵220、多个滤色器230、公共电极270和对准层21。但是,公共电极270具有多组形状和位置不同于图10和图11A所示的切口271-273。一组切口包括在列的方向上延伸的纵切口271和在行的方向上延伸的两个横切口272和273。该纵切口271将上像素电极190b分成布置在行方向上的两个子区域,而横切口272和273跨过下像素电极190a的切口191相对,并将下像素电极190a分成布置在列方向上的四个子区域。
根据本发明的另一个实施例,耦合电极177由与栅极线121相同的层形成,在这种情况下,耦合电极177不应该和存储电极线131相连。
现在,参照图18A至20C以及图16、17A和17B详细描述根据本发明另一个实施例的如图16、17A和17B所示的TFT阵列面板的制造方法。
图18A至图20C是图16、17A和17B所示的TFT阵列面板的剖视图和布局图,它们处于根据本发明另一个实施例的制造方法的中间步骤。
如图18A至18C所示,在绝缘衬底110上形成多个栅极线121和多个存储电极线131。
通过CVD和溅射,顺序沉积厚度大约是1500-5000埃的硅的氮化物栅极绝缘层140,厚度大约是500-2000埃的本征a-Si半导体层150,厚度大约是300-600埃的掺杂a-Si层160,以及厚度大约是1500-3000埃的金属层170;然后再在其上涂覆厚度大约是1-2微米的光阻剂薄膜。然后,使光阻剂薄膜暴露在穿过光掩膜(图中未示)的光线下,使其显影,如图19B和图19C所示。
光阻剂薄膜的厚度由位置决定,例如,其包括厚度顺序递减的第一到第三部分。在图19B和图19C中,第一和第二部分用附图标记212和214指代,由于所示的第三部分的厚度是零并用以暴露下面的金属层170,所以没有用以指代第三部分的附图标记。根据随后处理步骤的处理情况,调整光阻剂薄膜212和214的厚度比率,优选地,第二部分的厚度等于或小于第一部分厚度的一半,例如,等于或小于4000埃。
通过几种技术,例如在曝光掩膜上设置半透明区域、以及透明和不透明区域,可以得到由位置决定的光阻剂薄膜的厚度。半透明区域可选地具有槽缝图案、网格图案、具有中间透光性或中间厚度的薄膜。当使用槽缝图案时,优选地,槽缝的宽度或槽缝之间的距离小于在光蚀刻中使用的光线曝光器的分辨率。另一个示例使用可回流的光阻剂。即,一旦通过使用仅具有透明和不透明区域的常规曝光掩膜形成由可回流材料制成的光阻剂图案,光阻剂经过回流过程流到没有光阻剂的区域,从而形成薄的部分。
光阻剂薄膜212和214的不同的厚度使得可以在使用合适的处理条件时能够有选择地蚀刻下面的层。
通过一系列的蚀刻步骤,得到多个数据线171、多个漏极175a和175b及多个耦合电极177,以及多个欧姆接触带和岛161、165a、165b和167及多个半导体带和岛151和157。
图19D至图19I显示典型的顺序(1)除去位于光阻剂薄膜的第三部分下的部分金属层170、掺杂a-Si层160和半导体层150(图19D至图19G);(2)除去光阻剂薄膜的第二部分214(图19F和图19G);(3)除去位于光阻剂薄膜的第二部分214下的部分金属层170和掺杂a-Si层160(图19H和图19I);以及(4)除去光阻剂薄膜的第一部分212。
另一个示例性顺序如下(1)除去光阻剂薄膜的第三部分下的部分金属层170;(2)除去光阻剂薄膜的第二部分214;(3)除去光阻剂薄膜的第三部分下的部分掺杂a-Si层160和半导体层150;(4)除去光阻剂薄膜第二部分214下的部分金属层170;(5)除去光阻剂薄膜的第一部分212;以及(6)除去光阻剂薄膜的第二部分214下的掺杂a-Si层160。
尽管除去光阻剂薄膜的第二部分214会导致光阻剂薄膜的第一部分212的厚度减小,但是由于第二部分214的厚度小于第一部分212的厚度,不会去除防止下面的层被除去或蚀刻的第一部分212。
通过选择合适的蚀刻条件,光阻剂薄膜的第二部分214和位于光阻剂薄膜的第三部分之下的部分掺杂a-Si层160和半导体层150可以被同时除去。类似地,可以同时除去光阻剂薄膜的第一部分212和光阻剂薄膜的第二部分214之下的部分掺杂a-Si层160。例如,当使用SF6和HCL的气体混合物或者SF6和O2的气体混合物时,光阻剂薄膜和半导体层150(或掺杂a-Si层160)被蚀刻掉的厚度几乎是一样的。
如果在金属层170的表面上残留有剩余的光阻剂,可以通过灰化将其除去。
在第一示例的步骤(3)和第二示例的步骤(4)中用以蚀刻掺杂a-Si层160的蚀刻气体是CF4和HCL的气体混合物和CF4和O2的气体混合物。使用CF4和O2的气体混合物可以得到半导体层150的被蚀刻部分的均匀的厚度。
如图20A至20C所示,形成钝化层180,该钝化层180和栅极绝缘层140一起被光蚀刻,以形成多个分别暴露栅极线121的端部、数据线171的端部、漏极175a和175b以及耦合电极177的接触孔181、182、183a、183b和187。
最后,沉积并蚀刻厚度大约是500-1000埃的ITO层或IZO层,从而形成多对分别通过接触孔183a、183b和187与漏极175a和175b及耦合电极177相连的像素电极190a和190b,以及多个分别通过接触孔181和182与栅极线121和数据线171的暴露端部相连的接触辅助件91和92。
尽管上文详细说明了本发明的优选实施例,但是应该明白,对于本领域的技术人员,根据此处所教授的基本发明概念的许多变形和/或改进都落入后附的权利要求书所限定的本发明的实质和范围内。
权利要求
1.一种液晶显示器,包括多个布置在一列内的像素;多个栅极线;以及和像素相邻的第一和第二数据线,其中,每个像素和一个栅极线相连,像素与第一和第二数据线至少每一行交替地相连,第一和第二数据线提供极性至少每一行相反的数据信号,从而使像素接收具有相同极性的数据电压。
2.如权利要求1所述的液晶显示器,其中,每个像素包括两个子像素,并且每个子像素包括转换元件。
3.如权利要求1所述的液晶显示器,其中,两个彼此相邻的像素被电容耦合。
4.一种液晶显示器,包括液晶显示面板组件,该组件包括多个布置在具有多个行和多个列的矩阵中的多个像素、多个栅极线和多个数据线,其中,数据线的数目大于列的数据,数据线在面板组件中彼此分开,每个像素与一个栅极线相连,并与两个数据线相邻,并且每列中的像素至少每一行交替地与相邻的数据线相连。
5.如权利要求4所述的液晶显示器,其中,每个像素包括两个子像素,并且每个子像素包括转换元件。
6.如权利要求4所述的液晶显示器,其中,在一列中的两个彼此相邻的像素被电容耦合。
7.如权利要求4所述的液晶显示器,其中,至少两个数据线被供给相同的数据信号。
8.如权利要求7所述的液晶显示器,其中,至少两个数据线包括第一数据线和最后数据线。
9.如权利要求8所述的液晶显示器,还包括多个数据驱动IC,所述数据驱动IC具有多个和数据线相连的输出端,并包括第一驱动IC,该第一驱动IC具有与所述第一数据线和所述最后数据线电连接的第一输出端。
10.如权利要求9所述的液晶显示器,还包括印刷电路板,其具有用以驱动数据驱动IC的电路元件;和第一和第二挠性印刷电路膜,所述第一和第二挠性印刷电路膜连接面板组件和所述印刷电路板,装有数据驱动IC,并且分别包括与第一驱动IC的第一输出端相连的第一信号线以及和第一数据线相连的第二信号线,其中,印刷电路板包括在第一信号线和第二信号线之间连接的第三信号线。
11.如权利要求9所述的液晶显示器,还包括用以为数据驱动IC提供图像信号和用以控制该图像信号的控制信号的信号控制器,和最后为在第一列中与第一数据线相连的像素提供图像信号、首先位于在第一列中与第二数据线相连的像素提供图像信号的信号发生器。
12.一种驱动液晶显示器的方法,该液晶显示器包括多个布置在具有多个行和多个列的矩阵中的多个像素、多个栅极线和多个数据线,每个像素与一个栅极线相连,并与两个数据线相邻,每列的像素与相邻的数据线至少每一行交替地相连,所述方法包括接收多个用于一行内的像素的图像信号;储存接收到的信号中的第一图像信号;顺序输出来自第二图像信号的图像信号;和输出所存储的第一图像信号。
13.如权利要求12所述的方法,还包括将图像信号转换为数据信号;和为数据线供送数据信号,要施加给一行中的两个相邻像素的数据信号具有相反的极性,要施加给一列中的两个相邻像素的数据信号具有相同的极性。
全文摘要
一种液晶显示器。该液晶显示器包括液晶显示面板组件,该组件包括多个布置在具有多个行和多个列的矩阵中的多个像素、多个栅极线和多个数据线,其中,数据线的数目大于列的数据,数据线在面板组件中彼此分开,每个像素与一个栅极线相连,并与两个数据线相邻,并且每列中的像素至少每一行交替地与相邻的数据线相连。
文档编号G02F1/1333GK1469176SQ0314845
公开日2004年1月21日 申请日期2003年6月30日 优先权日2002年7月19日
发明者宋长根, 张润, 韩银姬 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1