液晶显示装置的制作方法

文档序号:2779565阅读:90来源:国知局
专利名称:液晶显示装置的制作方法
技术领域
本发明涉及一种液晶显示装置,特别是涉及一种合适地使用于便携式信息终端(例如PDA)、便携式电话、车载用液晶显示器、数字照相机、个人计算机、娱乐设备、电视机等的液晶显示装置。
背景技术
信息基本设施逐日发展,便携式电话、PDA、数字照相机、摄像机、车载用导航仪等机器深入渗透到每个人的生活,它们的大部分采用了液晶显示装置。这些液晶显示装置随着主体的处理信息量的增加,希望显示更多的信息,市场对高对比度、宽视野角、高亮度、多颜色、高精度的要求也在增高。
作为能够实现高对比度和宽视野角的显示模式,利用了垂直取向型液晶层的垂直取向模式引人注目。垂直取向型液晶层通常使用垂直取向膜和介电质各向异性为负的液晶材料来形成。
例如,在专利文献1中,公开了一种液晶显示装置,在隔着液晶层与像素电极对置的对置电极上所设置的开口部的周边发生斜的电场,将开口部内处于垂直取向状态的液晶分子作为中心,将周围的液晶分子倾斜取向,由此改善视角特性。
但是,在专利文献1所记载的构成中,在像素内的全部区域中形成倾斜电场是困难的,结果,发生这种问题,即在像素内发生液晶分子对电压的响应延迟的区域,出现残留图像现象。
为了解决该问题,专利文献2中公开了一种液晶显示装置,通过在像素电极或者对置电极上设置有规则地排列的开口部,在像素内具有呈轴对称取向的多个液晶区域。
此外,在专利文献3中,公开了一种技术,通过在像素内规则地设置多个凸部,来稳定在中心出现凸部的倾斜状放射取向液晶区域的取向状态。另外,在该文献中,公开了下述内容,利用由凸部导致的取向控制力,和设置在电极中的开口部导致的斜电场,控制液晶分子的取向,由此能够改善显示特性。
另外,专利文献4公开了一种多区域垂直取向型液晶显示装置,其设置具有倾斜的侧面的壁状隔板,利用该倾斜侧面的取向控制力来规定液晶分子的倾斜方向。如按照该技术,不必要追加用于设置取向控制构造的工序,即使大画面也能够抑制基板间隔(液晶层的厚度)的偏差。
另一方面,近些年来,提出无论是在室外还是室内都能够高品质显示的液晶显示装置(例如专利文献5和专利文献6)。该液晶显示装置称为半透过型液晶显示装置,具有在像素内以反射模式进行显示的反射区域,和以透过模式进行显示的透过区域。
现在市售的半透过型液晶显示装置,利用了ECB模式和TN模式等,但在所述专利文献3中,也公开了将垂直取向模式不仅适用于透过型液晶显示装置而且适用于半透过型液晶显示装置的构成。另外,在专利文献7中,公开了一种技术,在垂直取向型液晶层的半透过型液晶显示装置中,通过在为了使透过区域的液晶层的厚度为反射区域的液晶层的厚度的2倍而设置的绝缘层上形成的凹部,来控制液晶的取向(多轴取向)。公开了这样的构成,凹部形成例如正八边形,通过液晶层在与凹部相对的位置形成突起(凸部)或者切口(电极开口部)(例如,参照专利文献7的图4和图16)。
专利文献1特开平6-301036号公报专利文献2特开2000-47217号公报专利文献3特开2003-167253号公报专利文献4特开2001-337332号公报专利文献5专利2955277号公报专利文献6美国专利6195140号说明书专利文献7特开2002-350853号公报在专利文献2或者专利文献3所公开的技术中,在像素内设置凸部或者开口部,形成多个液晶区域(即分割像素),加强了对液晶分子的取向控制,但象本发明者讨论的那样,为了得到充分的取向控制力,需要在液晶层的两侧(互相相对的一对基板的液晶层侧),形成凸部或者开口部等取向控制构造,具有制造工序烦杂的问题。另外,导致在像素内设置取向控制构造的像素的有效开口率的降低,还由于从像素内的凸部的周边发生光泄漏,对比度也降低。在两个基板上设置取向控制构造的情况下,受到基板的定位边界的影响,所以有效开口率的降低和/或对比度的降低更明显。
在专利文献4所公开的技术中,利用壁状隔板在像素内形成多个液晶区域(各个区域内的液晶分子的取向方向是一个方向,在液晶区域间的取向方向不同),所以需要在像素内形成壁状隔板,导致有效开口率降低和/或对比度降低。
另外,在专利文献7所公开的技术中,需要在为了控制多轴取向而设置的凹部和相反侧配置凸部或电极开口部,则产生与上述现有技术同样的问题。
此外,在上述各个专利文献中,通过在显示电极上设置开口部,施加规定的电压而发生的电场的效果,来规定液晶分子的电倾斜(electroclinic effect)取向。这种情况下,在面压液晶面板时,具有在按压面板面的部分所扰乱的取向状态由于电极开口部规定的电场而得到固定的倾向,导致发生不光滑感或者显示品质的降低。

发明内容
本发明是鉴于上述几点作出的,其一个目的在于,提供一种垂直取向型液晶显示装置,其利用比较简单的构成充分稳定液晶的取向,可得到与现有技术同等以上的显示品质。
本发明的其它目的在于,提供一种在像素内具有多个轴对称取向区域的高显示品质的液晶显示装置,其即使在例如按压显示画面的情况下,扰乱的轴对称取向能有效地恢复,能够降低不光滑感等显示不佳。
本发明的第一方面的液晶显示装置,具有第一基板;与上述第一基板相对设置的第二基板;在上述第一基板和上述第二基板之间设置的垂直取向型液晶层,具有分别包含在上述第一基板上形成的第一电极;在上述第二基板上形成的第二电极;在上述第一电极和上述第二电极之间设置的上述液晶层的多个像素,和在上述多个像素的周围设置的遮光区域,在上述遮光区域的上述第一基板或第二基板上的上述液晶层侧,有规则地配置规定上述液晶层的厚度的多个支持体,上述液晶层至少在施加规定的电压时,形成呈轴对称取向的至少一个液晶区域,上述至少一个液晶区域内的液晶分子的倾斜方向由上述多个支持体所具有的倾斜侧面来规定。
在某实施方式中,上述至少一个液晶区域的各个与至少4个支持体的倾斜侧面相接。
在某实施方式中,上述第一电极具有至少一个开口部,上述至少一个液晶区域的各个的轴对称取向的中心轴,在上述至少一个开口部内或者其附近形成。
在某实施方式中,具有上述多个支持体的上述倾斜侧面,相对上述第一基板倾斜成倒圆锥状。
在某实施方式中,与上述多个支持体的上述第一基板面平行的面的截面形状,是大致圆形、大致椭圆形、大致菱形、或者大致十字形状。
在某实施方式中,还具有在上述遮光区域有规则地排列的壁构造体。
在某实施方式中,上述至少一个液晶区域包括两个液晶区域,上述至少一个开口部包括两个开口部,上述两个液晶区域的各个的轴对称取向的中心轴在上述两个开口部内或者其附近形成。
在某实施方式中,上述第一电极包括规定透过区域的透明电极、规定反射区域的反射电极。
在某实施方式中,上述至少一个液晶区域包括在上述透过区域形成的液晶区域、在上述反射区域形成的液晶区域。
在某实施方式中,上述至少一个开口部包括在上述透明电极上形成的开口部、在上述反射电极上形成的开口部。
在某实施方式中,具有通过上述第一基板和上述第二基板互相相对配置的一对偏振片,在上述第一基板和/或上述第二基板和上述一对偏振片之间,还具有至少1个两轴性光学各向异性介质层。
在某实施方式中,还具有通过上述第一基板和上述第二基板互相相对配置的一对偏振片,在上述第一基板和/或上述第二基板和上述一对偏振片之间,还具有至少1个单轴性光学各向异性介质层。
本发明的第二方面的液晶显示装置,具有形成第一电极的第一基板;形成与上述第一电极相对的第二电极的第二基板;插在上述第一电极和上述第二电极之间的垂直取向型液晶层,通过上述第一电极和上述第二电极来规定多个像素区域,其特征在于,上述多个像素区域中至少一个像素区域通过在上述第一基板上规则配置的电介质构造物,分割为多个子像素区域,上述子像素区域中的上述液晶层中的液晶分子,在向上述第一电极和上述第二电极之间施加规定的电压时,在上述第一基板的表面上以垂直的轴为中心进行轴对称取向。
在某实施方式中,上述像素区域在平面视图中由遮光区域包围,在上述遮光区域内的上述第一基板的上述液晶层侧,还具有实质包围上述像素区域的壁构造体。
在某实施方式中,上述第一电极和/或上述第二电极,具有在上述子像素区域内形成的开口部,在施加上述电压时,上述垂直轴在上述开口部内或者其附近形成。
在某实施方式中,上述像素区域在平面视图内由遮光区域包围,规定上述液晶层的厚度的支持体在上述遮光区域内形成。
在某实施方式中,上述第一电极具有透明电极和反射电极,上述多个子像素区域中,至少一个子像素区域是透过区域,至少一个子像素区域是反射区域。
在某实施方式中,如果上述透过区域的上述液晶层的厚度为dt,上述反射区域的上述液晶层的厚度为dr,则满足关系0.3dt<dr<0.7dt。
在某实施方式中,在上述反射区域的上述第二基板的上述液晶层侧,还具有透明电介质层。
在某实施方式中,上述透明电介质层具有散射光的功能。
在某实施方式中,上述第二基板还具有彩色滤光片层(color filter),上述反射区域的上述彩色滤光片层的光学浓度比上述透过区域的上述彩色滤光片层的光学浓度还小。
在某实施方式中,还具有通过上述第一基板和上述第二基板互相相对配置的一对偏振片,在上述第一基板和/或上述第二基板和上述一对偏振片之间,还具有至少一个两轴性光学各向异性介质层。
在某实施方式中,还具有通过上述第一基板和上述第二基板互相相对配置的一对偏振片,在上述第一基板和/或上述第二基板和上述一对偏振片之间,还具有至少一个单轴性光学各向异性介质层。
在某实施方式中,上述像素区域在平面视图中是由一对长边和一对短边构成的矩形,通过至少一对上述电介质构造物分割为上述多个子像素区域,上述一对上述电介质构造物,从上述像素区域的上述一对长边附近向互相接近的方向延伸,且在短边方向并列。
发明效果本发明的第一方面的液晶显示装置,有规则地配置有在像素周边的遮光区域设置的规定液晶层的厚度的支持体(柱状隔板),支持体具有的倾斜侧面通过电场作用规定液晶分子的倾斜方向。用于规定液晶层的厚度的支持体作为取向控制构造来使用,所以,不需要追加用于设置取向控制构造的工序。另外,由于支持体配置在遮光区域,所以可抑制有效开口率的降低和对比度的降低。如果设置支持体使得液晶区域的各个与至少4个支持体的倾斜侧面接触,则能够稳定地形成轴对称取向区域。通过在遮光区域设置壁构造体,能够更稳定地形成轴对称取向区域。
另外,如果在第一电极上设置开口部,能够将液晶区域的轴对称取向的中心轴在开口部内或者其附近固定、稳定,所以使得显示均匀,特别是能够抑制从斜视角看时的显示不光滑。
如果根据这样的本发明的第一方面,提供一种垂直取向型液晶显示装置,其能够利用比较简单的构成充分稳定液晶的取向,得到与现有技术同等以上的显示品质。
如根据本发明的第二方面,能够提高具有轴对称取向(放射状倾斜取向)的液晶区域的取向稳定性,所以能够进一步提高具有现有的宽视角特性的液晶显示装置的显示品质。另外,即使由于外力导致轴对称取向崩溃,例如即使由于按压显示画面扰乱轴对称取向,也可以有效地恢复轴对称取向。因此,提供了一种高显示品质的液晶显示装置,其能够降低不光滑感等显示不佳。此外能够通过比较简单的构成来实现优异的显示品质的液晶显示装置,所以能够容易地制造。


图1是示意性地表示本发明的第一方面的实施方式的透过型液晶显示装置100的一个像素的构成的图,(a)是平面图,(b)是图1(a)中沿着1B-1B’线的截面图。
图2是示意性地表示本发明的第一方面的实施方式的其它透过型液晶显示装置100’的一个像素的构成的图,(a)是平面图,(b)是图2(a)中沿着2B-2B’线的截面图。
图3是示意性地表示本发明的第一方面的实施方式的半透过型液晶显示装置200的一个像素的构成的图,(a)是平面图,(b)是图3(a)中沿着3B-3B’线的截面图。
图4是半透过型液晶显示装置200的有源矩阵基板210a的平面图。
图5是半透过型液晶显示装置200的有源矩阵基板210a的截面图。
图6是说明本发明的第一方面的实施方式的液晶显示装置的操作原理的概略图,(a)表示不施加电压时的情况,(b)表示施加电压时的情况。
图7是表示本发明的第一方面的实施方式的液晶显示装置的构成的一个例子的示意图。
图8是表示本发明的第一方面的实施方式的液晶显示装置的视角-对比度比特性的图。
图9是说明本发明的液晶显示装置的操作原理的概略图,(a)是示意性表示不施加电压时的液晶分子的取向状态的图,(b)是示意性表示施加电压时的液晶分子的取向状态的图。
图10是示意性表示透过型液晶显示装置300所具有的一个像素的构成的图,(a)是从基板法线方向看的俯视图,(b)是沿着(a)中的10B-10B’线的截面图。
图11是示意性表示半透过型液晶显示装置400所具有的一个像素的构成的图,(a)是从基板法线方向看的俯视图,(b)是沿着(a)中的11B-11B’线的截面图。
图12是观察本发明的第二方面的实施方式和现有例的轴对称取向状态时的概略图。(a)是按压显示面之前的正常状态下的液晶区域取向的概略图,(b)是现有例子的像素分割配置的面板进行按压后的取向概略图,(c)是本实施方式的像素分割配置的面板按压后的取向概略图。
图13是表示本发明的第二方面的半透过型液晶显示装置的透过区域和反射区域的电压-反射率(透过率)的曲线图。
符号说明1 TFT(有源矩阵)基板,2栅极信号线,3源极信号线,4 TFT,5漏极电极,6像素电极,7透明电极,8反射电极,9栅极绝缘膜,10栅极电极,11源极、漏极电极(n+-Si层),12半导体层,13沟道保护层,15开口部,16绝缘膜,17透明基板(对置(CF)基板),18彩色滤光片层,19对置电极,20液晶层,21液晶分子,22、32取向膜,33支持体(柱状隔板),50液晶面板,40、43偏振片,41、44 1/4波长板,42、45光学各向异性为负的相位差板(NR板),100透过型液晶显示装置,110a有源矩阵基板,110b对置基板(彩色滤光片基板),111像素电极,114开口部,115壁构造体,130彩色滤光片层,131对置电极,133支持体,200半透过型液晶显示装置,210a有源矩阵基板,210b对置基板(彩色滤光片基板),211像素电极,211a透明电极,211b反射电极,214开口部,215壁构造体,230彩色滤光片层,231对置电极,232透明电介质层(反射部台阶差),233支持体。
具体实施例方式
下面,参照附图来具体地说明本发明的实施方式的液晶显示装置的构成。
首先,说明本发明的第一方面的液晶显示装置的构成和操作。
(透过型液晶显示装置)首先,参照图1来说明本发明的第一方面的实施方式的透过型液晶显示装置100的构成。图1是示意地表示透过型液晶显示装置100的一个像素的构成的图,(a)是平面图,(b)是沿着图1(a)中的1B-1B’线的截面图。而且,图1(b)示意地表示向液晶层施加规定的电压(阈值电压以上的电压)时的液晶分子121的取向状态。
液晶显示装置100具有透明基板(例如玻璃基板)110a、与透明基板110a相对设置的透明基板110b、在透明基板110a和110b之间设置的垂直取向型液晶层120。在基板110a和110b上与液晶层120接触的面上设置垂直取向膜(未图示),在不施加电压时,液晶层120的液晶分子相对垂直取向膜的表面大致垂直地取向。液晶层120包括电介质各向异性为负的向列液晶材料,根据需要还包括手征性剂。
液晶显示装置100具有在透明基板110a上形成的像素电极111、在透明基板110b上形成的对置电极131。在像素电极111和对置电极131之间设置的液晶层120规定像素。这里,像素电极111和对置电极131都由透明导电层(例如ITO层)形成。而且,典型的,在透明基板110b的液晶层120侧,形成与像素对应设置的彩色滤光片130(也可以汇集多个彩色滤光片将整体称为彩色滤光片层130)、在相邻的彩色滤光片130之间设置的黑色矩阵(black matrix)(遮光层)132,在它们上形成对置电极131,但也可以在对置电极131上(液晶层120侧)形成彩色滤光片层130或黑色矩阵132。
液晶显示装置100在相邻的像素间具有遮光区域,在该遮光区域内的透明基板110a上具有支持体(柱状隔板)133。支持体133规定液晶层120的厚度(也称为单元间隔)dt。这里,遮光区域是形成在透明基板110a上的像素电极111的周边区域、通过例如TFT(未图示)、栅极信号布线102或者源极信号布线103、或者在透明基板110b上形成的黑色矩阵130进行遮光的区域,该区域没有显示。因此,遮光区域中配置的支持体133对显示没有坏影响。
在液晶显示装置100中,支持体133配置在栅极信号布线102和源极信号布线103交叉的位置,对应于大致正方形的像素的4个角设置。另外,支持体133与透明基板110a平行的面中的截面形状是大致十字形状,具有与栅极信号布线102平行的部分和与源极信号布线平行的部分。另外,支持体133具有倾斜的侧面,支持体133通过该倾斜侧面进行作用来规定液晶分子121倾斜的方向。这是由于液晶分子121相对倾斜侧面(正确地说是该倾斜侧面上的垂直取向膜)大致垂直地取向,沿着与倾斜侧面的倾斜方向和其角度对应的方向取向控制。该取向控制力在没有电压施加时也作用。这里例示的支持体133的倾斜侧面相对透明基板110a倾斜成倒圆锥形。如果这样倾斜,由在透明基板110a上形成的像素电极111的开口部114的周边所形成的斜电场导致的取向控制方向,与由倾斜侧面导致的取向控制方向一致(匹配),所以优选。
而且,支持体133的与透明基板110a平行的面的截面形状,不限于这里例示的大致十字形状,也可以是大致圆形、大致椭圆形或者大致菱形等大致多边形。支持体133的倾斜侧面进行作用以规定液晶分子121的倾斜方向,规定轴对称取向区域的外延,所以也可以是对应于液晶区域的形状和配置支持体133的位置,能够稳定地形成液晶区域的轴对称取向的截面形状。支持体133例如可使用感光性树脂由光刻工序形成。支持体133也可以在透明基板110a和110b的任一个上形成,但如上所述,为了得到相对透明基板110a具有倒圆锥状倾斜侧面的支持体133,由于在透明基板110b上形成顺的圆锥状的支持体是容易的,所以优选的在透明基板110b上形成。
像素电极111具有在规定位置形成的开口部114,如果向该液晶层120施加规定的电压,则形成呈轴对称取向的液晶区域,这些液晶区域的轴对称取向的中心轴在开口部114内或者其附近形成。象后面说明的那样,在像素电极111中设置的开口部114进行作用以固定轴对称取向的中心轴的位置。通过对像素电极111和对置电极113之间施加的电压,在开口部114的周边形成斜电场。由该斜电场规定液晶分子倾斜的方向,结果象上述那样作用。
为了固定、稳定轴对称取向区域的中心轴而设置的开口部114的形状,优选的是例示那样的圆形,但不限于此。然而,为了发挥全方位基本相等的取向控制力,优选4边形以上的多边形,优选正多边形。
在该液晶显示装置100中,如果对像素电极111和对置电极131施加规定的电压(阈值电压以上的电压),则在开口部114内或者其附近形成各个中心轴被固定、稳定的轴对称取向区域。通过在像素周边设置的支持体133的倾斜侧面的取向控制力,规定液晶区域的外延附近的液晶分子121的倾倒方向,通过在像素电极111的开口部114的周边形成的斜电场,规定开口部114周边的液晶分子121的倾倒方向。这样,考虑为由支持体133的倾斜侧面导致的取向控制力和由开口部114导致的取向控制力协同作用,结果,稳定液晶区域的轴对称取向。
而且,有时将在透明基板110a、透明基板110a的液晶层120侧设置的TFT(未图示)和与TFT连接的栅极布线102和源极布线103等电路元件、栅极绝缘膜104、保护层105和上述像素电极111、支持体133和取向膜(未图示)等汇总称为有源矩阵基板。另一方面,有时将在透明基板110b和透明基板110b上形成的彩色滤光片层130、黑色矩阵132、对置电极131和取向膜等汇总称为对置基板或者彩色滤光片基板。
另外,在上述说明中省略了,但液晶显示装置100还具有通过透明基板110a和110b互相相对配置的一对偏振片。一对偏振片典型地配置为透过轴互相正交。此外,象后面所述的那样,也可以设置两轴性光学各向异性介质层和单轴性光学各向异性介质层。
接着,在图2(a)和(b)中,示意地表示本发明的第一方面和其它实施方式的透过型液晶显示装置100’的构成。具有与图1所示的液晶显示装置100的构成元件实质相同功能的构成元件由共同的参考标记表示,这里省略了说明。图2(a)是平面图,图2(b)是沿着图2(a)的2B-2B’线的截面图。
液晶显示装置100’在透明基板110a上具有壁构造体115,在壁构造体115上具有支持体133。壁构造体115通过其壁面的取向控制力进行作用,从而与支持体133同样地形成轴对称取向区域。而且,壁构造体115也可以在透明基板110a上形成,也可以在透明基板110b上形成。在与支持体133的倾斜侧面同样地形成倒圆锥状壁面的情况下,优选的在透明基板110b上形成,但具有增加制造工序的缺点。相反,如果在透明基板(有源矩阵基板)110a上形成,通过在使用例如感光性树脂来形成层间绝缘膜的工序中调整曝光量,能够与层间绝缘膜一体地形成壁构造体115。此时,容易地将壁构造体115的壁面形成为正圆锥状,通过将倾斜角形成为40°以上,能够降低由于支持体133的倒圆锥状的倾斜侧面导致的取向控制力和壁面的取向控制力的不匹配。但更优选的是将壁面形成为倒圆锥状(倾斜角超过90°)。
壁构造体115具有在像素的周边的遮光区域形成的实质包围像素的部分;从包围像素的部分向着大致两等分像素的长度方向的位置的像素中央部突出的一对凸部。壁构造体115的两个凸部进行作用以规定像素内形成的两个液晶区域的边界。另外,如果将向像素内突出的部分设置在由配置在像素内的布线(例如辅助电容布线(未图示))遮光的区域,则不会对显示造成坏影响,所以优选。这里例示的壁构造体115作为连续的壁设置,但不限于此,也可以分断为多个壁。该壁构造体115进行作用来规定在液晶区域的像素的外延附近形成的边界,所以优选的具有一定的长度。例如,在由多个壁构成壁构造体的情况下,优选的各个壁的长度比相邻的壁间的长度还长。
支持体133对应于在像素内形成的两个液晶区域的各个的四个角部而配置,进行作用以规定液晶区域的边界。而且,支持体133如例示那样,不限于设置在遮光区域中所设置的壁构造体115上的情况。在壁构造体115上形成支持体133的情况下,设定壁构造体115的高度和支持体133的高度的和,使其成为液晶层120的厚度dt。在不形成壁构造体115的区域设置支持体133的情况下,设定支持体133的高度使其成为液晶层120的厚度dt。但是,为了充分发现由支持体133的倾斜侧面导致的取向控制力,优选支持体133的高度比壁构造体115的高度还高。支持体133可以在透明基板110a和110b的任何一个上形成,但如上述那样,优选的在透明基板110b侧形成。另外,这里例示了具有大致圆形的截面形状的支持体133,但不限于此,能够与上述同样地适当进行改变。
像素电极111在由支持体133和壁构造体115规定边界的两个液晶区域的大致中央部具有两个开口部114。如果对该液晶层120施加规定的电压,则形成呈轴对称取向的液晶区域,这些液晶区域的轴对称取向的中心轴在开口部114内或者其附近形成。这样可考虑为由支持体133的倾斜侧面和壁构造体115的壁面导致的取向控制力与开口部114导致的取向控制力协同作用,结果稳定了液晶区域的轴对称取向。而且,开口部114的形状能够象上述那样适当地改变。
(半透过型液晶显示装置)接着,参照图3,说明本发明的第一方面的实施方式的半透过型液晶显示装置200的构成。
图3是示意地表示本发明的第一方面的实施方式的半透过型液晶显示装置200的一个像素的构成的图,图3(a)是平面图,图3(b)是沿着图3(a)中的3B-3B’线的截面图。
液晶显示装置200具有透明基板(例如玻璃基板)210a;与透明基板210a相对设置的透明基板210b;在透明基板210a和210b之间设置的垂直取向型液晶层220。在与两个基板210a和210b上的液晶层220接触的面上设置垂直取向膜(未图示),在没有施加电压时,液晶层220的液晶分子相对垂直取向膜的表面大致垂直地取向。液晶层220包括电介质各向异性为负的向列液晶材料,根据需要,还包括手征性剂。
液晶显示装置200具有在透明基板210a上形成的像素电极211、和在透明基板210b上形成的对置电极231,设置在像素电极211和对置电极231之间的液晶层220规定像素。在透明基板210a上象后面所述那样形成TFT等电路元件。有时将透明基板210a和在其上形成的构成元件汇总称为有源矩阵基板210a。
另外,典型的,在透明基板210b的液晶层220侧,形成与像素对应设置的彩色滤光片230(有时将多个彩色滤光片汇总,将整体称为彩色滤光片层230);在相邻的彩色滤光片230间设置的黑色矩阵(遮光层)232,在它们之上形成对置电极231,但也可以在对置电极131上(液晶层120侧)形成彩色滤光片层230或黑色矩阵232。有时将透明基板210b和在其上形成的构成元件汇总称为对置基板(彩色滤光片基板)基板210b。
像素电极211具有由透明导电层(例如ITO层)形成的透明电极211a和由金属层(例如Al层、包括Al的合金层以及包括它们的任何一种的叠层膜)形成的反射电极211b。结果,像素包括由透明电极211a规定的透明区域A、由反射电极211b规定的反射区域B。透明区域A以透过模式进行显示,反射区域B以反射模式进行显示。
液晶显示装置200在透明基板210a上具有壁构造体215,在壁构造体215上具有支持体233。壁构造体215通过其壁面的取向控制力进行作用,使得与支持体233同样地形成轴对称取向区域。壁构造体215具有在像素的周边的遮光区域所形成的实质包围像素的部分;从包围像素的部分以将像素的长度方向分割为3个的方式向像素的中央部突出的两对凸部。一对凸部设置在透过区域A和反射区域B的边界附近,另一对凸部设置在将透过区域A的长度方向大致2等分的位置。支持体233对应于像素内形成的三个液晶区域的各个的四个角部来配置,进行作用以规定液晶区域的边界。通过这样配置的支持体233的倾斜侧面和壁构造体115的壁面的取向控制力,规定了电压施加时液晶分子倾倒的方向,形成三个液晶区域(两个透过区域,一个反射区域)。
像素电极211具有与三个液晶区域的大致中央部对应而形成的三个开口部214。如果向该液晶层220施加规定的电压,则分别形成呈轴对称取向的三个液晶区域,这些液晶区域的各个轴对称取向的中心轴在开口部214内或者其附近形成。设置在像素电极211上的开口部214进行作用以固定轴对称取向的中心轴的位置。在开口部214的周边,通过向像素电极211和对置电极213之间施加的电压,形成斜电场,通过该斜电场规定液晶分子的倾斜方向,结果象上述那样作用。
关于支持体233和壁构造体215和开口部214的配置以及它们的优选形状,与所述透过型液晶显示装置100’的情况相同。图3表示了在透过区域A形成两个液晶区域,在反射区域B形成一个液晶区域的例子,但不限于此。而且,各个液晶区域为大致正方形的形状,从视野角特性和取向稳定性的观点来看是优选的。另外,也能够省略壁构造体215。
在该液晶显示装置200中,如果向像素电极211和对置电极231施加规定的电压(阈值电压以上的电压),则在三个开口部214内或者其附近形成各个中心轴稳定的三个轴对称取向,八个支持体233和壁构造体215规定了相邻的三个液晶区域内的液晶分子由电场而倾倒的方向,同时稳定了在液晶区域的像素的外延附近所形成的边界。
接着,说明能够进行透过模式显示和反射模式显示两种显示的半透过型液晶显示装置200所特有的优选构成。
在透过模式的显示中,显示所使用的光仅透过一次液晶层220,与此相对,在反射模式的显示中,显示所使用的光通过两次液晶层220。因此,如图3(b)示意地表示那样,优选将透过区域A的液晶层220的厚度dt设定为反射区域B的液晶层220的厚度dr的大约两倍。通过这样的设定,对于两种显示模式的光,液晶层220给予的延迟能够大致相等。最优选dr=0.5dt,但如果在0.3dt<dr<0.7dt的范围内,两种显示模式能够实现良好的显示。不用说,根据用途也可以使dt=dr。
在液晶显示装置200中,由于反射区域B的液晶层220的厚度比透过区域A的液晶层的厚度小,所以仅在玻璃基板210b的反射区域B设置透明电介质层234。如果采用这样的构成,不需要在反射电极211b之下使用绝缘膜等设置台阶差,所以得到能够简化有源矩阵基板210a的制造的优点。此外,如果为了设置用于调整液晶层220的厚度的台阶差而在绝缘膜上设置反射电极211b,则通过覆盖绝缘膜的斜面(圆锥部)的反射电极遮挡透过显示所使用的光,或者,由在绝缘膜的斜面上所形成的反射电极反射的光,重复内部反射,所以产生反射显示也不能有效利用这样的问题,如果采用上述构成则可抑制这些问题的发生,能够改善光的利用效率。
此外,对于该透明电介质层234如果使用具有散射光之功能(扩散反射功能)的透明电介质层,即使不对反射电极211b赋予扩散反射功能,也能够实现良好的近似白纸的白显示。即使不对透明的电介质层234赋予光扩散功能,通过对反射电极211b的表面赋予凹凸形状,也能够实现与白纸接近的白显示,但也具有由于凹凸形状轴对称取向的中心轴的位置不稳定的情况。与此相对,如果使用具有光散射功能的透明电介质层234和具有平坦的表面的反射电极211b,则得到能够通过在反射电极211b上形成的开口部214更确实地稳定中心轴的位置这样的优点。而且,由于对反射电极211b赋予扩散反射功能,在其表面形成凹凸的情况下,优选为将凹凸形状形成为连续的波状从而不发生干涉色,优选为进行设定从而能够稳定轴对称取向的中心轴。
另外,在透过模式显示所使用的光仅通过一次彩色滤光片层230,与此相对,在反射模式,显示所使用的光通过两次彩色滤光片层230。因此,作为彩色滤光片层230,如果透过区域A和反射区域B使用相同光学浓度的彩色滤光片层,反射模式的颜色纯度和/或辉度降低。为了抑制该问题的发生,优选为将反射区域的彩色滤光片层的光学浓度设为比透过区域的彩色滤光片层的光学浓度小。而且,这里所述的光学浓度,是带有彩色滤光片层特征的特性值,如果减少彩色滤光片层的厚度,能够减少光学浓度。或者,将彩色滤光片层的厚度保持原样,例如通过降低添加的色素的浓度,也能够减少光学浓度。
接着,参照图4和图5,说明在半透过型液晶显示装置中所合适使用的有源矩阵基板的构造的一个例子。图4是有源矩阵基板的部分放大图,图5是沿着图4中的X-X’线的截面图,图4和图5所示的有源矩阵基板具有在透过区域A形成一个液晶区域的构成(即,开口部214的个数少),这一点与图3所示的有源矩阵基板211a不同,其它构成相同。
图4和图5所示的有源矩阵基板具有例如由玻璃基板构成的透明基板1,在透明基板1上,设置栅极信号线2和源极信号线3使其互相正交。在这些信号线2和3的交叉部附近设置TFT4,TFT4的漏极电极5与像素电极6连接。
像素电极6具有由ITO等透明导电层形成的透明电极7、Al等形成的反射电极8,透明电极7规定透过区域A,反射电极8规定反射区域B。在像素电极6的规定区域,象上述那样设置用于固定、稳定轴对称取向区域的中心轴的开口部15。
像素电极6通过栅极绝缘膜9重叠到下一段的栅极信号线上,形成辅助电容。另外,TFT4具有这样的构造,在从栅极信号线2分支的栅极电极10的上部层叠栅极绝缘膜9、半导体层12、沟道保护层13和n+-Si层11(源极、漏极电极)。
在该有源矩阵基板上的像素电极6的周边区域形成支持体33也可以,在对置基板和有源矩阵基板贴合的情况下,为了在像素电极6的周边区域配置支持体33,将支持体33形成在对置基板上也可以。此外,在有源矩阵基板的像素电极6的周边区域形成壁构造体215也可以。
而且,这里表示了底部栅极型TFT的构成例子,但不限于此,也能够使用顶部栅极型TFT。
象上述那样,具有图3所示构成的液晶显示装置200与液晶显示装置100或者100’同样,使用用于规定液晶层220的厚度的支持体233来取向控制。此外,为了稳定地形成液晶区域的壁构造体215和为了固定、稳定中心轴的开口部214,可以仅在一侧的基板上形成,所以具有这样的效果,即能够利用比较简单的构成来充分稳定液晶的取向。此外,通过象上述那样构成透明电介质层234和/或彩色滤光片层230,能够提高透过模式和反射模式显示的亮度或者色纯度。
参照图6,来说明具有垂直取向型液晶层的本发明的第一方面的实施方式的液晶显示装置具有优异的宽视角特性的理由。
图6是用于说明设置在像素电极6的开口部15导致的取向控制力的作用的图,图6(a)示意地表示没有电压施加时液晶分子的取向状态,图6(b)示意地表示施加电压时液晶分子的取向状态。图6(b)表示的状态是表示中间色调的状态。
图6所示的液晶显示装置在透明基板1上顺序具有绝缘膜层16、具有开口部15的像素电极6、取向膜22。在另一个透明基板17上,顺序形成彩色滤光片层18、对置电极19、支持体33和取向膜32。在图中进行了简化,但形成取向膜32以便覆盖支持体33。在两基本间设置的液晶层20包括具有负电介质各向异性的液晶分子21。
如图6(a)所示那样,在没有电压施加时,液晶分子21通过垂直取向膜22和32的取向控制力,相对基板表面大致垂直地取向。这里,支持体33具有相对基板1倒圆锥状的倾斜侧面,支持体33的倾斜侧面附近的液晶分子21相对倾斜侧面大致垂直地取向,所以相对基板1的表面倾斜。
另一方面,在施加电压时,如图6(b)所示那样,电介质各向异性为负的液晶分子21的分子长轴相对电力线变为垂直,所以通过在开口部15的周边形成的斜电场,规定液晶分子21倾倒的方向。另外,支持体33的附近的液晶分子21通过由支持体33的倾斜侧面导致的取向控制力,沿倾斜方向进一步倾斜。因此,例如,变为以开口部15为中心的轴对称取向。由于该轴对称取向区域内液晶导向偶极子全方位(基板面内的方位)取向,所以视野角特性优异。
此外,在具有壁构造体的情况下,通过壁构造体的侧面(壁面)的取向控制力来规定液晶分子21倾倒方向。典型的,由于形成垂直取向膜以覆盖壁构造体,所以液晶分子受到相对壁面垂直取向的控制力。壁构造体的壁面优选沿着与支持体33相同的方向倾斜。
接着,参照图7来说明本发明的第一方面的实施方式的液晶显示装置的更具体的构成例子。
图7所示的液晶显示装置具有背灯、半透过型液晶面板50、通过半透过型液晶面板50互相相对设置的一对偏振片40和43、在偏振片40和43与液晶面板50之间设置的1/4波长板41和44、在1/4波长板41和44与液晶面板50之间设置的光学各向异性为负的相位差板42和45。液晶面板50,在透明基板(有源矩阵基板)1和透明基板(对置基板)17之间具有垂直取向型液晶层20。作为液晶面板50,这里使用了与图3所示的液晶显示装置200同样的构成的液晶面板。
图7所示的液晶显示装置的显示操作在下面简单地说明。
对于反射模式显示,来自上侧的入射光通过偏振片43,变为直线偏振光。该直线偏振光如入射到1/4波长板44中则变为圆偏振光,该1/4波长板配置为使得偏振片43的透过轴与1/4波长板44的滞相轴成45°角,透过在基板17上形成的彩色滤光片层(未图示)。而且,这里,对于从法线方向入射的光,使用没有相位差的相差板45。
在没有施加电压时,用于液晶层20中的液晶分子与基板面大致垂直地取向,所以入射光以相位差基本为0通过,通过在下侧基板1上形成的反射电极来反射。被反射的圆偏振光再次通过液晶层20中,通过彩色滤光片层,再次以圆偏振光通过光学各向异性为负的相位差板45,经过1/4波长板44,变换为与最初入射并透过偏振片43时的偏振方向正交的偏振方向的直线偏振光,到达偏振片43,所以光不能透过偏振片43,成为黑显示。
另一方面,在施加电压时,液晶层20中的液晶分子从与基板面垂直的方向向水平方向倾斜,所以入射的圆偏振光通过液晶层20的双折射变为椭圆偏振光,通过在下侧基板1上形成的反射电极反射。被反射的光在液晶层20其偏振状态进一步变化,再次通过液晶层20中,通过彩色滤光片层,再次通过光学各向异性为负的相位差板45,作为椭圆偏振光入射到1/4波长板44中,所以到达偏振片43时没有变为与入射时的偏振方向正交的直线偏振光,而透过偏振片43。即,通过调节施加电压来控制液晶分子的倾斜程度,可调制能够透过偏振片43的反射光量,能够进行灰度等级显示。
另外,关于透过模式的显示,上下两个偏振片43和偏振片40的各个透过轴正交地配置,从光源射出的光利用偏振片40变为直线偏振光,该直线偏振光如入射到1/4波长板41则变为圆偏振光,该1/4波长板配置为使得偏振片40的透过轴和1/4波长板41的滞相轴所成的角为45°,经过光学各向异性为负的相位差板42,入射到下侧的基板1的透过区域A中。而且,这里,对于从法线方向入射的光,使用没有相位差的相位差板42。
在没有施加电压时,由于液晶层20中的液晶分子与基板面大致垂直地取向,所以入射光以相位差基本为0透过,以圆偏振光的状态入射到下侧基板1上,以圆偏振光的状态经过液晶层20和上侧基板17,透过上侧的光学各向异性为负的相位差板45,到达1/4波长板44。这里,下侧的1/4波长板41和上侧的1/4波长板44的滞相轴互相正交地配置,透过来的偏振光由上侧1/4波长板44消除由下侧的1/4波长板41所产生的相位差,恢复为原来的直线偏振光。透过上侧1/4波长板44的偏振光变为与偏振片40的透过轴(偏振轴)平行的直线偏振光,利用透过轴与偏振片40正交的偏振片43吸收,变为黑显示。
另一方面,在施加电压时,液晶层20中的液晶分子21从与基板面垂直的方向向水平方向倾斜,所以向液晶显示装置入射的圆偏振光通过液晶层20的双折射变为椭圆偏振光,通过上侧的CF基板17或上侧的光学各向异性为负的相位差板45和1/4波长板44,为了作为椭圆偏振光到达偏振片43,所以不变为与入射时的偏振成分正交的直线偏振光,而通过偏振片43后光透过。即,通过调节施加电压,可控制液晶分子的倾斜程度,调制能够透过偏振片43的透过光量,能够进行灰度等级显示。
光学各向异性为负的相位差板可将液晶分子在垂直取向状态改变视野角的情况下的相位差的变化量抑制为最小,可抑制从宽视野角侧观察时的黑色的浮动。另外,也可以代替负的相位差板和1/4波长板的组合,使用将光学各向异性为负的相位差板和1/4波长板一体化的两轴性相位差板。
象本发明那样,在轴对称取向区域进行在没有施加电压时进行黑显示、在施加电压时为白显示的标准黑模式的情况下,在液晶显示装置(面板)的上下设置一对1/4波长板,也能够消除由偏振片导致的消光模样,能够改善亮度。另外,在上下偏振片的透过轴互相正交配置,标准黑模式在轴对称取向区域来进行的情况下,原理上能够实现与交叉尼科尔棱镜上配置的一对偏振片同程度的黑显示,所以能够实现非常高的对比度比,同时,能够实现全方位的取向导致的宽的视野角特性。
另外,关于本发明所规定的透过区域的液晶层厚度dt和反射区域的液晶层的厚度dr的关系,由透过区域和反射区域的电压-反射率(透过率)的液晶层厚度的依赖性,优选满足0.3dt<dr<0.7dt的条件,更优选的是0.4dt<dr<0.6dt的范围。利用比下限值低的反射区域的液晶层厚度,最大反射率为50%以下,则不能得到充分的反射率。另一方面,在反射区域的液晶层厚度dr比上限值大的情况下,对于电压-反射率特性,利用与透过显示时不同的驱动电压,反射率为最大的极大值存在,同时,利用透过显示的最合适的白显示电压,相对反射率降低的倾向变大,最大反射率变为50%以下,所以不能得到充分的反射率。因此,在反射区域B中液晶层的光路长度成为透过区域的两倍,所以在进行与透过区域A相同的设置的情况下,液晶材料的光学双折射各向异性(Δn)和面板的单元厚度设置是非常重要的。
(实施例1)本发明的第一方面的实施方式的半透过型液晶显示装置的具体特性在下面例示。
这里,制造具有图7所示构成的液晶显示装置。对于液晶单元50,使用与图3所示的液晶显示装置200同样的构成的液晶单元。但是,透明电介质层234使用不具有光散射功能的透明电介质层,在反射电极211b的下层部形成表面为凹凸状的连续形状的树脂层,调整反射显示时的扩散反射特性。而且,凹凸表面通过特开平9-90426号公报中所记载的方法来形成。
另外,在图3所示的液晶显示装置200中,省略了开口部214和壁构造体215,成为通过支持体233来进行取向控制的构成。作为支持体233,使用截面形状是十字形状(与图1中的支持体133同样的形状)的支持体。支持体233利用使用负型感光性树脂(例如V-259PA(新日铁化学公司制))的光刻法在对置基板上形成。倾斜侧面相对对置基板成为倒圆锥状,倾斜角度(基板表面和倾斜侧面所成的角)为大约45°。
使用公知的取向膜材料,利用公知的方法来形成垂直取向膜。不进行摩擦处理。作为液晶材料,使用介电常数各向异性为负的液晶材料(Δn;0.1、Δε;-4.5)。这里,透过区域的液晶层厚度dt为4μm,反射区域的液晶层厚度dr为2.2μm(dr=0.55dt)。
如果夹着观察在正交的两个偏振片之间得到的液晶单元,电压施加时支持体附近的液晶分子沿着倾斜侧面连续倾倒,确认形成了轴对称状的液晶区域。
本实施例的液晶显示装置的构成为从上面开始顺序为偏振片(观察侧)、1/4波长波(相位差板1)、光学各向异性为负的相位差板(相位差板2(NR板))、液晶层(上侧;彩色滤光片基板、下侧;有源矩阵基板)、光学各向异性为负的相位差板(相位差板3(NR板))、1/4波长板(相位差板4)、偏振片(背光侧)的叠层构造。而且,在液晶层的上下1/4波长板(相位差板1和相位差板4)中使滞相轴相互正交,将各个相位差设为140nm。光学各向异性为负的相位差板(相位差板2和相位差板3)的各个相位差设为135nm。另外,两个偏振片(观察侧、背光侧)使透过轴正交地配置。
对液晶显示装置施加驱动信号(对液晶层施加4V)来评价显示特性。
在透过显示下的视角-对比度特性的结果在图8中表示。在透过显示时的视野角特性显示出大致为全方位的对称的特性,CR>10的区域为±80°,非常良好,在正面透过对比度为300∶1以上,非常高。
另一方面,反射显示的特性利用分光光度测色计(Minolta公司制造的CM2002)来评价,以标准扩散板作为基准,是大约8.4%(开口率100%换算值),反射显示的对比度值是21,与现有的液晶显示装置相比,显示了高的对比度,是好的。
(实施例2)与实施例1同样的,使用与图3所示的液晶显示装置200同样构成的液晶单元,来制造具有图7所示构成的液晶显示装置。但是,透明电介质层234使用没有光散射功能的透明电介质层,在反射电极211b的下层部形成表面处理为凹凸状的连续形状的树脂层,调整反射显示时的扩散反射特性。另外,壁构造体215为了对反射电极211b的表面赋予凹凸形状而与下层部的树脂层(层间绝缘层)一体地形成。
具体地说,象下面这样,来制造本实施例的有源矩阵基板。
首先,为了覆盖TFT元件等电路元件,以规定的条件来成膜正型感光性树脂层。在该感光性树脂层上,在成为反射电极的下层部的区域的表面形成凹凸形状,同时形成壁构造体(参照图3的壁构造体215),使用成为遮光部的第一光掩膜以低照射强度条件(80mJ/cm2)对成为凹凸形状的凸部的区域和成为壁构造体的区域曝光。接着,为了形成接触孔,使用成为开口部的第二光掩膜以高照射强度(350mJ/cm2)对与接触孔对应的区域曝光。之后,连续进行成像、干燥、烧制等,即,利用包括两次曝光工序的一次光刻法工序,由同一感光性树脂层,形成层间绝缘膜层和壁构造体。
通过该一系列工序,制造了在表面上具有为了得到反射显示时的扩散反射特性的细微凹凸形状的层间绝缘膜,同时,制造了与璧构造体和下层的连接电极电连接的通孔。
之后,像素电极在层间绝缘层的平坦部上以规定条件形成透明电极膜(ITO层),在形成凹凸形状后的表面上利用溅射法来形成反射电极膜。还利用对像素电极形成图案的工序在规定位置形成用于固定、稳定轴对称取向的中心轴的电极开口部(参照图3的开口部214)。
此外,在彩色滤光片基板(对置基板)的与有源矩阵基板的遮光区域(形成有璧构造体的区域)对应的位置,使用负型感光性材料利用光刻法工序形成支持体(柱状隔板参照图3的支持体233)。倾斜侧面形成为相对基板的倒圆锥状,倾斜角度(基板表面和倾斜侧面所形成的角度)为大约40°。另外,在彩色滤光片基板的反射区域,设置透明电介质层,配置用于调整反射区域的液晶层的厚度的台阶差。
在有源矩阵基板和彩色滤光片基板上以规定的条件形成垂直取向膜(不进行摩擦处理)后,利用密封树脂相互贴合基板,注入介电常数各向异性为负的液晶材料(Δn;0.1、Δε;-4.5),密封,得到液晶单元。在本实施例中,透过区域的液晶层的厚度dt为4μm、反射区域的液晶层的厚度dr为2.1μm。
如果夹着观察在正交的两个偏振片之间得到的液晶单元,在施加电压时支持体和璧构造体附近的液晶分子沿着倾斜侧面连续倾倒,确认形成轴对称状的液晶区域。
接着,在该液晶单元的两面配置光学薄膜,得到液晶显示装置。
本实施例的液晶显示装置的构成为从上面开始顺序为偏振片(观察侧)、1/4波长板(相位差板1)、光学各向异性为负的相位差板(相位差板2(NR板))、液晶层(上侧;彩色滤光片基板、下侧;有源矩阵基板)、光学各向异性为负的相位差板(相位差板3(NR板))、1/4波长板(相位差板4)、偏振片(背光侧)的叠层构造。而且,液晶层的上下1/4波长板(相位差板1和相位差板4)滞相轴互相正交,各个的相位差为140nm。光学各向异性为负的相位差板(相位差板2和相位差板3)各个的相位差为135nm。另外,两个偏振片(观察侧、背光侧)使透过轴正交地配置。
向液晶显示装置施加驱动信号(向液晶层施加4V),来评价显示特性。
透过显示的视角对比度的特性结果在图8表示。透过显示的视野角特性显示出基本上全方位的对称特性,CR>10的区域好到±80°,透过对比度在正面也高到300∶1以上。
另一方面,反射显示的特性利用分光光度测色计(Minolta公司制造的CM2002)来评价,以标准扩散板作为基准,是大约8.2%(开口率100%换算值),反射显示的对比度值是22,与现有的液晶显示装置相比,显示了高的对比度,是好的。
此外,在比较实施例1和2的液晶面板的透过率90%变化的响应时间(τON+τOFF(ms)、τON0V→4V电压施加时的变化所需要的时间、τOFF电压4V→0V时的变化所需要的时间)和透过率50%变化的中间色调响应时间(分割8灰度等级时从灰度等级3到灰度等级5的变化所需要的时间(m秒))的情况下,得到下表那样的结果,任何情况测量温度是25℃。
表1


实施例2的液晶显示装置,除有基于支持体的取向控制力外,还具有壁构造体和电极开口部214,所以确认进一步稳定了轴对称取向,同时缩短了响应时间。
另外,可知在实施例1和实施例2的任何一个中都提高了耐冲击性。例如,在对液晶面板进行载荷试验(1kgf/cm2)的情况下,通过施加载荷而一端扰乱的取向恢复所需要的时间是5分钟以下,可知具有充分的取向恢复力。这被认为是由于在任何实施例中,配置支持体的密度比现有技术中的要高。不用说,实施例2也可以赋予壁构造体和开口部。
(比较例1)相对所述实施例,在图3所示的液晶显示装置中,不形成开口部和壁构造体,作为支持体使用与实施例1相同的支持体来制造液晶单元,使用水平取向膜,来制造ECB模式的均匀取向液晶面板。作为液晶材料,使用介电常数各向异性为正的液晶材料(Δn;0.07、Δε;8.5)。这里,透过区域的液晶层厚度dt为4.3μm,反射区域的液晶层厚度dr为2.3μm(dr=0.53dt)。
在该液晶面板的两面,配置由偏振片、包含1/4波长板等的相位差板的多个光学层所形成的光学薄膜,得到液晶显示装置。
对该液晶显示装置施加驱动信号(对液晶层施加4V),根据与上述同样的评价方法来评价显示特性。
透过显示的视野角特性为CR>10的区域为±30°,灰度等级反转也显著。另外,透过对比度是140∶1。另一方面,反射显示的特性是以标准扩散板为基准的大约9.3%(开口率100%换算值),反射显示的对比度值是8,显示图像与所述本发明的第一方面的实施方式的液晶显示装置相比,为泛白的低对比度。
另外,以与上述实施例相同的条件来进行调查耐冲击性的载荷试验,结果,确认试验后取向扰乱,判断出比较例的液晶显示装置与实施例相比耐冲击性差。
这样,本发明的第一方面的实施方式的液晶显示装置,与已有的均匀取向的液晶显示装置或者已有的公知技术来比较,得到了将垂直取向模式应用于透过显示和反射显示,透过和反射两种显示都优异的对比度。此外,由于使用了用于规定液晶层厚度的支持体(柱状隔板),能够进行取向控制,所以不需要用于设置取向控制构造的多余工序。另外,支持体以非常高的密度来规则地配置,结果提高了耐冲击性。
此外,通过仅在一侧基板(在例示中是有源矩阵基板)上设置液晶区域取向的控制构造(壁构造体或者开口部),能够更稳定地进行轴对称取向区域的取向,所以能够实现全方位的宽视野角特性。另外,由于通过开口部固定、稳定中心轴的位置,所以得到了提高基于斜视角的显示均匀性的效果。
下面,说明本发明的第二方面的液晶显示装置的构成和操作。
本发明的第二方面的液晶显示装置,通过电介质构造物,至少一个像素区域分割为多个子像素区域。另外,子像素区域中的液晶层中的液晶分子在施加电压时轴对称取向。在下面的说明中,将与在像素内形成的多个轴对称取向区域对应的区域称为“子像素区域”。
在某优选的实施方式中,在遮光区域形成实质包围像素区域的壁构造体。所述电介质构造物和壁构造体一体地形成,或者也可以由相同的电介质材料构成。另外,由其它的图像形成材料构成也没有关系。
本发明的第二方面,抑制了按压液晶面板时取向扰乱后的不良取向导致的显示不佳,达到了改善的一个目的。该目的通过利用电介质构造物或者壁构造体来分割液晶取向区域的领域来实现。具体地说,即使在按压显示画面而轴对称取向崩溃的情况下,通过分割后的液晶区域的周围的壁构造体或者电介质构造物的作用,实现从液晶区域的周边取向的稳定。换言之,壁构造体和电介质构造物对液晶区域给予恢复扰乱的取向的恢复力。
参照图9,说明具有垂直取向型液晶层的本发明的液晶显示装置具有优异的宽视野角特性的理由。图9是用于说明由在像素电极6的周边设置的电介质构造物23或者壁构造体等导致的取向控制力的作用的图。图9(a)是示意表示无电压施加时的液晶分子的取向状态的图,图9(b)是示意地表示施加电压时的液晶分子的取向状态的图。而且,图9(b)中显示了表示中间色调的状态。
图9所示的液晶显示装置,具有在透明基板1上顺序形成绝缘膜层(未图示)、具有电介质构造物23或者壁构造体的像素电极6和垂直取向膜22的构造。在另一个透明基板17上,顺序形成彩色滤光片层18、对置电极19和垂直取向膜32。在两基板间设置的液晶层20包括具有负电介质各向异性的液晶分子21。而且,虽然图9(a)和(b)没有表示,但电介质构造物23也由垂直取向膜22覆盖。
如图9(a)所示那样,在不施加电压时,液晶分子21由于垂直取向膜22,32的取向控制力,相对基板表面大致垂直取向。另一方面,在施加电压时,如图9(b)所示那样,电介质各向异性为负的液晶分子21的分子长轴相对电力线不垂直,由于电场的影响导致沿着等电位线的方向(与等电位线平行)倾斜,所以根据沿着电场的倾斜方向倾斜的液晶分子21的取向,或者根据在电介质构造物23的台阶差侧面附近或者壁构造体的台阶差侧面附近倾斜的液晶分子的取向,形成轴对称取向区域。在该轴对称取向区域内,液晶导向偶极子全方位(基板面内的方位)取向,所以视野角特性优异。
在本发明中,在液晶区域的周边的至少一部分配置壁构造体或者电介质构造物。通过这样,由壁构造体的侧面或者电介质构造物的侧面来稳定液晶分子的倾斜取向,同时通过壁构造体或者电介质构造物的作用,即使按压面板面也能够降低随着取向扰乱引起的不佳取向。具体地说,与通过对切口电极施加电压的情况下发生的电场作用来控制液晶分子的电倾斜方向的现有方法相比,液晶区域中的液晶分子的取向扰乱减小,可有效地恢复扰乱的轴对称取向区域。因此,具有能够大幅度改善不光滑的特点。
而且,本发明的壁构造体和电介质构造物,通过使用感光性树脂的光刻法工序,在规定的位置有规则地形成图案而配置。在本发明中,壁构造体和电介质构造物也可以使用相同的材料来形成,或者也能够根据需要使用不同的材料来形成。
在本发明的第二方面的某实施方式中,通过第一电极(例如像素电极)和第二电极来规定多个像素区域。多个像素区域中至少一个像素区域,通过有规则地配置的电介质构造物或遮光区域上所形成的壁构造体,分割为多个子像素区域。子像素区域中的液晶层(液晶区域)所包含的液晶分子通过电介质构造物的台阶差侧面或者壁构造体的台阶差侧面,来规定施加电压时的倾斜方向,成为轴对称取向。电介质构造物或者壁构造体包围液晶区域的周围的至少一部分,从而对于面板面的按压,能够抑制取向状态的变化。另外能够防止随着轴位置的偏差或者轴对称取向的变化导致的显示品质的恶化。特别是,通过在遮光区域内设置壁构造体,能够防止像素的有效开口率的降低。此外,能够防止在像素区域内设置壁构造体的情况下产生的光泄漏,所以能够抑制对比度比的降低。因此,不会降低显示品质。
在其它实施方式中,第一电极和/或所述第二电极具有在子像素区域内的规定位置有规则地配置的开口部。该开口部进行作用以固定轴对称取向的中心轴的位置,所以可进一步稳定轴对称取向。
在将本发明用于半透过型液晶显示装置的情况下,在透过区域和反射区域的边界附近配置电介质构造物,由此能够分割透过区域和反射区域的各个液晶区域,更简单地稳定取向状态。
下面,参照附图来具体地说明本发明的第二方面的实施方式的液晶显示装置的构成。在下面的实施方式中,说明使用薄膜晶体管(TFT)的有源矩阵型液晶显示装置。但本发明不限于此,也能够适用于使用MIM(Metal Insulator Metal)的有源矩阵型液晶显示装置或者单纯矩阵型液晶显示装置。另外,在下面的实施方式中,例示了透过型液晶显示装置和半透过型(Transflective)液晶显示装置(也称为两用型液晶显示装置),但本发明不限于此,也能够用于反射型液晶显示装置或者使用半反射镜等半透明膜的半透明型(Semitransparent)液晶显示装置。
而且,在本说明书中,将与作为显示的最小单位的“像素”对应的液晶显示装置的区域称为“像素区域”。在彩色液晶显示装置中,例如由红、绿和蓝三个“像素”构成一个“象点”。在有源矩阵液晶显示装置中,像素电极和与像素电极相对配置的对置电极规定像素区域。另外,在单纯矩阵型液晶显示装置中,设置成条状的列电极、与列电极交叉设置的行电极互相交叉的各个区域规定像素区域。而且,在设置黑色矩阵等的遮光层的构成中,严格地与应该显示的状态对应施加电压的区域中,与黑色矩阵的开口部对应的区域对应于像素区域。
(透过型液晶显示装置)参照图10来说明本实施方式的透过型液晶显示装置100的构成。图10是示意地表示透过型液晶显示装置100所具有的一个像素的构成的图,图10(a)是从基板法线方向看的俯视图,图10(b)是沿着图10(a)中的10B-10B’线的截面图。
液晶显示装置300具有透明基板(例如玻璃基板)310a;与透明基板310a相对设置的透明基板310b;在一对透明基板310a、310b之间设置的垂直取向型液晶层320。在与液晶层320接触的两个基板310a、310b的各个面设置垂直取向膜(未图示),在不施加电压时,液晶层320中的液晶分子,相对垂直取向膜的表面大致垂直地取向。液晶层320包括电介质各向异性为负的向列液晶材料,根据需要,还可包括手征性剂。
液晶显示装置300具有在透明基板310a上形成的像素电极311;在透明基板310b上形成的对置电极331,像素电极311和对置电极331和液晶层320规定像素。在本实施方式中,像素电极311和对置电极33 1的任何一个都例如由ITO(Indium Tin Oxide)膜等透明导电膜形成。而且,典型的,在透明基板310b的液晶层320侧,形成与像素对应设置的彩色滤光片330(有时也概括多种颜色的彩色滤光片称为彩色滤光片层330);设置在相邻的彩色滤光片330之间的黑色矩阵(遮光层)332,在它们之上形成对置电极331。但是,也可以在对置电极331上(液晶层320侧)形成彩色滤光片层330或者黑色矩阵332。
在本实施方式中,通过像素电极311和对置电极331,在平面视图上(从基板法线方向看),规定由一对长边和一对短边构成的矩形像素区域。在透明基板310a上的像素区域的周边,形成实质包围像素区域的壁构造体315和一对电介质构造物316。一对电介质构造物316在像素区域的长边的大致中央沿短边方向(从短边延长的方向)并列形成,从像素区域的长边附近(壁构造体315的内侧面)向相互接近的方向延伸。各个电介质构造物316的长度(沿着短边方向的距离)分别是像素区域的短边的长度的大约1/3以下。但是,优选为电介质构造物316的长度是5μm以上。在电介质构造物316的长度不到5μm的情况下,由电介质构造物316导致的分割效果变小,具有取向控制力降低的担心。壁构造体315和电介质构造物316的高度,从容易注入液晶材料的角度考虑,优选的是单元厚度(基板间310a、310b的距离或者液晶层320的厚度)的一半以下。另外,如果壁构造体315和电介质构造物316的高度不到0.5μm,取向控制力降低,所以显示对比度比降低。因此,优选的壁构造体315和电介质构造物316的高度是0.5μm以上。通过壁构造体315和一对电介质构造物316,像素区域分割为两个子像素区域。换言之,像素区域中的液晶层320分割为两个液晶区域。
在本实施方式中,像素电极311具有在规定位置形成的两个开口部314。具体地说,在各个子像素区域的大致中央设置开口部314。如果对液晶层320施加规定的电压,则分别形成呈轴对称取向的两个液晶区域(子像素区域)。这些液晶区域的各个轴对称取向的中心轴,在开口部314内或者其附近形成。换言之,在像素电极311上设置的开口部314进行作用以固定轴对称取向的中心轴的位置。
此外,通过利用电介质构造物316的台阶差侧面316a或者壁构造体315的台阶差侧面315a,规定液晶分子的倾斜方向,同时,在子像素区域形成稳定的轴对称取向区域。在像素区域内配置电介质构造物316的情况下,为了防止在电介质构造物316附近的光泄漏导致的对比度降低,至少在电介质构造物316的形成区域,优选在电介质构造物3 16的形成区域和其附近区域形成遮光部。遮光部不限于黑色矩阵,也可以是例如不透过辅助电容布线等的光的元件。另外,为了实现轴对称取向区域的稳定,也可以在电介质构造物316的周边的像素电极311上设置切口部313。通过这样,能够合并利用由施加电压时的斜电场导致的电倾斜效果。
为了固定轴对称取向区域的中心轴而设置的开口部314的形状,优选的是例示的圆形,但不限于此。但是,为了全方位地发挥基本相等的取向控制力,优选的是四边形以上的多边形,更优选的是正多边形。
本实施方式的液晶显示装置300,在相邻的像素间具有遮光区域。换言之,像素区域在平面视图中由遮光区域包围。在该遮光区域内的透明基板310a上形成璧构造体315。遮光区域在透明基板310a上的像素电极311的周边形成,是对显示没有贡献的区域。是例如由在透明基板310a上形成的TFT或者栅极信号布线、源极信号布线等遮光的区域,还是由在透明基板310b上形成的黑色矩阵进行遮光的区域。由于遮光区域对显示没有贡献,所以在遮光区域内形成的璧构造体315不对显示造成坏影响。
本实施方式所示的璧构造体315,作为包围像素区域的连续的璧而设置,但不限于此。只要璧构造体315实质包围像素区域,例如分断为多个璧也可以。璧构造体315规定液晶区域(像素区域),所以优选具有一定程度的长度。例如,在由多个璧构成璧构造体315的情况下,优选各个璧的长度比相邻的璧间的距离长。
如果在遮光区域(这里是通过黑色矩阵332规定的区域)形成用于规定液晶层320的厚度(也称为单元间隔)dt的支持体333,由于没有降低显示品质,所以是优选的。支持体333可以在透明基板310a、310b的任何一个基板上形成,象图10所例示的那样,不限于在遮光区域设置的璧构造体315上所设置的情况。在璧构造体315上形成支持体333的情况下,可进行设置使得璧构造体315的高度和支持体333的高度之和与液晶层320的厚度dt大致相等。在不形成璧构造体315的区域设置支持体333的情况下,可进行设置使得支持体333的高度和液晶层320的厚度dt大致相等。
本实施方式的液晶显示装置300能够使用光刻法等一般的方法来制造。例如,璧构造体315、电介质构造物316和支持体333能够通过下面的顺序来制造。首先,通过光刻法,在基板310a上形成具有TFT、栅极信号布线、源极信号布线、开口部314的像素电极311等,之后,形成感光性树脂膜。将感光性树脂膜形成图案,形成璧构造体315和电介质构造物316。此外使用感光性树脂通过光刻法工序形成支持体333。之后,形成覆盖像素电极311、璧构造体315和电介质构造物316的垂直取向膜(未图示)。
如果根据本实施方式的液晶显示装置300,如果向像素电极311和对置电极331之间施加规定的电压(阈值电压以上的电压),则在两个开口部314内或者其附近形成稳定各个中心轴的两个轴对称取向。在像素电极311的长度方向的中央部设置的一对电介质构造物316,规定沿着长度方向相邻分割的两个液晶区域内的液晶分子的倾倒方向。璧构造体315接近像素电极311的周边或者电介质构造物316而形成。通过电介质构造物316和璧构造体315的相乘效果,规定像素区域内璧构造体315附近的液晶分子倾斜的方向。考虑为由开口部314、电介质构造物316和璧构造体315导致的取向控制力协同作用,稳定液晶区域的取向。
而且,在透明基板310a的液晶层320侧,设置例如TFT等有源元件和与TFT连接的栅极布线和源极布线等电路元件(任何一个都没有图示)。另外,有时也将透明基板310a、在透明基板310a上形成的电路元件、上述像素电极311、璧构造体315、支持体333和取向膜等总称为有源矩阵基板。另一方面,有时将透明基板310b、在透明基板310b上形成的彩色滤光片层330、黑色矩阵332、对置电极331和取向膜等总称为对置基板或者彩色滤光片基板。
另外,虽然在上述说明中进行了省略,但液晶显示装置300还具有通过透明基板310a和310b互相相对配置的一对偏振片。一对偏振片典型地配置为透过轴互相正交。此外,象后面所描述的那样,在透明基板310a和/或透明基板310b和所述一对偏振片之间,还可以设置两轴性光学各向异性介质层或者单轴性光学各向异性介质层。
(半透过型液晶显示装置)参照图11来说明本实施方式的半透过型液晶显示装置400的构成。图11是示意性地表示半透过型液晶显示装置400所具有的一个像素的构成的图,图11(a)是从基板法线方向看的俯视图,图11(b)是沿着图11(a)中的11B-11B’线的截面图。
液晶显示装置400具有透明基板(例如玻璃基板)410a、与透明基板410a相对设置的透明基板410b;在一对透明基板410a、410b之间设置的垂直取向型液晶层420。在与液晶层420相接的两个基板410a、410b的各个面上设置垂直取向膜(未图示),在没有施加电压时,液晶层420中的液晶分子相对垂直取向膜的表面大致垂直地取向。液晶层420包括电介质各向异性为负的向列液晶材料,根据需要,还包括手征性剂。
液晶显示装置400包括在透明基板410a上形成的像素电极411、在透明基板410b上形成的对置电极431,像素电极411和对置电极431和液晶层420规定像素。在透明基板410a上,形成后述的TFT等电路元件。有时将透明基板410a和在其上形成的构成元件总称为有源矩阵基板410a。
另外,典型的,在透明基板410b的液晶层420侧,形成与像素对应设置的彩色滤光片430(有时也将多种颜色的彩色滤光片总称为彩色滤光片层430)、在相邻的彩色滤光片430之间设置的黑色矩阵(遮光层)432,在它们之上形成对置电极431。但是,也可以在对置电极431(液晶层420侧)上形成彩色滤光片层430或者黑色矩阵432。有时将透明基板410b和在其上形成的构成要件总称为对置基板(彩色滤光片基板)410b。
在本实施方式中,像素电极411具有由透明导电膜(例如ITO膜)形成的透明电极411a、由金属膜(例如Al层、包含Al的合金层或者包含它们的任何一种的叠层膜)形成的反射电极411b。结果,像素区域包括由透明电极411a规定的透过区域A;由反射电极411b规定的反射区域B。透过区域A以透过模式进行显示,反射区域B以反射模式进行显示。
在本实施方式中,通过像素电极411和对置电极431,在平面视图中,规定由一对长边和一对短边构成的矩形的像素区域。在透明基板410a上的像素区域的周边,形成实质包围像素区域的璧构造体415和两组电介质构造物416、417。两组电介质构造物416、417配置在将像素区域的各个长边三等分的位置,各个组的电介质构造物416、417沿着短边方向(从短边延伸的方向)并列。另外,各组的电介质构造物416、417沿着从像素区域的长边附近(璧构造体415的内侧面)互相接近的方向延伸。与液晶显示装置300同样的,在透明基板410a上的像素区域的周边,形成实质包围像素区域的璧构造体415。各个电介质构造物的长度、电介质构造物416、417和璧构造体415的高度,与液晶显示装置300相同。通过璧构造体415和两组电介质构造物416、417,像素区域分割为三个子像素区域。换言之,像素区域中的液晶层420分割为三个液晶区域。三个子像素区域中的两个子像素区域是透过区域A,一个子像素区域是反射区域B。在本实施方式中,在平面视图中,两个透过区域A在长度方向夹着一个子像素区域。
在本实施方式中,像素电极411具有在规定位置形成的三个开口部414(在透过区域A有两个,在反射区域B有一个(未图示))。具体地说,在各个子像素区域的大致中央设置开口部414。如果对液晶层420施加规定的电压,则分别形成呈轴对称取向的三个液晶区域(子像素区域),这些液晶区域的各个轴对称取向的中心轴,在开口部414内或者其附近形成。换言之,在像素电极411上设置的开口部414进行作用以固定轴对称取向的中心轴的位置。
此外,通过利用电介质构造物416的台阶差侧面416a和璧构造体415的台阶差侧面415a,规定液晶分子的倾斜方向,同时,在像素区域形成稳定的轴对称取向区域。在像素区域内配置电介质构造物416、417的情况下,为了防止电介质构造物416附近的光泄漏导致的对比度降低,至少在电介质构造物416的形成区域,优选在电介质构造物416的形成区域和其附近区域,形成遮光部。遮光部不限于黑色矩阵,可以是例如辅助电容布线等不透过光的元件。另外,为了实现轴对称取向区域的稳定,也可以在电介质构造物416的周边的像素电极411上设置切口部(未图示)。由此,能够合并利用由电压施加时的斜电场导致的电倾斜效果。
在本实施方式中,在一像素的显示区域中,交互地配置透过显示区域A和反射显示区域B,形成对应的像素电极。此外,在透过区域A和反射区域B的边界附近的像素分割区域部配置两组电介质构造物416、417,形成液晶分割区域。通过这样,在透过区域A形成两个液晶区域,在反射区域B形成一个液晶区域。但是,本实施方式不过仅仅是例示,本发明不限于此。从视野角特性和取向稳定性的观点来看,各个液晶区域形成大致正方形的形状是优选的。
图12是观察本实施方式和现有例子的轴对称取向状态时的概略图。图12(a)是按压显示面之前的正常状态下的液晶区域取向的概略图,图12(b)是现有例子的像素分割配置的面板按压后的取向概略图,图12(c)是本实施方式的像素分割配置的面板按压后的取向概略图。而且,图12(c)中的椭圆,表示存在电介质构造物。
在本实施方式中,交互(互相彼此相邻)配置透过显示区域A和反射显示区域B,由电介质构造物和璧构造体(未图示)三分割像素区域内的液晶层,形成三个液晶区域。在这种情况下,各个液晶区域由电介质构造物和璧构造体均匀地分割,所以即使在按压面板面的情况下,也可以抑制暂时扰乱的轴对称取向状态出现在相邻的像素间,可恢复成原始的良好的轴对称取向。因此,与例如三分割一个像素区域,透过显示区域/透过显示区域/反射显示区域那样的透过显示区域相邻配置的图12(b)那样的情况相比,可确认为暂时非对称扰乱的轴对称取向状态可立即恢复,可恢复成原始的稳定的轴对称取向。
本实施方式的液晶显示装置400,在相邻的像素间具有遮光区域。换言之,在平面视图中像素区域由遮光区域所包围。在该遮光区域内的透明基板410a上形成璧构造体415,遮光区域对显示没有贡献,所以在遮光区域内形成的璧构造体415不会对显示造成坏影响。
在本实施方式中所示的璧构造体415作为包围像素区域的连续的璧而设置,但不限于此。璧构造体415只要实质包围像素区域,也可以是例如分断为多个璧。由于璧构造体415规定液晶区域(像素区域),所以优选具有一定程度的长度。例如,在由多个璧构成璧构造体415的情况下,优选为各个璧的长度比相邻的璧间的距离长。
如果在遮光区域(这里是由黑色矩阵432规定的区域)形成用于规定液晶层420的厚度(也称为单元间隔)dt的支持体433,由于不降低显示品质,所以是优选的。支持体433可以在透明基板410a、410b的任何一个基板上形成,不限于如图11所例示的那样在遮光区域所设置的璧构造体415上设置的情况。在璧构造体415上形成支持体433的情况下,设定为使得璧构造体415的高度和支持体433的高度之和与液晶层420的厚度大致相等。在不形成璧构造体415的区域设置支持体433的情况下,设定为使得支持体433的高度与液晶层420的厚度dt大致相等。
如根据本实施方式的液晶显示装置400,如果向像素电极411和对置电极431之间施加规定的电压(阈值以上的电压),则在三个开口部414内和其附近形成各个中心轴稳定的三个轴对称取向。在由像素电极411上所设置的电介质构造物416和璧构造体415所划分的区域中,规定液晶分子的倾斜方向,分割形成液晶区域。
接着,说明能够进行透明模式的显示和反射模式的显示的两种显示的半透过型液晶显示装置400所特有的优选构成。在透过模式的显示中,显示所使用的光仅通过一次液晶层420,与此相对,在反射模式的显示中,显示所使用的光通过两次液晶层420。因此,象图11(b)示意地表示那样,优选为将透过区域A的液晶层420的厚度dt设定为反射区域B的液晶层420的厚度dr的大约两倍。通过这样的设定,对于两种显示模式的光,液晶层420给予的延迟能够大致相等。最优选为dr=0.5dt,但如果在0.3dt<dr<0.7dt的范围内,两种显示模式能够实现良好的显示。不用说,根据用途的不同,也可以为dt=dr。
在本实施方式的液晶显示装置400中,将反射区域B的液晶层420的厚度dt设定为比透过区域A的液晶层的厚度dr小,所以仅在反射区域B中在玻璃基板410b上设置透明电介质层434。如果采用这样的构成,不需要在反射电极411b之下使用绝缘膜等设置台阶差,所以,得到能够简化有源矩阵基板410a的制造这样的优点。此外,如果为了调整液晶层420的厚度,在用于设置台阶差的绝缘膜上形成反射电极411b,则会发生通过覆盖绝缘膜的斜面(圆锥部)的反射电极,遮挡透过显示所使用的光的问题。另外,发生这样的问题,即由在绝缘膜的斜面上所形成的反射电极所反射的光,重复进行内部反射,所以反射显示也不能有效利用。如果采用所述构成,能够抑制这些问题的发生,能够改善光的利用效率。
此外,作为透明电介质层434,如果使用具有散射光之功能(扩散或者反射功能)的电介质层,即使不对反射电极411b赋予扩散反射功能,也能够实现近似白纸的良好的白显示。不过,即使不对透明电介质层434赋予光散射功能,通过对反射电极411b的表面赋予凹凸形状,能够实现近似于白纸显示的白显示,但存在由于凹凸形状导致轴对称取向的中心轴位置不稳定的情况。与此相对,如果使用具有光散射功能的透明电介质层434和具有平坦表面的反射电极411b,通过在反射电极411b上所形成的开口部414,可得到这样的优点,即能够更确实地稳定中心轴的位置。作为对透明电介质层434赋予光散射功能的方法,例示了例如下面的方法。具有这种方法,即在透明树脂中分散氧化钛粒子等超微粒子,将该树脂涂覆到聚酰亚胺薄膜等支持体上,形成具有散射光之功能的散射层,这样,能够通过改变粒子密度、粒子直径、散射层的厚度、树脂的折射率等来改变散射特性。此外,可举出这样的方法,通过叠层折射率不同的薄膜来形成光散射层。
而且,为了对反射电极411b赋予扩散反射功能,在其表面形成凹凸的情况下,优选为凹凸形状形成为连续的波状,使得不发生干涉色,优选为进行设定使得能够稳定轴对称取向的中心轴。
在透过模式显示所使用的光仅通过一次彩色滤光片层430,与此相对,反射模式的显示所使用的光通过两次彩色滤光片层430。因此,作为彩色滤光片层430,如果透过区域A和反射区域B使用相同光学浓度的彩色滤光片层,反射模式中的色纯度和/或辉度降低。为了抑制该问题的发生,优选为使反射区域B的彩色滤光片层的光学浓度比透过区域A的彩色滤光片层的光学浓度要小。而且,这里所说的光学浓度是对彩色滤光片层赋予特征的特性值,如果减小彩色滤光片层的厚度,则能够减小光学浓度。或者,也能够将彩色滤光片层的厚度保持其原样,例如通过降低添加的色素的浓度,也能够减小光学浓度。
在本实施方式的半透过型液晶显示装置中,也能够合适地使用参照图4和图5所说明的有源矩阵基板。
象上述那样,具有图11所示构成的液晶显示装置400,与液晶显示装置300同样的,也可以是仅在一侧基板410a上设置轴对称取向的取向控制构造(在像素电极411上形成的开口部414、电介质构造物416和璧构造体415)的比较简单的构成,具有能够充分地稳定液晶的取向的效果。此外,通过象上述那样构成透明电介质层434和/或彩色滤光片层430,能够提高透过模式和反射模式的显示的亮度和色纯度。
另外,本发明的半透过型液晶显示装置的具体构成,能够形成为参照图7所说明的构成。
(透过区域的液晶层厚度dt和反射区域的液晶层厚度dr的关系)图13是表示本实施方式的液晶显示装置中透过区域和反射区域的电压-反射率(透过率)的曲线图,表示了液晶层的厚度依赖性。如图13所示那样,优选为满足0.3dt<dr<0.7dt的条件,更优选为0.4dt<dr<0.6dt的范围。在反射区域的液晶层厚度dr比下限值还低的情况下,变为最大反射率的50%以下,所以不能得到充分的反射率。另一方面,在比上限值还大的情况下,在电压-反射率特性中,存在着在与透过显示时不同的驱动电压下反射率为最大的极大值。另外,在透过显示的最合适的白显示电压下,由于相对的反射率降低的倾向变大,成为最大反射率的50%以下,所以不能得到充分的反射率。但是,由于反射区域B的液晶层的光路长度是透过区域A的光路长度的大致两倍,所以在进行与透过该透过区域A的光线的光学设计相同的设计的情况下,液晶材料的光学双折射各向异性(Δn)和面板的单元厚度设计是非常重要的。这一点第一方面的半透过型液晶显示装置也是同样的。
(实施例)在下面例示了本实施方式的半透过型液晶显示装置的具体特性。首先,制造具有图7所示构成的液晶显示装置。作为液晶单元50,使用与图10所示的液晶显示装置400同样的构成的液晶显示装置。但是,透明电介质层434不具有光散射功能,在反射电极411b的下层,形成具有连续的凹凸状的表面的树脂层,调整反射显示时的扩散反射特性。
本实施例的像素区域通过璧构造体和电介质构造物分割为三个子像素区域,一个像素区域由长度方向顺序排列的透过区域、反射区域、透过区域所构成。璧构造体在形成于非显示区域(像素区域以外的区域)中的遮光层上形成。通过这样,在电压施加时在各个区域形成轴对称取向区域。
使用公知的取向膜材料,利用公知的方法来形成垂直取向膜。不进行摩擦处理。作为液晶材料,使用电介质各向异性为负的液晶材料(Δn;0.1、Δε;-4.5)。这里,透过区域的液晶层厚度dt为4μm,反射区域的液晶层厚度dr为2.2μm(即dr=0.55dt)。
本实施例的液晶显示装置的构成为从上面开始顺序为偏振片(观察侧)、1/4波长波(相位差板1)、光学各向异性为负的相位差板(相位差板2(NR板))、液晶层(上侧;彩色滤光片基板、下侧;有源矩阵基板)、光学各向异性为负的相位差板(相位差板3(NR板))、1/4波长板(相位差板4)、偏振片(背光侧)的叠层构造。而且,夹着液晶层的上下的1/4波长板(相位差板1和相位差板4)使滞相轴相互正交,将各个相位差设为140nm。光学各向异性为负的相位差板(相位差板2和相位差板3)的各个相位差设为135nm。另外,两个偏振片(观察侧、背光侧)使透过轴相互正交地配置。
对液晶显示装置施加驱动信号(对液晶层施加4V)来评价显示特性。在透过显示中的视角-对比度特性与图8所示的情况相同。以透过显示的视野角特性显示了大致全方位的对称特性,CR>10的区域为±80°,是良好的,透过对比度也在正面高为300∶1以上。
另一方面,反射显示的特性利用分光光度测色计(Minolta公司制造的CM2002)来评价,以标准扩散板作为基准,分光反射率是大约8.1%(开口率100%换算值),反射显示的对比度值是20,与现有的液晶显示装置相比,显示了高的对比度,是好的。
(比较例)在图10所示的液晶显示装置中,不配置划分像素区域的电介质构造物和璧构造体,仅使用切口(电极开口部)将一个像素区域按照透过区域、透过区域、反射区域的顺序来分割。换言之,仅利用施加电压时在电极开口部所发生的电场的作用来三分割取向区域。
利用与所述实施例相同的液晶层的条件来制造液晶显示装置,对于该比较例进行同样的面板评价。结果,对于对比度等显示特性,显示了与实施例大致相同的特性。
(评价)接着,关于各个液晶显示装置,比较显示不光滑、中间色调响应特性和面板按压后的显示品质。首先,以目视评价中间色调(8灰度等级分割时的灰度等级2)的从倾斜方向看的显示不光滑,结果,在实施例中没有感觉到不光滑感。与此相对,在仅利用切口分割的比较例的液晶显示装置中,可确认在中间色调的倾斜视角下具有显示不光滑。
利用使偏光轴相互正交的光学显微镜来观察时,可确认在实施例中是中心轴均匀一致的轴对称取向区域,在比较例中,一部分液晶区域的中心轴从子像素的中心部(开口部)偏离,是混乱的。可确认该中心轴的位置偏差是不光滑的主要原因。
比较液晶显示装置的中间色调响应时间(在8灰度等级分割时从3灰度等级变化到5灰度等级所需要的时间;m秒),在实施例中是38m秒,在比较例中是65m秒。如根据利用璧构造体和电介质构造物分割像素区域的本发明的液晶显示装置,能够确认可缩短中间色调显示的响应时间。此外,调查施加4V电压(白显示)时由指尖按压面板面时的取向恢复力。结果,在实施例的情况下,在按压部基本上没有看到残像(立即恢复),与此相对,在比较例的情况下,确认有几分钟的残像,可确认由按压导致的取向扰乱发生时的恢复力差。此外,在比较例的情况下,可确认通过按压扰乱的取向的一部分不能完全恢复,由不光滑感或取向缺陷导致显示不好。
从以上的评价结果可知,通过交互配置透过显示区域和反射显示区域,同时由电介质构造物和壁构造体划分液晶区域,可得到固定或者稳定轴对称取向区域的中心轴的位置的效果,中间色调的斜视角的显示的不光滑感降低,得到中间色调显示的响应速度的改善和降低按压残像等的效果。即,可知如根据本发明的液晶显示装置,像素内的分割构造为最合适。
在上述实施方式中,说明了共同形成电介质构造物和壁构造体的情况,但也能够至少形成电介质构造物,将像素区域分割为多个子像素区域。通过在电介质构造物的台阶差附近倾斜液晶分子进行取向,在所划分的区域可实现液晶分子的分割取向。在该情况下,即使不配置壁构造体,由于划分(隔开)了像素区域,所以得到分割取向。而且,为了更稳定该分割取向,更有效地改善对按压的恢复力等,优选为形成壁构造体或者开口部。在不形成壁构造体的情况下,优选为在上下一对电极中的至少一个电极上形成开口部。
产业上的可利用性象上述那样,本发明的液晶显示装置,能够利用比较简单的构成来实现优异的显示品质的液晶显示装置。本发明很好地适用于透过型液晶显示装置和半透过型(透过、反射两用)液晶显示装置。特别是,半透过型液晶显示装置可很好地利用为便携电话等便携设备的显示装置。
权利要求
1.一种液晶显示装置,其特征在于,具有第一基板;与所述第一基板相对设置的第二基板;在所述第一基板和所述第二基板之间设置的垂直取向型液晶层,具有分别包含在所述第一基板上形成的第一电极;在所述第二基板上形成的第二电极;在所述第一电极和所述第二电极之间设置的所述液晶层的多个像素,和在所述多个像素的周围设置的遮光区域,在所述遮光区域的所述第一基板或第二基板上的所述液晶层侧,有规则地配置规定所述液晶层的厚度的多个支持体,所述液晶层至少在施加规定的电压时,形成呈轴对称取向的至少一个液晶区域,所述至少一个液晶区域内的液晶分子的倾斜方向由所述多个支持体所具有的倾斜侧面来规定。
2.根据权利要求1所述的液晶显示装置,其特征在于,所述至少一个液晶区域的各个与至少4个支持体的倾斜侧面相接。
3.根据权利要求1或者2所述的液晶显示装置,其特征在于,所述第一电极具有至少一个开口部,所述至少一个液晶区域的各个的轴对称取向的中心轴,在所述至少一个开口部内或者其附近形成。
4.根据权利要求1所述的液晶显示装置,其特征在于,所述多个支持体所具有的所述倾斜侧面,相对所述第一基板倾斜成倒圆锥状。
5.根据权利要求1所述的液晶显示装置,其特征在于,与所述多个支持体的所述第一基板面平行的面的截面形状,是大致圆形、大致椭圆形、大致菱形、或者大致十字形状。
6.根据权利要求1所述的液晶显示装置,其特征在于,还具有在所述遮光区域有规则地排列的壁构造体。
7.根据权利要求1所述的液晶显示装置,其特征在于,所述至少一个液晶区域包括两个液晶区域,所述至少一个开口部包括两个开口部,所述两个液晶区域的各个的轴对称取向的中心轴在所述两个开口部内或者其附近形成。
8.根据权利要求1所述的液晶显示装置,其特征在于,所述第一电极包括规定透过区域的透明电极、规定反射区域的反射电极。
9.根据权利要求8所述的液晶显示装置,其特征在于,所述至少一个液晶区域包括在所述透过区域形成的液晶区域、在所述反射区域形成的液晶区域。
10.根据权利要求9所述的液晶显示装置,其特征在于,所述至少一个开口部包括在所述透明电极上形成的开口部、在所述反射电极上形成的开口部。
11.根据权利要求1所述的液晶显示装置,其特征在于,具有通过所述第一基板和所述第二基板互相相对配置的一对偏振片,在所述第一基板和/或所述第二基板和所述一对偏振片之间,还具有至少1个两轴性光学各向异性介质层。
12.根据权利要求1所述的液晶显示装置,其特征在于,还具有通过所述第一基板和所述第二基板互相相对配置的一对偏振片,在所述第一基板和/或所述第二基板和所述一对偏振片之间,还具有至少1个单轴性光学各向异性介质层。
13.一种液晶显示装置,具有形成有第一电极的第一基板;形成有与所述第一电极相对的第二电极的第二基板;介插在所述第一电极和所述第二电极之间的垂直取向型液晶层,通过所述第一电极和所述第二电极来规定多个像素区域,其特征在于,所述多个像素区域中至少一个像素区域通过在所述第一基板上规则配置的电介质构造物,分割为多个子像素区域,所述子像素区域中的所述液晶层中的液晶分子,在向所述第一电极和所述第二电极之间施加规定的电压时,以与所述第一基板的表面垂直的轴为中心进行轴对称取向。
14.根据权利要求13所述的液晶显示装置,其特征在于,所述像素区域在平面视图中由遮光区域包围,在所述遮光区域内的所述第一基板的所述液晶层侧,还具有实质包围所述像素区域的壁构造体。
15.根据权利要求13所述的液晶显示装置,其特征在于,所述第一电极和/或所述第二电极,具有在所述子像素区域内形成的开口部,在施加所述电压时,所述垂直轴在所述开口部内或者其附近形成。
16.根据权利要求13所述的液晶显示装置,其特征在于,所述像素区域在平面视图内由遮光区域包围,规定所述液晶层的厚度的支持体在所述遮光区域内形成。
17.根据权利要求13所述的液晶显示装置,其特征在于,所述第一电极具有透明电极和反射电极,所述多个子像素区域中,至少一个子像素区域是透过区域,至少一个子像素区域是反射区域。
18.根据权利要求17所述的液晶显示装置,其特征在于,如果将所述透过区域的所述液晶层的厚度设为dt,将所述反射区域的所述液晶层的厚度设为dr,则满足关系0.3dt<dr<0.7dt。
19.根据权利要求17所述的液晶显示装置,其特征在于,在所述反射区域的所述第二基板的所述液晶层侧,还具有透明电介质层。
20.根据权利要求19所述的液晶显示装置,其特征在于,所述透明电介质层具有散射光的功能。
21.根据权利要求17所述的液晶显示装置,其特征在于,所述第二基板还具有彩色滤光片层,所述反射区域的所述彩色滤光片层的光学浓度比所述透过区域的所述彩色滤光片层的光学浓度还小。
22.根据权利要求13所述的液晶显示装置,其特征在于,还具有通过所述第一基板和所述第二基板互相相对配置的一对偏振片,在所述第一基板和/或所述第二基板和所述一对偏振片之间,还具有至少一个两轴性光学各向异性介质层。
23.根据权利要求13所述的液晶显示装置,其特征在于,还具有通过所述第一基板和所述第二基板互相相对配置的一对偏振片,在所述第一基板和/或所述第二基板和所述一对偏振片之间,还具有至少一个单轴性光学各向异性介质层。
24.根据权利要求13所述的液晶显示装置,其特征在于,所述像素区域在平面视图中是由一对长边和一对短边构成的矩形,通过至少一对所述电介质构造物分割为所述多个子像素区域,所述一对所述电介质构造物,从所述像素区域的所述一对长边附近向互相接近的方向延伸,且在短边方向并列。
全文摘要
本发明提供一种垂直取向型液晶显示装置,其能够利用比较简单的构成来充分稳定液晶的取向,可得到与现有技术相同以上的显示品质。具有在第一基板和第二基板之间设置的垂直取向型液晶层,具有在第一基板上形成的第一电极;在第二基板上形成的第二电极;包括在第一电极和第二电极之间设置的液晶层的像素;在像素周围设置的遮光区域,在遮光区域的第一基板或者第二基板上的液晶层侧,有规则地配置规定液晶层的厚度的多个支持体,至少在施加规定的电压时,液晶层形成呈轴对称取向的至少一个液晶区域,至少一个液晶区域内的液晶分子的倾斜方向由多个支持体所具有的倾斜侧面来规定。
文档编号G02F1/13363GK1667474SQ200510053648
公开日2005年9月14日 申请日期2005年3月9日 优先权日2004年3月9日
发明者久米康仁, 长江伸和, 玉井和彦, 大西宪明 申请人:夏普株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1