光学制品及光学制品的制造方法

文档序号:2673204阅读:92来源:国知局
专利名称:光学制品及光学制品的制造方法
技术领域
本发明涉及内部含有多层膜的光学元件及其制造方法,特别是涉及投影仪中使用的用于颜色合成或颜色分解的正交二向色棱镜及其制造方法。
背景技术
在多板式的投影仪中大多采用的投影方式是,对白色光进行分光,照亮显示各色图像的光阀,合成各色的图像之后通过放映镜头投射到屏幕上。正交二向色棱镜是适用于将白色光分解为三种颜色并合成三色画面的光学制品(光学部件)之一。
图22以截面表示了传统的正交二向色棱镜的结构。该正交二向色棱镜90中,在将正交二向色棱镜90分成四部分的四个三棱柱状棱镜91a~91d中的每一个在其一个面上形成有由多层膜构成的二向色膜92,这些通过光学性质与棱镜的基材几乎相同的粘着剂93接合起来。另外,为了举例说明二向色膜92与粘着剂93的存在图中记载的二向色膜92与粘着剂93的厚度十分厚,而实际上,正如大家所知,二向色膜92与粘着剂93的厚度非常薄,例如为数十微米。本说明书中的其他附图也如此。
图23为正交二向色棱镜的另一个例子。在该正交二向色棱镜95中,四个三棱柱状棱镜91a~91d将正交二向色棱镜95分成四部分,这四个三棱柱状棱镜首先两个两个形成共两个棱镜对,每个棱镜对中间夹有由多层膜构成的二向色膜92。然后,在两个棱镜对中的一方的接合部形成由多层膜构成的二向色膜92,再以光学粘着剂93接合这两个棱镜对的接合部。
特开平06-331807号公报[专利文献2]特开平09-015405号公报

发明内容
正交二向色棱镜中,由于在光学上均匀地形成光路而提高了画质,因而其特别对防止图像模糊和重影是有效的。例如,优选使构成光路的部件的折射率均匀,如专利文献1公开的那样,对构成每个棱镜的部件的折射率的均匀性进行精确控制是提高正交二向色棱镜性能的关键。并且,如专利文献2公开的那样,在图22所示的传统的二向色棱镜90的结构中,在二向色膜92上产生了由粘着剂93的厚度引起的断坡,因此优选采用图23所示结构。
无论是哪一种结构,由于光路的一部分是由粘着剂93构成的,使粘着剂93的光学性质与棱镜91a~91d一致是进一步提高正交二向色棱镜90和95的性能的关键。为此,人们开发了固化后折射率与玻璃几乎相同的光学粘着剂。
然而,粘着剂要依靠热聚合或光聚合来进行固化,使其稳定且均匀地固化为与玻璃折射率相同的状态是困难的。例如,粘着剂材料的成分或固化条件发生改变就会使固化后的折射率或多或少发生变化。另外,能够用作棱镜的玻璃不止一种,若没有与之相对应的粘着剂就会限制能够用作棱镜的玻璃种类。
本发明是鉴于所述情况提出的,其目的在于提供诸如正交二向色棱镜那样的在内部夹有多层膜的光学制品及其制造方法,其中,能够尽可能减小用于接合的粘着剂的影响。
为此,在本发明中,通过光学接触法进行光学元件之间的接合或贴合,能够完全除去粘着剂的影响。光学接触是公知的,其是对玻璃面进行研磨加工,形成严格相似的两个表面,在没有粘着剂的情况下使其贴紧或熔合的技术。据认为,光学接触是下述的接合方式精确研磨玻璃基板的表面使之成为平面,然后使平面紧密贴合,据此使该表面的羟基之间形成氢键而进行接合或利用羟基之间脱氢缩合形成的共价键进行接合,因此认为除了玻璃基板面之间有这种光学接触效果,此外几乎没有这种效果。
与此相对,在本发明中,通过将多层膜的最上层制为氧化硅层,使多层膜的表面与玻璃面的条件相同,夹着多层膜接合作为光学元件的玻璃基板,就能够在没有粘着剂的条件下制造内部含有多层膜的光学制品。
即,本发明将多层膜的最上层制为氧化硅层,所以能够使多层膜的表面与能够以光学接触法接合的玻璃表面类似。因此,能够利用光学接触法将一个光学元件与另一个光学元件夹着多层膜接合。因此,得到的光学制品的接合部没有粘着剂层,几乎能够完全防止由于所述粘着剂层引起的光学性能的恶化。
并且,在本发明中能够在不形成粘着剂层的情况下夹着多层膜将多个光学元件接合,所以即使在覆盖多个光学元件的面形成多层膜也能维持多层膜的性能。即,对于跨越通过粘着剂接合的多个光学元件的面,存在在粘着剂层上形成有多层膜的部分,多层膜在该部分变形或膜的厚度发生变化则有可能无法得到期望性能,相对与此,本发明的制造方法中没有这种担心。
如上所述,为避免多层膜的断坡而在一个光学元件的两个面上形成不同性能的多层膜时,其界线部分越大,相互的影响越小,但光路的有效面积减少了,若这种多层膜存在于光学制品或光学制品的内部则界线部分的影响无法回避。与此相对,若覆盖通过光学接触法接合后的光学元件的面形成新的多层膜,就没有多层膜之间的干扰,还能够避免产生对光路有影响的间隙。
第1,本发明提供下述的光学制品,其是下述的正交二向色棱镜,其中形状为等腰直角三棱柱的玻璃制第1棱镜元件、第2棱镜元件、第3棱镜元件和第4棱镜元件的各直角的顶点对在一起,各垂直相交的光学侧面相邻的棱镜元件通过由多层膜构成的二向色膜接合,其特征为,当设所述第1棱镜元件的光学侧面与所述第2棱镜元件的光学侧面之间为第1接合部、所述第2棱镜元件的光学侧面与所述第3棱镜元件的光学侧面之间为第2接合部、所述第3棱镜元件的光学侧面与所述第4棱镜元件的光学侧面之间为第3接合部、所述第4棱镜元件的光学侧面与所述第1棱镜元件的光学侧面之间为第4接合部时,所述第1接合部~第4接合部的任意一个光学侧面上具有的二向色膜的最上层由氧化硅层构成,所述二向色膜的最上层的氧化硅层与光学侧面以光学接触法接合。
等腰直角三棱柱形状的四个棱镜元件中顶角是直角的两个光学侧面分别借助由多层膜构成的二向色膜接合而形成正交二向色棱镜,因此,四个接合部相交为十字状。通过在此四个接合部中的至少一个接合部处采用光学接触法进行接合,就能够减少由粘着剂层引起的光学性能的恶化。
第2,本发明提供下述的光学制品,其如所述第1光学制品,其特征为,所述第1接合部处的二向色膜与所述第3接合部处的二向色膜是贯布上述接合部而连续存在的连续二向色膜。
相交为十字状的四个接合部中,将一组平行的接合部处的二向色膜制成在接合部之间相连续的膜,由此能够减少由于二向色膜的端面或断坡引起的光学方面的影响。
第3,本发明提供如下的光学制品,其如所述第2光学制品,其特征为,贯布所述第1接合部和所述第3接合部设置的连续二向色膜的最上层与最下层由氧化硅层构成,所述第2接合部处的二向色膜的端面与所述第4接合部处的二向色膜的端面以光学接触法分别与该连续二向色膜接合。
断开的第2接合部与第4接合部处的二向色膜端面以光学接触法接合在贯布与这些接合部垂直相交的两个接合部的连续二向色膜上,由此能够减少由于二向色膜的端面引起的光学方面的影响,提高光学均匀性。
第4,本发明提供如下的光学制品,其是如所述第2光学制品,其特征为,所述第1接合部、第3接合部处的连续二向色膜的最上层的氧化硅层与光学侧面以光学接触法进行接合,所述第2接合部、第4接合部处的各自的所述二向色膜的最上层的氧化硅层与光学侧面以光学接触法进行接合。
四个接合部全部以光学接触法进行接合,所以在有效区域内光路中没有粘着剂层,因而能够完全防止由于粘着剂层引起的光学性能的恶化。
第5,本发明提供如下的光学制品,其如所述第2光学制品,其特征为,在所述第2接合部与第4接合部处,通过粘着剂层接合,在所述第1接合部与所述第3接合部处,最下层和最上层由氧化硅层构成的所述连续二向色膜的所述最上层的氧化硅层与光学侧面以光学接触法接合。
对于这种结构的正交二向色棱镜,由于使用粘着剂将四个棱镜元件两个两个地分别接合制造为两个棱镜对,因此容易进行制造,同时,由于形成了连续二向色膜,所以可以减少由于二向色膜的端面引起的光学方面的影响,而且,与最上层和最下层均由氧化硅层构成的该连续二向色膜垂直相交的第1接合部和第3接合部处的各个二向色膜的端面能够以光学接触法与该连续二向色膜接合,因此更可以减少由于二向色膜的端面引起的光学方面的影响。
第6,本发明提供如下的光学制品,其如所述第2光学制品,其特征为,在所述第2接合部处,通过粘着剂层接合,在所述第1接合部以及所述第3接合部处,最下层和最上层由氧化硅层构成的所述连续二向色膜的所述最上层的氧化硅层与光学侧面以光学接触法接合,在所述第4接合部处,二向色膜的最上层的氧化硅层与光学侧面以光学接触法接合。
对于这种结构的正交二向色棱镜,与最上层和最下层均由氧化硅层构成的连续二向色膜垂直相交的第1接合部和第3接合部的各个二向色膜的端面能够以光学接触法与连续二向色膜接合,因此可以减少由于二向色膜的端面引起的光学方面的影响。
第7,本发明提供如下的光学制品,其如所述第4光学制品,其特征为,覆盖与所述连续二向色膜的面相对的2个光学侧面以及这2个光学侧面之间的二向色膜的端面设置氧化硅层,该氧化硅层与所述连续二向色膜以光学接触法接合。
通过设置覆盖两个平行的光学侧面以及这些光学侧面之间的接合部的二向色膜的端面的氧化硅层,能够确实地以光学接触法进行接合。
第8,本发明提供如下的光学制品,其如所述第1光学制品,其特征为,在所述第1接合部、所述第2接合部、所述第3接合部和所述第4接合部的任意一个或多于一个的接合部的光学有效区域的外侧设有间隙,在该间隙中填充有粘着剂。
在光学有效区域的外侧,例如通过组合光学元件制造的棱镜等光学制品的边缘或角落部分,大多不被用作光路。在接合部处,在被设置在没有光学方面影响的区域的间隙中填充粘着剂,由此能够进一步提高接合部的可靠性,能够提供高性能且可靠性更高的光学制品。
第9,本发明提供如下的光学制品,其如所述第1光学制品,其特征为,在所述第1棱镜元件、所述第2棱镜元件、所述第3棱镜元件和所述第4棱镜元件的上面和/或下面接合有贯布这些元件之间的强化材料。
通过强化材料能够将四个棱镜元件一体化,所以能够进一步提高接合部的可靠性,能够提供高性能且可靠性更高的光学制品。
第10,本发明提供如下的光学制品的制造方法,其特征为,分别将具有形状为等腰直角三棱柱的玻璃制第1棱镜元件、第2棱镜元件、第3棱镜元件和第4棱镜元件各直角的顶点对在一起,将各垂直相交的光学侧面相邻的棱镜元件通过由多层膜构成的二向色膜接合在一起而制造正交二向色棱镜时,具有第1成膜工序(所述第1棱镜元件或第4棱镜元件在其垂直相交的光学侧面中的一个侧面上形成由多层膜构成的第1二向色膜)、第1接合工序(所述第1棱镜元件或第4棱镜元件中没有设置所述第1二向色膜的棱镜元件的光学侧面与另一个棱镜元件设有所述二向色膜的光学侧面通过所述第1二向色膜接合,形成第1棱镜对)、第2成膜工序(第2棱镜元件或第3棱镜元件在其垂直相交的光学侧面中的一个侧面上形成由多层膜构成的第1二向色膜)、第2接合工序(第2棱镜元件或第3棱镜元件中没有形成所述第1二向色膜的棱镜元件的光学侧面与另一个棱镜元件设有所述二向色膜的光学侧面通过所述第1二向色膜相接合,形成第2棱镜对)、整面工序(将所述第1棱镜对和第2棱镜对的光学斜边面修整为能够紧贴的面)、第3成膜工序(在所述第1棱镜对或第2棱镜对的任意一方的光学斜边面上形成由多层膜构成的第2二向色膜)和第3接合工序(将经过所述第3成膜工序形成有膜的棱镜对的所述第2二向色膜与没有设置所述第2二向色膜的棱镜对的光学斜边面接合起来),并通过利用第1成膜工序(形成最上层由氧化硅层构成的第1二向色膜)与第1接合工序(通过光学接触法将所述第1棱镜元件和第4棱镜元件的所述第1二向色膜的最上层的氧化硅层与光学侧面接合起来形成第1棱镜对)的第1组合、第2成膜工序(形成最上层由氧化硅层构成的第1二向色膜)与第2接合工序(通过光学接触法将第2棱镜元件和所述第3棱镜元件的所述第1二向色膜的最上层的氧化硅层与光学侧面接合起来形成第2棱镜对)的第2组合以及第3成膜工序(形成最上层由氧化硅层构成的第2二向色膜)与第3接合工序(通过光学接触法将所述第1棱镜对和所述第2棱镜对的所述第2二向色膜的最上层的氧化硅层与光学斜边面接合起来)的第3组合的任意一个或多于1个的组合方式制造正交二向色棱镜。
通过将正交二向色棱镜中相交为十字的四个接合部中的至少一个接合部以光学接触法进行接合,能够尽可能地防止由于粘着剂层引起的光学性能的恶化。
第11,本发明提供如下的光学制品的制造方法,其如所述第10的光学制品的制造方法,其特征为,具有所述第1组合、所述第2组合和所述第3组合。
四个接合部全部以光学接触法接合,所以能够完全防止由于粘着剂层引起的光学性能的恶化。
第12,本发明提供如下的光学制品的制造方法,其如所述第10的光学制品的制造方法,其特征为,具有第1接合工序(以粘着剂将所述第1棱镜元件和所述第4棱镜元件接合起来形成第1棱镜对)、第2接合工序(以粘着剂将所述第2棱镜元件和所述第3棱镜元件接合起来形成第2棱镜对)和所述第3组合(具有设置最下层的氧化硅层的第3成膜工序)。
该正交二向色棱镜的制造方法中,与最上层和最下层均由氧化硅层构成的连续二向色膜垂直相交的各个二向色膜的端面能够以光学接触法与连续二向色膜接合,在正交二向色棱镜的内部不再存在二向色膜的端面,因此可以减少由于二向色膜的端面引起的光学方面的影响。
第13,本发明提供如下的光学制品的制造方法,其如所述第10的光学制品的制造方法,其特征为,具有所述第1组合、第2接合工序(以粘着剂将所述第2棱镜元件的光学侧面和所述第3棱镜元件的所述第1二色相膜接合起来形成第2棱镜对)和所述第3组合(具有形成最下层的氧化硅层的第3成膜工序)。
该正交二向色棱镜的制造方法中,与最上层和最下层均由氧化硅层构成的连续二向色膜垂直相交的各个二向色膜的端面能够以光学接触法与连续二向色膜接合,因此可以减少由于二向色膜的端面引起的光学方面的影响。


图1是说明本发明的正交二向色棱镜的第1实施例的结构的截面图。
图2是说明图1所示的正交二向色棱镜的制造过程中第1成膜工序的截面图。
图3是说明图1所示的正交二向色棱镜的制造过程中接合两个棱镜对的第1接合工序的截面图。
图4是说明图1所示正交二向色棱镜的制造过程中于棱镜对的斜边面上形成二向色膜的第3成膜工序的截面图。
图5是说明本发明的正交二向色棱镜的第2实施例的制造过程中第1和第2成膜工序的截面图。
图6是说明图5所示工序后制造的第2实施例的正交二向色棱镜的结构的截面图。
图7是说明本发明的正交二向色棱镜的第3实施例的结构的截面图。
图8是说明本发明的正交二向色棱镜的第4实施例的结构的截面图。
图9是说明本发明的正交二向色棱镜的第5实施例的结构的截面图。
图10是说明本发明的正交二向色棱镜的第6实施例的制造过程的截面图。
图11是说明本发明的正交二向色棱镜的第6实施例的结构的截面图。
图12是说明本发明的正交二向色棱镜的第7实施例的制造过程中在接合部的两端形成了间隙的状态的截面图。
图13是说明本发明的正交二向色棱镜的第7实施例的结构的截面图。
图14是说明本发明的正交二向色棱镜的第8实施例的制造过程的截面图,是表示在正交二向色棱镜的上下两端贴有强化板的状态的立体图。
图15是说明本发明的正交二向色棱镜的第8实施例的结构的立体图。
图16是说明利用图1所示的本发明的第1实施例的二向色棱镜合成红色R的图像、蓝色B的图像和绿色G的图像的光路图。
图17是说明利用图7所示的本发明的第3实施例的二向色棱镜合成红色R的图像、蓝色B的图像和绿色G的图像的光路图。
图18是说明利用图22所示的比较例1的二向色棱镜合成红色R的图像、蓝色B的图像和绿色G的图像的光路图。
图19是说明利用图23所示的比较例2的二向色棱镜合成红色R的图像、蓝色B的图像和绿色G的图像的光路图。
图20为归纳说明图16~图19中各光线横切粘着剂层次数的表。
图21(a)是说明反射红色的二向色膜的结构例的表,图21(b)是说明反射蓝色的二向色膜的结构例的表。
图22是说明比较例1的正交二向色棱镜的结构的截面图。
图23是说明比较例2的正交二向色棱镜的结构的截面图。
符号说明1~7 正交二向色棱镜11a~11d 第1棱镜元件~第4棱镜元件12R、12B 二向色膜(电介质多层膜)13a、13b 接合了两个三棱柱棱镜的棱镜对14~17 接合面19 通过光学接触法接合的部分20 粘着剂层
21 光学有效区域22 光学有效区域之外的区域(角落部分)23 角落部分的间隙26、27 增强板R1、R2、B1、B2、G1 构成各色图像的光线的例子具体实施方式
下面对本发明的光学制品及光学制品的制造方法的实施方式进行说明,但本发明不仅限于以下的实施方式。
本发明的光学制品由具有相互接合的光学平面的至少两个玻璃制光学元件构成,第1光学元件的光学平面形成有最上层为氧化硅层的多层膜,第2光学元件上形成有能够与形成有多层膜的光学平面相接合的光学平面,第1光学元件中形成有多层膜的光学平面与第2光学元件的光学通过光学接触法相接合。
作为光学制品的具体例子,可以举出正交二向色棱镜。正交二向色棱镜是将形状为等腰直角三棱柱的玻璃制第1棱镜元件、第2棱镜元件、第3棱镜元件和第4棱镜元件的直角的顶点对在一起并通过由多层膜构成的二向色膜将各垂直相交的光学侧面相邻的棱镜元件接合在一起的光学制品。正交二向色棱镜用于将白色光分解为三种颜色及将投射光合成为三种颜色。
可以任意选择4个棱镜元件中的一个作第1棱镜元件,位置关系是,第1棱镜元件的两侧为第2棱镜元件和第4棱镜元件,对面为第3棱镜元件。
在本发明的光学元件中,当设第1棱镜元件的光学侧面与第2棱镜元件的光学侧面之间为第1接合部、第2棱镜元件的光学侧面与第3棱镜元件的光学侧面之间为第2接合部、第3棱镜元件的光学侧面与第4棱镜元件的光学侧面之间为第3接合部、第4棱镜元件的光学侧面与第1棱镜元件的光学侧面之间为第4接合部时,第1接合部~第4接合部的任意一个二向色膜的最上层由氧化硅层构成,二向色膜的最上层的氧化硅层与光学侧面以光学接触法接合。
(第1实施例)图1以截面表示本发明的第1实施例中涉及的正交二向色棱镜的结构。该正交二向色棱镜(下文称为二向色棱镜)1是截面大致为正方形的光学制品(光学部件),将四个形状为等腰直角三棱柱的玻璃制第1棱镜元件11a、第2棱镜元件11b、第3棱镜元件11c和第4棱镜元件11d的各直角的顶点对在一起后通过由多层膜构成的二向色膜12R和12B将各垂直相交的光学侧面相邻的棱镜元件接合在一起。在第1棱镜元件11a和第4棱镜元件11d之间的第4接合部34处以光学接触法通过二向色膜12R接合,在第2棱镜元件11b和第3棱镜元件11c之间的第2接合部32处以光学接触法通过二向色膜12R接合,二向色膜12B连续设置在第1棱镜元件11a和第2棱镜元件11b之间的第1接合部31与第3棱镜元件11c和第4棱镜元件11d之间的第3接合部33全部,第1接合部31与第3接合部33以光学接触法通过二向色膜12B进行接合。即,第1实施例的二向色棱镜1中,所有的接合部31~34处是以光学接触法接合的。在包括图1在内的以下附图中为了说明上的方便性,将以光学接触法接合的部分用粗线表示为以光学接触法接合的接合面(部分)19。但这并不代表用粗线表示的以光学接触法接合的部分19有厚度。这点在以下的附图中也是同样的。
二向色膜12R是能够有效反射红色光(例如波长为850nm的光)的半透膜,二向色膜12B是能够有效反射蓝色光(例如波长为525nm的光)的半透膜。因此,在二向色棱镜1中,红色光R被二向色膜12R反射后改变方向,蓝色光B被二向色膜12B反射后改变方向,绿色光G穿透这两种二向色膜12R和12B。通过这样的作用能够合成各种颜色的图像或将白色光分割成各种颜色的光线,进而成为投影仪等各种光学仪器中重要的光学部件之一。
图2~图4表示了该二向色棱镜1制造过程的概要。作为第1棱镜元件11a~第4棱镜元件11d,可以举出例如使用被称作BK7的硼硅酸盐冕光学玻璃(d线的折射率为1.51633)。第1棱镜元件11a~第4棱镜元件11d具有直角棱柱形状,该直角棱柱形状是将一个顶角为90度其余两个顶角为45度的等腰直角三角形的面沿垂直方向移动得到的。第1棱镜元件11a~第4棱镜元件11d各顶角是直角的垂直相交的两个光学侧面中的一个上形成有二向色膜12R或12B。另外,在以下的其他实施例中,也同样地使用第1棱镜元件11a~第4棱镜元件11d。
如图2所示,利用蒸镀法在第4棱镜元件11d的光学侧面中面向第1棱镜元件11a的第1光学侧面15上形成由多层膜构成的二向色膜12R作第1多层膜(第1成膜工序)。当然,此时也可以在第1棱镜元件11a上面向第4棱镜元件11d的光学侧面14上设置二向色膜12R。利用蒸镀法在第3棱镜元件11c的光学侧面中面向第2棱镜元件11b的第1光学侧面15上形成由多层膜构成的二向色膜12R(第2成膜工序)。
在图21(a)说明反射红色光R的二向色膜12R的结构的一个例子。该二向色膜12R是按能够有效地反射波长为850nm的光设计的,其对红色光的反射率高,对蓝色和绿色光的透过率高。本实施例中的二向色膜12R是通过将氧化钽(Ta2O5)薄膜和氧化硅(SiO2)薄膜重叠共计28张而形成的厚度为数十微米的薄膜。而且,二向色膜12R的最上层12Rt为氧化硅层。
这样的多层膜也被称为电介质多层膜,可以利用真空蒸镀法、离子辅助蒸镀法、离子电镀法、喷溅法等进行成膜。以适宜的厚度交替层积合适材料的高折射率层和低折射率层,由此能够制造反射或透过规定波长的薄膜。作为高折射率层的材料,除了氧化钽以外,还可以使用氧化钛(TiO2)、氧化铌(Nb2O5)等。作为低折射率层的材料,除了氧化硅以外,还可以使用氟化镁(MgF2)等,不过在本发明中,至少在最上层形成使用了氧化硅的薄膜。
接下来,如图3所示,以光学接触法将形成有二向色膜12R的第4棱镜元件11d的光学侧面15和朝向该光学侧面15的第1棱镜元件11a的光学侧面14接合(第1接合工序)。同样地,以光学接触法将形成有二向色膜12R的第3棱镜元件11c的光学侧面15和朝向该光学侧面15的第2棱镜元件11b的光学侧面14接合(第2接合工序)。
由此形成了第1棱镜元件11a与第4棱镜元件11d接合而构成的等腰直角三棱柱状的第1棱镜对13a和第2棱镜元件11b与第3棱镜元件11c接合而构成的等腰直角三棱柱状的第2棱镜对13b。
光学接触法作为将玻璃表面之间直接接合的方法是众所周知的,而在本发明中,并非将玻璃表面之间直接接合,光学接触法能够适用于夹着多层膜将玻璃表面之间接合的情况。为此,首先将形成于光学侧面15的多层膜的最上层12Rt制成与玻璃主要成分相同的氧化硅层,这是为了使对面的玻璃光学侧面14与二向色膜12R的表面12Rt这一对实际上进行接合的部分的材质相一致。
并且,如图21所示,由于形成多层膜时膜厚被控制在亚微米级,二向色膜12R的膜厚精度非常高。因此,基板表面,本实施例中为第4棱镜元件11d的光学侧面15,可以认为其形状就是二向色膜12R的最上层12Rt的表面形状,并且制造第4棱镜元件11d的侧面15的形状时,使其与对面的棱镜11a的侧面14的形状相一致以用于接合,由此,以光学接触法进行接合时能够保证所需表面的精度一致。
作为第1棱镜元件11a~第4棱镜元件11d的接合面的垂直相交的光学侧面15和14可以通过光学研磨(高精度研磨)处理成平坦度充分的状态,例如,表面的粗糙度Ra小于等于0.5nm,平坦度(PV)小于等于0.5μm。并且,还优选使用液体试剂或气体等进行的化学表面处理或是等离子等的物理表面处理对接合部进行清洗处理。作为清洗处理的一个例子,可以举出浸泡于碱性洗液(商品名Cleaner B 3浓度2%)中的浸泡式清洗。
由于在光学侧面15上形成二向色膜12R之后也保证了同样的平坦度,在第4棱镜元件11d的光学侧面15上形成二向色膜12R之后将其与另一方的第1棱镜元件11a的光学侧面14合在一起时,因为两个侧面的表面高度平坦,因此形成真空吸附的状态。然后,于250℃加热1小时以提高接合强度。加热温度优选为200℃~500℃,更优选为200℃~300℃。
以图3所示的工序制造第1棱镜对13a和第2棱镜对13b这两个棱镜对。对与第1棱镜对13a和第2棱镜对13b的直角顶点相对的光学斜边16和17进行光学研磨,使其成为与上述状态相同的高精度平面(整面工序)。
然后,如图4所示,利用蒸镀法在与第1棱镜对13a和第2棱镜对13b中的棱镜对13a的直角相对的光学斜边面16上形成由多层膜构成的二向色膜12B,成为第2多层膜(第3成膜工序)。该二向色膜12B无间断地覆盖着第1棱镜元件11a和第4棱镜元件11d的光学侧面与二向色膜12R的端面,构成连续二向色膜。
图21(b)中说明的是反射蓝色光R的二向色膜12B的结构的一个例子。该二向色膜12B是按能够有效地反射波长为525nm的光设计的,其对蓝色光的反射率高,对红色和绿色光的透射率高。
本实施例中的二向色膜12B是通过将氧化钽薄膜和氧化硅薄膜重叠共计25张而形成的厚度为数十微米的薄膜。而且,二向色膜12B的第一层和最上层12Bt为氧化硅层。
接下来,利用光学接触法接合第1棱镜对13a的光学斜边面16和第2棱镜对13b的光学斜边面17,由此制造作为光学制品的图1所示的二向色棱镜1(第3接合工序)。
由于通过所述成膜工序得到的二向色膜12B的表面12Bt的表面精度也非常高,将形成有二向色膜12B的棱镜对13a的光学斜边面16与棱镜对13b的光学斜边面17合在一起时,形成真空吸附的状态。然后,于250℃加热1小时以提高接合强度。加热温度优选为200℃~500℃,更优选为200℃~300℃。
该实施例中的正交二向色棱镜1能够完全去除粘着剂层对光路的影响。因此,在制造那些以往存在由于粘着剂层的厚度或光学性质引起性能恶化的正交二向色棱镜时,适宜使用本发明的制造方法。
(第2实施例)图5和图6说明的是本发明的其他例子。在此正交二向色棱镜2中,在第1棱镜元件11a~第4棱镜元件11d的各自的光学侧面15上形成二向色膜12R或12B(第1和第2成膜工序),然后,利用光学接合法接合相对的三棱柱棱镜11a~11d的光学侧面14(第1~第3接合工序),制造二向色棱镜2。由于成膜工序和接合工序与第1实施例相同,在此省略其说明。
通过采用该实施例的制造方法,由于能够将在棱镜对上成膜和接合这两步制造工序省为一步,因此能够使二向色棱镜的制造工序简便。并且,由于利用光学接触法接合的部分19没有厚度,如图22说明过的那样,也不会产生由于粘着剂层的厚度引起的二向色膜的断坡这样的问题。因此,本方法能够提供成本低且光学性能良好的二向色棱镜2。
然而,根据二向色膜12R和12B的成膜方法,沿着二向色棱镜2中心轴19c的区域可以同时存在两种二向色膜、存在一种二向色膜、或是不存在二向色膜成为中空状态,是能够选择这三种情况的区域,有可能成为在结构上或光学上不确定的部分。基于此点,第1实施例中所示的二向色棱镜1在结构上和光学性能上都很稳定,因此优选。
(第3实施例)图7说明的是本发明的另一个例子。在该正交二向色棱镜3中,使用第1棱镜元件11a~第4棱镜元件11d,通过图2和图3所示第1成膜工序、第1接合工序和第2接合工序制造棱镜对13a和13b。整面工序之后,在棱镜对13a的光学斜边面16上形成二向色膜12B,利用与棱镜11a~11d光学折射率几乎相同的粘着剂20将其与另一个棱镜对13b的光学斜边面17接合起来。
在该制造方法中,由于二向色膜12B的面通过粘着剂20的层形成于二向色棱镜3的内部,所以不能像所述各实施例中的二向色棱镜1或2那样完全排除粘着剂20的层在光学方面的影响。然而,由于形成有二向色膜12R的接合部是通过光学接触法进行接合的,所以能够将粘着剂层的影响降至最低。而且,因为二向色膜12B是通过粘着剂接合的,所以最上层不必是氧化硅,其具有提高二向色膜12B的结构自由度的优点。
对于能够在本实施例中使用的粘着剂,优选在UV光线或可视光线下能够固化的光学用粘着剂,透过第1棱镜元件11a~第4棱镜元件11d将光线照在粘着剂上能够固化。或者,也可以是通过在对以光学接触法接合的部分19没有影响的温度下进行加热能够固化的热固型粘着剂。在本实施例中使用了株式会社Ades提供的光学粘着剂UT20作粘着剂。对于该光学粘着剂,使用接合夹具使各三棱柱棱镜隔着光学粘着剂接触,之后用高压水银灯(80W/cm2)照射10分钟。该粘着剂UT20固化前的折射率(d线)为1.48,固化后的折射率(d线)为1.52,所以,固化后的折射率基本与棱镜所采用的BK7的折射率接近。
若固化条件,特别是UV光线的照射不稳定,粘着剂层的固化会不均匀,可能会必然产生折射率比玻璃折射率低的部分,因此,使用输出功率足够大的光源来防止折射率的不均匀,以防止画面显示特性的异常。如前所述,若利用光学接触法接合所有的接合部,就能将由于粘着剂层引起的不良状况防止于未然。
(第4实施例)图8说明的是本发明的另一个例子。该正交二向色棱镜4中,使用第1棱镜元件11a~第4棱镜元件11d,用与第3实施例相同的粘着剂层20接合第1棱镜元件11a和第4棱镜元件11d制造第1棱镜对13a(第1接合工序),并同样用粘着剂层20接合第2棱镜元件11b和第3棱镜元件11c制造第2棱镜对13b(第2接合工序)。对与第1棱镜对13a和第2棱镜对13b的直角顶点相对的各个光学斜面边进行光学研磨(整面工序)。利用蒸镀法在与第1棱镜对13a或第2棱镜对13b中的一个棱镜对13a的与直角相对的光学斜边面上形成由多层膜构成且第一层和最上层分别具有氧化硅层的二向色膜12B,成为第2多层膜(第3成膜工序)。该二向色膜12B跨越两个棱镜元件11a和11d的光学侧面之间形成,成为连续二向色膜。然后,利用光学接触法接合第1棱镜对13a和第2棱镜对13b的各自的光学斜边面(第3接合工序)。由此能够制造图8所示的正交二向色棱镜4。
由于四个棱镜元件使用粘着剂两个两个地分别接合制造两个棱镜对,因此该正交二向色棱镜4的制造容易。并且,由于形成了连续二向色膜,所以能够减少由于二向色膜的端面引起的光学方面的影响。而且,对于最下层和最上层都由氧化硅层构成的该连续二向色膜,与之垂直相交的各个二向色膜12R的端面与其接触,二向色膜12R内的氧化硅层在端面露出,所以二向色膜12R的端面可以利用光学接触法与连续二向色膜12B的两面的氧化硅层进行接合。因此,第1棱镜对13a的二向色膜12R的端面可以利用进行氧化硅之间的光学接触法与连续二向色膜12B接合。由此,二向色膜12B与二向色膜12R连为一体,正交二向色棱镜4中不再存在二向色膜12R的端面,能够减少由于二向色膜12R的端面引起的光学方面的影响,提高光学的均匀性。
(第5实施例)图9说明的是本发明的另一个例子。该正交二向色棱镜5中,使用第1棱镜元件11a~第4棱镜元件11d,利用二向色膜12R以光学接触法接合第1棱镜元件11a和第4棱镜元件11d制造第1棱镜对13a(第1接合工序),并用粘着剂层20接合第2棱镜元件11b和第3棱镜元件11c制造第2棱镜对13b(第2接合工序)。对与第1棱镜对13a和第2棱镜对13b的直角顶点相对的各个光学斜面边进行光学研磨(整面工序)。利用蒸镀法在与第1棱镜对13a或第2棱镜对13b中的一个棱镜对13a的直角相对的光学斜边面上形成由多层膜构成且第一层和最上层分别为氧化硅层的二向色膜12B,成为第2多层膜(第3成膜工序)。该二向色膜12B是跨越两个棱镜元件的光学侧面形成的连续二向色膜。然后,利用光学接触法接合第1棱镜对13a和第2棱镜对13b的各自的光学斜边面(第3接合工序)。由此能够制造图9所示的正交二向色棱镜5。
该正交二向色棱镜5中,利用光学接触法接合一个棱镜对再用粘着剂接合另一个棱镜对,从而制造两个棱镜对。与第4实施例相同,与最下层和最上层都由氧化硅层构成的该连续二向色膜12B垂直相交的各个二向色膜12R的端面可以利用进行氧化硅之间的光学接触法与连续二向色膜12B接合。能够减少由于二向色膜12R的端面引起的光学方面的影响,提高光学的均匀性。而且,由于粘着剂层比第4实施例少,所以能够减少由于粘着剂层引起的光学方面的影响。另外,通过连续二向色膜还能减少由于二向色膜的端面引起的光学方面的影响。
(第6实施例)图10和图11说明的是本发明的另一个例子。与第1实施例相同,该正交二向色棱镜1a的所有接合都利用了光学接触法,是去除了粘着剂层的影响的例子。不同之处是,如图10所示,接合两个棱镜对时在没有形成二向色膜12B的一侧的第2棱镜对13b的光学斜边面上设有一层氧化硅层18,并且如图11所示,利用氧化硅层18与二向色膜12B的最上层的氧化硅层12Bt的氧化硅层之间的光学接触法接合两个棱镜对。氧化硅层18可以利用蒸镀法形成,优选其膜厚在100埃~10000埃的范围内。
通过在第2棱镜对13b的光学斜边面上设置氧化硅层18,能够掩盖设置在第2棱镜对13b上的二向色膜12R的端面,去掉间隙。设置在第1棱镜对13a上的二向色膜12R的端面被二向色膜12B所掩盖,二向色膜12R的内侧端面与二向色膜12B成为一体,减少了由于端面引起的光学方面的影响。
(第7实施例)图12和图13说明的是本发明的另一个例子。如图12所示,在该正交二向色棱镜7中,在贴合第1棱镜元件11a~第4棱镜元件11d时使它们的接合部14~17的光学有效区域21的外侧的角落部分22形成间隙23。
光学有效区域的外侧,例如通过组合光学元件制造的棱镜等光学制品的边缘或角落部分等,这些大多不被用作光路。因此,利用光学接触法接合这些接合部14~17时,二向色棱镜7的角落部分22没有进行光学接触,之后,如图13表示的那样,通过在间隙23中填充粘着剂20来密封间隙23。作为粘着剂20,使用与上述实施例相同的光学粘着剂UT20。然而,因为要接合的是光学有效区域21以外的地方,所以在光学上不必与棱镜11a~11d相同,例如,可以使用虽不透明但粘性强的粘着剂。另外,可以在第1接合工序或第2接合工序中将粘着剂注入间隙23。
在投影仪等的应用机器中,二向色棱镜7的角落部分22是被支撑二向色棱镜的框架覆盖的部分,不是光学有效区域21。因此,通过使用粘着剂20接合此部分22并利用光学接触法接合相当于光学有效区域21的部分,不仅不会降低二向色棱镜7的光学性能,还能够附加粘着剂20带来的效果。
一般认为,以光学接触法接合的表面的吸附强度非常高,而且,以蒸镀法形成的二向色膜12R和12B的吸附强度也很高。因此认为,第1实施例或第2实施例中说明的二向色棱镜1和2的耐用性也足够强。
然而,角落部分22进入到支撑框中,可能会受到机械上的集中应力。而且,接合部中角落部分22是接合部内暴露在外面的部分,最容易受到潮气的侵入和外界温度变化的影响。所以,光学有效领域21外侧的角落部分22是最容易剥落的部分。因此,通过在以光学接触法接合的侧面14~17的边缘部分22注入粘着剂20,与传统采用的可靠性较高的接合方法相比,更能够确保以光学接触法接合的侧面14~17的接合强度。并且,虽然通常不考虑从以光学接触法接合的表面的中心或内侧发生剥落现象,但通过物理作用或化学作用从以光学接触法接合的表面的外周边缘处发生剥落是可能的。因此,通过在以光学接触法接合的表面的边缘部分注入粘着剂,与传统采用的可靠性较高的接合方法相比,更能够确保以光学接触法接合的表面的接合强度。与此同时,还能够防止以光学接触法接合的表面的光学性能的降低。
优选使用紫外线(UV)固化型的粘着剂。因为能够通过组合光学元件制造的光学制品的边缘或角落部分露在外面,所以即使是不能够透过紫外线的光学元件,也可以使用操作简单的UV固化型粘着剂接合光学元件。若光学元件可以透过紫外线,则可以毫无阻碍地使用与光学元件的折射率相称的市售UV固化型粘着剂。
(第8实施例)图14和图15说明的本发明的另一个例子。如图14所示,在该正交二向色棱镜6中,使用第1棱镜元件11a~第4棱镜元件11d制造的二向色棱镜6的上下表面24和25上还用粘着剂粘贴有支撑用的增强板26和27。通过在四个棱镜元件11a~11d的上下表面使用接合全部这些棱镜元件的增强板26和27,能够增强第1棱镜元件11a~第4棱镜元件11d的接合,其结果能够防止接合部14~17的剥离。
优选增强板26和27是与第1棱镜元件11a~第4棱镜元件11d相同的材料,即以BK7来制造。通过统一材料,能够使热膨胀系数一致,防止受热变形。而且,假若有沿着增强板26和27的方向进入的杂光,也能够防止杂光被增强板反射,能够通过二向色棱镜6排到外部。基本上来说,由于二向色棱镜6的上下与角落部分22相同,不在光学有效区域21之内,所以增强板26和27不必是与棱镜11a~11d的光学性质相同的材料,可以使用不透明但强度高的材料制造。
关于本发明的实施例所涉及的二向色棱镜的效果,图16~图20将其与不使用光学接触法制造的二向色棱镜进行了比较。
图16说明的是使用图1所示的本发明的第1实施例的二向色棱镜1合成红色R的图像、蓝色B的图像和绿色G的图像的方式。图17说明的是使用图7所示的本发明的第3实施例的二向色棱镜3合成红色R的图像、蓝色B的图像和绿色G的图像的方式。图18说明的是使用图22所示的比较例1的二向色棱镜90合成红色R的图像、蓝色B的图像和绿色G的图像的方式。图19说明的是使用图23所示的比较例2的二向色棱镜95合成红色R的图像、蓝色B的图像和绿色G的图像的方式。
并且,图20归纳说明了利用二向色棱镜1、3、90和95合成图像时红色R的图像光线R1和R2、蓝色B的图像光线B1和B2、绿色G的图像光线G1横切粘着剂层的次数,光线横切粘着剂层是使图像恶化的重要原因。
如图20所示,不具有粘着剂层的二向色棱镜1中任何光线都不横切粘着剂层,因此能够完全去除由于粘着剂层引起的图像恶化。另一方面,二向色棱镜3中一部分光线横切粘着剂层,该横切次数仅限于最少的1次,能够将图像的恶化控制在最小限度。如上所述,在本发明中,正交二向色棱镜这样的在内部夹有多层膜的光学制品能够将图像模糊或重影这样由粘着剂引起的影响控制至最小限度或消除,因此能够提供光学性能非常良好的二向色棱镜。
工业上的可利用性本发明的光学制品可以用作投影仪中用于颜色分解或颜色合成的正交二向色棱镜。
并且,本发明的光学制品的制造方法可以应用于制造尽可能消除了粘着剂层影响的高性能正交二向色棱镜的领域。
权利要求
1.一种光学制品,其是正交二向色棱镜,该二向色棱镜中形状为等腰直角三棱柱的玻璃制第1棱镜元件、第2棱镜元件、第3棱镜元件和第4棱镜元件的各直角顶点对在一起,各垂直相交的光学侧面相邻的棱镜元件通过由多层膜构成的二向色膜接合,其特征为,当设所述第1棱镜元件的光学侧面与所述第2棱镜元件的光学侧面之间为第1接合部、所述第2棱镜元件的光学侧面与所述第3棱镜元件的光学侧面之间为第2接合部、所述第3棱镜元件的光学侧面与所述第4棱镜元件的光学侧面之间为第3接合部、所述第4棱镜元件的光学侧面与所述第1棱镜元件的光学侧面之间为第4接合部时,所述第1接合部~第4接合部的任意一个光学侧面上设有的二向色膜的最上层由氧化硅层构成,所述二向色膜的最上层的氧化硅层与光学侧面以光学接触法接合。
2.如权利要求1所述的光学制品,其特征为,所述第1接合部处的二向色膜和所述第3接合部处的二向色膜是贯布上述接合部而连续存在的连续二向色膜。
3.如权利要求2所述的光学制品,其特征为,贯布所述第1接合部和所述第3接合部设置的连续二向色膜的最上层与最下层由氧化硅层构成,所述第2接合部处的二向色膜的端面与所述第4接合部处的二向色膜的端面分别与连续二向色膜以光学接触法接合。
4.如权利要求2所述的光学制品,其特征为,所述第1接合部、第3接合部处的连续二向色膜的最上层的氧化硅层与光学侧面以光学接触法接合,所述第2接合部、第4接合部的各自的所述二向色膜的最上层的氧化硅层与光学侧面以光学接触法接合。
5.如权利要求2所述的光学制品,其特征为,在所述第2接合部处和第4接合部处,通过粘着剂层接合,在所述第1接合部与所述第3接合部处,最下层和最上层由氧化硅层构成的所述连续二向色膜的所述最上层的氧化硅层与光学侧面以光学接触法接合。
6.如权利要求2所述的光学制品,其特征为,在所述第2接合部处,通过粘着剂层接合,在所述第1接合部与所述第3接合部处,最下层和最上层由氧化硅层构成的所述连续二向色膜的所述最上层的氧化硅层与光学侧面以光学接触法接合,所述第4接合部处,二向色膜的最上层的氧化硅层与光学侧面以光学接触法接合。
7.如权利要求4所述的光学制品,其特征为,覆盖与设有所述连续二向色膜的面相对的2个光学侧面以及这两个光学侧面之间的二向色膜的端面设置氧化硅层,该氧化硅层与所述连续二向色膜以光学接触法接合。
8.如权利要求1所述的光学制品,其特征为,在所述第1接合部、所述第2接合部、所述第3接合部和所述第4接合部的任意一个或多于一个的接合部的光学有效区域的外侧设有间隙,在该间隙中填充有粘着剂。
9.如权利要求1所述的光学制品,其特征为,在所述第1棱镜元件、所述第2棱镜元件、所述第3棱镜元件和所述第4棱镜元件的上面和/或下面接合有贯布这些元件之间的强化材料。
10.光学制品的制造方法,其特征为,将分别具有形状为等腰直角三棱柱的玻璃制第1棱镜元件、第2棱镜元件、第3棱镜元件和第4棱镜元件的各直角顶点对在一起,通过由多层膜构成的二向色膜将各垂直相交的光学侧面相邻的棱镜元件接合在一起而制造正交二向色棱镜时,具有第1成膜工序、第1接合工序、第2成膜工序、第2接合工序、整面工序、第3成膜工序和第3接合工序;所述第1成膜工序中,所述第1棱镜元件或第4棱镜元件在其垂直相交的光学侧面中的一个侧面上形成由多层膜构成的第1二向色膜,所述第1接合工序中,所述第1棱镜元件或第4棱镜元件中没有形成所述第1二向色膜的棱镜元件的光学侧面与另一个棱镜元件形成有所述二向色膜的光学侧面通过所述第1二向色膜相接合形成第1棱镜对,所述第2成膜工序中,第2棱镜元件或第3棱镜元件在其垂直相交的光学侧面中的一个侧面上形成由多层膜构成的第1二向色膜,所述第2接合工序中,所述第2棱镜元件或第3棱镜元件中没有形成所述第1二向色膜的棱镜元件的光学侧面与另一个棱镜元件形成有所述二向色膜的光学侧面通过所述第1二向色膜相接合形成第2棱镜对,所述整面工序中,将所述第1棱镜对和第2棱镜对的光学斜边面修整为能够紧贴的面,所述第3成膜工序中,所述第1棱镜对或第2棱镜对在任意一方的光学斜边面上形成由多层膜构成的第2二向色膜,所述第3接合工序中,将经过所述第3成膜工序形成的棱镜对的所述第2二向色膜与没有形成所述第2二向色膜的棱镜对的光学斜边面接合;并且使用了下述组合中的至少一种组合,第1组合是第1成膜工序与第1接合工序,其中第1成膜工序中,形成最上层由氧化硅层构成的第1二向色膜,第1接合工序中,通过光学接触法将所述第1棱镜元件和第4棱镜元件的所述第1二向色膜的最上层的氧化硅层与光学侧面接合而形成第1棱镜对,第2组合是第2成膜工序与第2接合工序,其中第2成膜工序中,形成最上层由氧化硅层构成的第1二向色膜,第2接合工序中,通过光学接触法将所述第2棱镜元件和第3棱镜元件的所述第1二向色膜的最上层的氧化硅层与光学侧面接合而形成第2棱镜对,第3组合是第3成膜工序与第3接合工序,其中第3成膜工序中,形成最上层由氧化硅层构成的第2二向色膜,第3接合工序中,通过光学接触法将所述第1棱镜对和所述第2棱镜对的所述第2二向色膜的最上层的氧化硅层与光学斜边面接合。
11.如权利要求10所述的光学制品的制造方法,其特征为,具有所述第1组合、所述第2组合和所述第3组合。
12.如权利要求10所述的光学制品的制造方法,其特征为,具有第1接合工序、第2接合工序和所述第3组合,该第1接合工序中,以粘着剂将所述第1棱镜元件和所述第4棱镜元件接合而形成第1棱镜对,该第2接合工序中,以粘着剂将所述第2棱镜元件和所述第3棱镜元件接合而形成第2棱镜对,该所述第3组合具有形成最下层的氧化硅层的第3成膜工序。
13.如权利要求10所述的光学制品的制造方法,其特征为,具有所述第1组合、第2接合工序和所述第3组合,该第2接合工序中,以粘着剂将所述第2棱镜元件和所述第3棱镜元件接合而形成第2棱镜对,该所述第3组合具有形成最下层的氧化硅层的第3成膜工序。
全文摘要
本发明的目的是在内部夹有多层膜的正交二向色棱镜中,减小粘着剂的影响。本发明中,将形状为等腰直角三棱柱的玻璃制第1棱镜元件11a、第2棱镜元件11b、第3棱镜元件11c和第4棱镜元件11d的各个直角顶点对在一起,通过由多层膜构成的二向色膜12B、12R将各垂直相交的光学侧面相邻的棱镜元件接合在一起来制造正交二向色棱镜时,至少在一个接合面上形成由最上层为氧化硅层的多层膜构成的二向色膜,以光学接触法将该接合面和与其相对的玻璃接合面进行接合,以此制造正交二向色棱镜。由此,由于能够排除粘着剂层的影响,能够防止由于横切粘着剂层而引起的光学性能恶化。
文档编号G02B5/04GK1837865SQ20061006545
公开日2006年9月27日 申请日期2006年3月22日 优先权日2005年3月22日
发明者青木勇 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1